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Introduction to Markov Chains

Definition

A probabilistic model describing a sequence of possible events in
which the probability of each event depends on the states attained
in the previous event.
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Introduction to Markov chains

A Markov chain is a sequence X0,X1,X2, . . . of random
variables that indicate states 1,2,3, . . . ,m such that there is a
probability pij that Xn+1 = i given that Xn = j .

pij are called transition probabilities whose sum for each fixed
i is 1. We can write the transition probabilities in matrix form
as follows:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p11 . . . p1m
p21 . . . p2m
⋮ ⋱ ⋮

pm1 . . . pmm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
P is called the Transition matrix

A state vector X is changed to a new state vector X’ using the
transition matrix as follows:

X ′ = PX
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Let’s look at an example..

A boy, a girl, and a dog are playing with a ball. The boy
throws the ball to the girl 2/3 of the time and to the dog 1/3
of the time. The girl throws the ball to the boy 1/2 of the
time and to the dog 1/2 of the time. The dog brings the ball
to the girl all of the time.

We can turn the situation into a matrix equation. Let the
probabilities that the boy, the girl, and the dog have the ball
at time n be bn, gn, and dn, respectively. The initial
probabilities b0, g0, and d0 are three non-negative real
numbers that sum to 1.
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The probabilities satisfy the following matrix equation:

⎡⎢⎢⎢⎢⎢⎣

bn+1
gn+1
dn+1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1/2 0
2/3 0 1
1/3 1/2 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

bn
gn
dn

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 1/2 0
2/3 0 1
1/3 1/2 0

⎤⎥⎥⎥⎥⎥⎦
is the transition matrix for given example.
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Another example..

A famous Markov chain is the so-called ”drunkard’s walk”, a
random walk on the number line where, at each step, the
position may change by +1 or −1 with equal probability. From
any position there are two possible transitions, to the next or
previous integer.

The transition probabilities depend only on the current
position, not on the manner in which the position was
reached. For example, the transition probabilities from 5 to 4
and 5 to 6 are both 0.5, and all other transition probabilities
from 5 are 0. These probabilities are independent of whether
the system was previously in 4 or 6.
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Hidden Markov Model
Definition

A hidden markov model is a doubly stochastic process with an
underlying stochastic process that is not observable (it is
hidden), but can only be observed through another set of
stochastic processes that produce the sequence of observed
symbols.
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Explanation through example

Consider the example of weather on any given day. Assume
that each ’day’ corresponds to a state. For simplicity, we
assume that only three types of weather are possible namely,
sunny, rainy and foggy. Take 1st order Markov approximation
that the weather on day n is decided entirely by weather on
day n-1.

Let the transition probabilities be given by the corresponding
table:

today’s weather tomorrow’s weather

sunny rainy foggy

sunny 0.8 0.05 0.15

rainy 0.2 0.6 0.2

foggy 0.2 0.3 0.5
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Now consider that you are locked in a room for several days
and the only clue you get for the weather outside is whether
the person carrying your daily meal carries an umberella or
not. The corresponding probability table is given by:

weather probability of umberella

sunny 0.1

rainy 0.8

foggy 0.3

In this example, the points to be noted are 1)The actual
weather is hidden from you. 2)The process is doubly
stochastic as any outcome is achieved with two probability
distributions 3)The observed symbols are presence or absence
of umbrella on any day.
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Elements of HMM

There is a finite number, say N, of states in our HMM. In the
considered example, there were 3 states, i.e the different types
of weather.

At each clock time t, a new state is entered based on the
transition probability distribution which depends on the
previous state(by the Markovian property). Inn our example,
each new day was the new clock time and the table 1 was
transition probabilities between states.

After each transition is made, an observation output symbol is
produced according to a probability distribution(Table 2)
which depends on the current state and remains fixed for that
state regardless of when or how the state is achieved.
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Formal Model

We now formally define the following model notation for discrete
observation HMM:

T = length of observation sequence (number of clock times)

N = number of states in the model

M = number of possible observation symbols

Q = {q1,q2, ....,qN}, states

V = {v1, v2, ..., vM}, discrete set of possible observations

A = {aij}, aij = Pr(qj at t + 1∣qi at t), state transition
probability distribution

B = {bj(k)},bj(k) = Pr(vk at t ∣qj at t), observation symbol
probability distribution in state j

π ={πi}, πi = Pr(qi at t = 1), initial state distribution

O = {O1,O2, ...,0T}, observation sequence
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Use of HMMs in speech recognition

Isolated Word Model

1 Spectral Representation of words and Vector Quantization

The speech signal received needs to be represented in such a
way that it is linguistically meaningful as well as
computationally favourable. For this purpose the received
speech signal is represented by its spectrum, i.e. frequency
distribution of intensity. Various models such as bank of filter
and linear prediction are used for the spectral analysis of
speech signal received. This gives us a continuous
representation of a word
Then we can convert it into discrete objects like phonemes
using a nearest neighbor model whee we compare the given
phonemes with the output of the spectral analysis and give the
most similar or ”nearest neighbour”as the output.
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Isolated word model contd.

2 Building an HMM for each word

We assume that we are having a vocabulary of V words and for
each word we build a markov model. Now here each word is
made up of occurrences O1,O2, ...ON each being an element of
the codebook

Now we can define different number of states in our model.
Here we consider the number of states as the number of
phonemes that occur in the word and each state has different
probabilities for different in-dices of the codebook. For
example in a codebook of phonemes, there are 44 different
probabilities associate with a state.
In order to train our model we use the training data for a
single word spoken by several speakers. Then we have to train
our model parameters for transformation from one state to
another using the problem number three.
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Isolated Word Model contd.

