Shubham Kr. Bharti Varun Kr. Khare B.Tech. Il nd Year

CRYPTOGRAPHY

Basics Of Cryptography
Diffie-Hellman Key Exchange

Symmetric and Asymmetric Crypto
RSA C ryptosystem

Elgamal Cryptosystem

Cryptography

The study of tec hniques for sec ure communication in presence of eavesdroppers

Key Terms:

- Plain Text
- Cipher Text
- Keys

Symmetric Key

- Asymmetric Key

Public Key
Private Key

Symmetric Key C ipptor for

B Both the parties should have the access to same sec ret key
Any third person, if obtains the key can decode the cipher text even without letting the communicators know that theirkey is exposed.
\square Are exposed to variousattacks such as known-plaintext attacks, chosen-plaintext attacks, differential crypta nalysis and linearcrypta nalysis

E Eg. C a serCipher, Vigenere Cipher, XOR Cipher

Shift Cipher

- Based on Shift parameter (s)
- Method can be improved by randomly choosing distinct keys for distinct position.
\rightarrow Eg. Caeser Cipher, Vigenere Cipher (Polyalpha betic Cipher) One Time Pad
- Random Numbers a nd Pseudorandom key generators are used to generate private key space.

Reason for failure

- Easy to compute all possible cipher text with modem computational power.
- Frequency Fingerprint providesa backdoorfor decrypting cipher text. Also certainty of presence of a message makes it easy to decrypt the cipher text.

Asymmetric Key C ryptosystem

 decryption of cipher text- Also called Public Key Cryptography

Method uses both public key and priva te keys for encryption and decryption. Private keys are kept with individuals.
\square Any person can encrypt the message by using public key of the receiver but decryption can be done only by private keys.
\square Strength of such system lies on degree of diffic ulty to detemine private keysfrom coresponding public keys.
\square Eg. Diffie Hellman, Dig ital Signature algonthm, RSA, EIG a mal etc;

RSA Cryptosystem

\square A practical public-key cryptosystem where the encryption key is public while the decryption key is kept sec ret.
aDescribed by Rivest, Shamirand Adleman in 1977.
\square Algonthm requires to big prime numbers (over 250 digit) long and is secure aslong as factorization rema ins a computationally expensive task with most modem a vailable computers.

Theoretical Qua ntum computers with exceptiona lly high computation power have proven to break RSA using the famous Shor's algonithm.

The Algorithm

EUler's Theorem $a^{\Phi(n)+1} \equiv$ a modn

- Euler totient function is multiplicative. $\varphi(\mathrm{n})=\varphi(\mathrm{p} 1)^{*} \varphi(\mathrm{p} 2)$
\rightarrow Forprime $p, \varphi(p)=p-1$

```
where n=p1*p2
```

- Take two large prime numbers, pl and p2. Let $\mathrm{n}=\mathrm{p} 1$ *p2,then $\varphi(\mathrm{n})=\varphi(\mathrm{p} 1)^{*} \varphi(\mathrm{p} 2)=(\mathrm{p} 1-1)(\mathrm{p} 2-1)$

Select base e such that $1<e<n$ and $(e, n)=1$; e, n are co-prime and a random int k.

* Note that finding $\varphi(n)$ is very costly if primes p1 and p2 are very big unless we know p1 or p2 or both.
- $\mathrm{a}^{*}{ }^{\top} \Phi(\mathrm{n})+1 \equiv \mathrm{a} \cdot \bmod \mathrm{n}$

Find $d=\frac{k * \varphi(n)+1}{e}=\frac{k *(p 1-1) *(p 2-1)+1}{e}=\frac{k *(n-p 1-p 2+1)+1}{e}$

The RSA Algo rithm

1. Generate prime $\mathrm{p} 1, \mathrm{p} 2$ and random base e. p1 and p2 are private keys.
e, n is
Rohan
2. Find $n=p 1 * p 2$. and share public keyse public and n.

3. Calculates $\mathrm{d}=\frac{\mathrm{k} *(\mathrm{p} 1-1) *(\mathrm{p} 2-1)+1}{e}$, and find $m=g^{d} \bmod n$ which gives him message m.
g is now public

Key Generation

- Usually e is chosen small, where (e, n) $=1$

Generating Big Prime Numbers p1 and p2.
Using Probabilistic Prima lity test, 1. Ra bin Miller Test
2. Ba illie-PSW prima lity test

Deterministic Prima lity Test like AKS can also be used but it's a bit c omputationa lly slower.

Diffie-Hellman Key Exchange

Discrete Loga nithm Problem

given prime p, and numbers a, g its computationally very costly to find k such that

$$
g=a^{k} \bmod p
$$

for large values of p (say 100 digits long)

- Earlier exchange of private keys involved some secure physic al channel such as counier, pa per etc.
- DH made it possible to securely exchange private keys between parties over the intemet.
- Key Factor.

Computation Expense of disc rete loga nithm problem is very high for large primes.

- Involveshigh communic a tion overhead in case of sharing keys to multiple parties.

