Games and magic
 Cops and Robbers game on Graphs

Abhibhav Garg, Amrit Singhal

IIT Kanpur

29 Oct, 2016

Outline

The Game

- Cops and Robbers is a game played on a reflexive graph.
- There are two players, a set of cops and a single robber.

■ The game is played over discrete time steps, with the cop going first at round 0 . The cops and robbers occupy vertices, and in each round, can move to an adjacent vertex.

- The cops win, if after some countable number of rounds, one of them can occupy the same vertex as the robber.
■ The cop number of a graph is the minimum number of cops required to ensure victory. It is denoted as $c(G)$. If $c(G)=k$, we say G is k-cop-win. In the special case $k=1$, we say G is cop-win, and if $k>1$ then G is robber-win.

Notation

■ For a vertex v we define its neighbour set $N(v)$ to be the set of vertices adjacent to v. The closed neighbour set $N[v]$ is given by $N(v) \cup\{v\}$.

- Corners are vertices, say x with property that there is some vertex y such that $N[x] \subseteq N[y]$.
- A set S of vertices is a dominating set if every vertex not is S has a neighbour in S. The domination number of G, written $\gamma(G)$ is the minimum cardinality of the dominating set. We have $c(G) \leq \gamma(G)$.

Notation

- The distance between u and v, written as $d(u, v)$ is the length of the shortest path connecting u and v.
- The diameter of a connected graph G, written as $\operatorname{diam}(G)$ is the supremum of all distances between pairs of vertices.

Games and magic: Cops and Robbers game on Graphs
LConneted Graphs

Connected Graphs

Games and magic: Cops and Robbers game on Graphs
L Bounds

Trees

Games and magic: Cops and Robbers game on Graphs
L Bounds
Lower Bounds
Lower Bounds

- Aigner and Fromme:

LUpper Bounds

Upper Bounds

- Simple Upper Bound

Retracts

■ Let H be an induced subgraph of G formed by deleting one vertex. We say that H is a retract of G if there is a homomorphism f from G onto H so that $(\forall x \in V(H)), f(x)=x$.

- For example, graph formed by deleting an end-vertex, or removing a corner.

Games and magic: Cops and Robbers game on Graphs
L Retracts
Lop Number of Retracts

Cop Number of Retracts

Cop Number of Retracts

Dismantalable

- A graph is dismantalable if some sequence of deleting corners results in the graph K_{1}.
■ For example, each tree is dismantalable: delete the end-vertices repeatedly.

Games and magic: Cops and Robbers game on Graphs
L Characterization

Corners

Cop-win and Dismantlability

Cop-Win and Dismantlability

Cop-Win Ordering

- A graph is dismantlable if we can label the vertices by positive integers $[n]$ in such a way that for each $i<n$, the vertex i is a corner in the subgraph induced by $\{i, i+1, \ldots ., n\}$. Such an ordering is called a cop-win ordering.
- Graph orderings are not usually unique.

The Strategy Setup

■ Define $G_{i}:=$ graph incuded by the vertices $\{n, n-1 \ldots, i\}$. Clearly, $G_{1}=G$ and G_{n} is just the vertex n.
■ Let $f_{i}: G_{i} \rightarrow G_{i+1}$ be the retraction map from G_{i} to G_{i+1}. It maps i to a vertex that covers i.

- Define F_{1} to be the identity map, and for $2 \leq i \leq n$ define

$$
F_{i}=f_{i-1} \circ \ldots \circ f_{2} \circ f_{1}
$$

- We have that $F_{i}(x)$ and $F_{i+1}(x)$ are either equal or are joined.
- If the robber is on vertex x in G, we thinking of $F_{i}(x)$ as the shadow of the robber on G_{i}.

The Strategy

- The cop begins on the vertex n, which is the shadow of the robber's position under F_{n}.
- Suppose that the robber is on u, and the cop is on the shadow of the robber in G_{i}, equaling $F_{i}(u)$. If the robber moves to v, the cop moves to the image $F_{i-1}(v)$ of the robber in the larger graph G_{i-1}.

Games and magic: Cops and Robbers game on Graphs
L No-Backtrack Strategy

- Proof of Strategy

Proof of Strategy

Anthony Bonato, Richard J. Novakowski. The Game of Cops and Robbers on Graphs. American Mathematical Society, 2011.