To give an example consider the word ”sit”, the phonemes can
be /s/,/i/,/t/ or /z/,/e/,/t/ or anything else with varying
probabilities depending on the speaker and there will be a
different probability of occurrence of /e/ in two different states
which we need to find out while training which is done by the
EM Algorithm.

Now during test time what we do is that we convert the
spoken word or words into features using Vector Quantization
and then concentrate on individual words first. We then
evaluate the probabilities of it being any of the word in our
vocabulary using the HMMs we trained but computationally,
this process is very expensive hence we shall introduce the
Forward-Backward algorithm to overcome it.
Then we can also use the constrains like it being a meaningful
word as well as the syntactic constraints of grammar and
semantic constraints.
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The three problems in HMMs

1 The Evaluation Problem

2 The Sequence Choosing Problem

3 Finding the Model Parameters
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The Evaluation Problem

The evaluation problem is that given a model and the
sequence of observations, how do we compute the probability
that the observed sequence was produced by the model.

Given the observations O1,O2, ....,OT and states q1,q2, ...,qT
we have we need to find the probability of occurrence of this
observation sequence i.e. P(O ∣λ) where λ signifies the model
parameters.

The straightforward way of doing this is through enumerating
every possible state sequence of length T (The number of
observations).
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We consider one such state sequence Q = q1q2...qT
The probability of observation sequence O for the above state
sequence is:
P(O ∣Q, λ) = ∏t=T

t=1 P(Ot ∣qt , λ)
We assume independence of observations

The joint probability that O and Q occur simultaneously is
simply:
P(O,Q ∣λ) = P(O ∣Q, λ)P(Q ∣λ)
Then P(O ∣λ) is obtained by summing this joint probability
over all possible state sequences, giving:
P(O ∣λ) = ∑allQ P(O ∣Q, λ)P(Q ∣λ)
= ∑q1,..,qT πq1bq1(O1)aq1q2 ...aqT−1qT bqT (OT )
This process involves roughly 2T ∗NT calculations, which is
computationally unfeasible.
(There are NT possible states and each state involves roughly
2T calculations)
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Way around this

In order to reduce the complexity, the forward-backward procedure
is used. It has three steps which give a complexity of the order of
N2T , which is much better.

The Forward Probability (The probability of the partial
observation sequence O1,O2, ..,Ot and state Si at time t):

αt(i) = P(O1,O2, ...,Ot ,qt = Si ∣λ)
for 1 ≤ i ≤ N

Now we can calculate α′ts inductively as

αt+1(j) = [
i=N
∑
i=1

αt(i)aij]bj(Ot+1)

Finally P(O ∣λ) is the sum of all αT (i)′s:

P(O ∣λ) =
N

∑
i=1
αT (i)
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In a manner similar to forward probability variable, we define a
backward probability variable as
βt(i) = P(Ot+1Ot+2...OT ∣qt = Si , λ)
i.e., the probability of the partial observation sequence from
t+1 to the end, given state Si at time t and the model λ.

The following inductive step is used for finding β’s.

βt(i) =
i=N
∑
i=1

βt+1(j)aijbj(Ot+1)
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Problem 2

The problem is to find the optimal state sequence associated
with the given observation sequence.

The difficulty lies with the definition of optimal state
sequence; i.e.,there are several possible optimality criteria.

As an example it may be optimal to chose states qt which are
individually most likely.
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Lets solve the problem which uses the above optimality
criteria.

We define a variable
γt(i) = P(qt = Si ∣O, λ) which is the probability of being in
state Si at time t given the observation sequence O and the
model λ

γt can be expressed in terms of forward-backward variables,
i.e.,
γt(i) = αt(i)βt(i)

P(O ∣λ) = αt(i)βt(i)
∑i=N

i=1 αt(i)βt(i)
since αt(i) accounts for the partial observation sequence
O1,O2, ..,Ot and state Si at time t, while βt(i) accounts for
the remaining observation sequence given state Si at time t

Using γt(i) we can solve for individually most likely state qt
at time t as
qt = argmax[γt(i)] 1 ≤ i ≤ N
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Finding the parameters λ

This is by far the toughest problem in HMMs. We need an
algorithm to find the optimal ai j and bi(Ot) for different i,j and t.
In order to do this we use the popular Expectation Maximization
algorithm or EM algorithm.

EM Algorithm is a two step algorithm which is used in many
Probabilistic machine learning models . Below is the general
formulation of EM algorithm

We assume the model parameters are generated from some
probability distribution. Here we can assume that the ai j are
generated from several mutinomial distributions for each i as they
are discrete whereas we can think of the bi(Ot) to be coming from
a normal distribution for continuous data or from multinomial for
the codebooks we shall use.

Now these are ”latent features”of our model. We represent the
state sequence with Q and the parameters which control their
distributions which are represented as λ
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EM Algorithm cont.

The Expectation Step: First we randomly initialize the
parameters λ and then at every iteration we estimate them with
the posterity distribution

P(Q ∣O, λold) ∝ P(O ∣Q, λold) ∗ P(Q ∣λold)

The Maximization Step: Now instead of dong MLE on the data,
we use the P(Q ∣O, λold) to maximize the likelihood of the
E(P(O,Q ∣λ)) which can be proven to be a tight lower bound on
P(O ∣λ) hence we can increase it indirectly. Here we maximize the
log of this lower bound to simplify the calculations.

Q(λold , λ) = ∑
z

P(Q ∣O, λold)log{p(O,Q ∣λ)}
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For Further Reading I

M. Erickson Pearls of Discrete Mathematics.

Rabiner-Zheung An introduction to Hidden Markov Model
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