Diffie-Hellman Key Exchange

Shyam Rohan

1. Generate prime p and random base a<p
2. Generate Private key k1 and find $\mathrm{gl}=\mathrm{a}^{\mathrm{k} 1} \bmod \mathrm{p}$
3. Share g1, a, p publicly.

g .2 is now public
4. Recieves g 2 from Rohan.
5. Find $g=g 2^{k 1} \bmod p$

$$
=a^{\mathrm{k} 1 * \mathrm{k} 2} \bmod \mathrm{p}
$$

2. Generate Private key k2 and find $\mathrm{g} 2=\mathrm{a}^{\mathrm{k} 2} \bmod \mathrm{p}$
3. Send g2 to Shyam publicly
4. Find $g=g 1^{k 2} \bmod p$

$$
=a^{k 1 * 2} \bmod p .
$$

Even if someone has a, p,g 1,g2 its currently impossible for them to get key g . Thanks to computational complexity of disc rete loga rithm problem!

Discrete Loganthm Problem

Elgamal (1984): disc rete loga nithm problem (DLP).
$>$ Group G is set with operation (.) and each element ha sinverse.

- Ma in idea: very easy to compute $h=g^{\times}$for given x, but very hard to find x given h and g.
- Popular choic es: finite fields and elliptic curves.

Problems Related to DLP

Given an a belian group (G, \cdot) and $g \in G$ of ordern.

- Disc rete Loga nithm Problem (DLP) : Given $h \in G$ such that $h=g^{x}$ find x. $(\operatorname{DLP}(g, h) \rightarrow x)$
- Computational Diffie-Hellman Problem (CDH) : Given a $=\mathrm{g}^{\mathrm{x}}$ and $b=g^{y}$ find $c=g^{x y}(C D H(g, a, b) \rightarrow c)$.
- Decisional Diffie-Hellman Problem (DDH) :Given $a=g^{x}, \quad b=g^{y}$ and $c=g^{z}$, determine if
$g^{x y}=g^{z}$ or equivalently $x y \equiv z$ mod n
(DDH(g, a, b, c) \rightarrow true/false)

Breaking the discrete loga nithm problem

For exa mple: In case of Elliptic Curves

$$
Q=P x
$$

Q*P-am=Pb
Baby-step, gia nt-step
\rightarrow Calculate $m=[\sqrt{ } \mathrm{r}]$
Forevery b in $0, \ldots, \mathrm{~m}$, calculate bP and store the results in a hash ta ble.
Forevery a in $0, \ldots, \mathrm{~m}$:

- calculate Pam;
- calculate Q*P-am;
- check the hash table and look if there exist a point P ${ }^{\wedge} \mathrm{b}$ such that Q*p-am=P^b;
- if such point exists, then we have found $x=a m+b$.
- time and space complexity $O(\sqrt{ } n)$ or $O\left(2^{\text {b//2 }}\right)$ \{VERY LARGE TO BREAK \}

Discrete Loganthm Problem

Let (G, *) be an a belian group.
\rightarrow Disc rete Loganithm Problem Given $\mathrm{g}, \mathrm{h} \in \mathrm{G}$, find an x (fi it exists) such that

$$
\mathrm{g}^{x}=\mathrm{h} .
$$

- The difficulty of this problem depends on the group G:

Very easy: polynomial time algorithm, e.g. ($\mathbb{N},+$)

- Hard: sub-exponential time algorithm, e.g. (Fp, x)

Very hard: exponential time algorithm, e.g. elliptic curve groups.

EIG a mal Encryption - Key Generation

EIG amal (1985): A public key cryptosystem and a signa ture
scheme based on discrete loga nithms.

Domain Parameter Generation:

- Generate a "Iarge prime" $p(\geq 1024$ bits) such that $p-1$ is divisible by a nother "large prime" q (> 160 bits).
- Compute a generatorg of the multiplicative group of orderq in GF(p)*, via (forsome random r)

$$
\begin{aligned}
& g \equiv r(p-1) / q \bmod p \\
& \text { until } g!=1 .
\end{aligned}
$$

EIG amal Encryption - Key Generation

Key Generation:
Select a random integer $\mathrm{a}, 1 \leq \mathrm{a} \leq \mathrm{q}-1$ and compute

$$
h \equiv g^{a} \bmod p
$$

- Public key $=(p, g, h)$ which can be published.
- Private key =a which needs to be kept secret.

ElG amal - Encryption / Decryption

Shyam encrypts a message for Rohan as follows:
\rightarrow Obta in Rohan's authentic public key (p, g, h).

- Generate random k
($1<k<q-1$)
with $\operatorname{gcd}(k, p-1)=1$
- $r \equiv g^{k \bmod p}$ (k and rare ephemeral key pair)
> $s \equiv h^{k} \cdot m \bmod p(0 \leq m \leq p-$ 1)

Ciphertext: $\mathrm{c}=(\mathrm{r}, \mathrm{s})$

To rec over the message, Rohan does the following:
$m \equiv s \cdot r^{-a} \bmod p$
Indeed:

$$
r^{-a} \equiv g^{-k a} \equiv h^{-k} \bmod p
$$

Questions \& Disc ussion

