COUNTABILITY

by
Shubhojyoti Nath
Arihant Jain

Contents

- Cantor Sets
- Cantor Functions
- Schroder Bernstein Theorem
- ZFC
- Ordinals
- Transfinite Induction
- Cardinals
- Continuum Hypothesis
- Hilbert's Paradox of grand hotel

Cantor Sets

- Step 1-Start with the closed unit interval $\left(K_{0}=[0,1]\right)$. Divide it into three equal sections and remove the open middle third.
- Thus we now have $K_{1}=[0,1 / 3] \cup[2 / 3,1]$. We then continue inductively.
- At step n, K_{n} consists of 2^{n} closed subintervals.
- For the $(n+1)^{\text {st }}$ step, divide each of the closed subintervals in the previous step into three parts and remove the open middle third.
- Continuing indefinitely gives us the collection of sets ${ }_{n=0}\left\{K_{n}\right\}^{\infty}$.
- Finally, the Cantor Set is given by

$$
C_{1 / 3}={ }_{n=0} n^{\infty} K_{n}
$$

A Representation of first four steps

Cantor sets : Measure and Cardinality

Measure

For a set A, it is defined as the greatest lower bound of the set of "length of all coverings of a set A".

- Measure of cantor sets is ZERO.

Cardinality

- Cantor sets have cardinality equal to that of [0,1] or real numbers.

Note that....

- Numbers such as $0,1,1 / 3,2 / 3,1 / 9,2 / 9 \ldots . . .$. are never removed from the set
- Points in $[0,1]$ have some base 3 representation.
- it can be shown that a number is in cantor set if and only if its base-3 representation consists of 0's and 2's only
- Using this fact, we will define CANTOR FUNCTION.

Cantor Function

- Each x in Cantor set may be written as $x={ }_{n=1} \sum^{\infty}\left(2 b_{n} / 3^{n}\right)$, where b_{n} is equal to 0 or 1 .
- The function is defined from cantor set to [0,1].
- And, the function is

$$
\begin{gathered}
f(n=1 \\
\left.\Sigma^{\infty}\left(2 b_{n} / 3^{n}\right)\right)=\left({ }_{n=1} \Sigma^{\infty}\left(b_{n} / 2^{n}\right)\right) \\
\text { where } b_{n} \text { is equal to } 0 \text { or } 1 .
\end{gathered}
$$

Properties of ' f '

- The function is onto.
- It is not one-one -:

$$
f(1 / 3)=f(2 / 3)
$$

- Because $f(1 / 3)=f\left((0.02222 \ldots)_{3}\right)=(0.011111 \ldots)_{2}$
- $(0.011111 \ldots .)_{2}=(0.1)_{2}$
- $f(2 / 3)=f\left((0.2)_{3}\right)=(0.1)_{2}$
- This happens at endpoint of any discarded middle-third interval, such as $f(1 / 9)=f(2 / 9)$.

Properties of ' f '

- $f(x)=f(y)$ if and only if ' x ' and ' y ' are endpoints of a discarded middle-thirds interval.
- Thus, f is not one-one
- But if we remove the end points of discarded middle-third interval, then f is one-to-one.
- So, we say that f is one-to-one except at the endpoints of discarded "middle-third" interval.

Extending the domain of ' f '

- We defined it over cantor set.
- What about the points not inside the cantor sets??? (they have ' 1 ' in their base- 3 representation)
- So, we have to redefine f over the set [0,1]\cantor set

Formal Definition of CANTOR FUNCTION

- For x belongs to cantor set, we have given the definition

$$
f\left(n=1 \sum^{\infty}\left(2 b_{n} / 3^{n}\right)\right)=\left({ }_{n=1} \sum^{\infty}\left(b_{n} / 2^{n}\right)\right)
$$

- For x not belonging to cantor set , define

$$
f(x)=\sup \{f(y): y \leq x \text { and } y \text { belongs to cantor set }\}
$$

Graph

Properties of extended 'f'

- Increasing
- Continuous!!!!!!!
- $f^{\prime}=0$ when x is not in cantor set and otherwise not differentiable
- The function is sometimes referred to as singular because $f^{\prime}=0$ at almost every point in [0,1].
- That is $f^{\prime}=0$ on $[0,1] \backslash$ cantor set, a set of measure one.

Schroder Bernstein Theorem

THEOREM : If there exist injective functions $f: M \rightarrow N$ and $g: N \rightarrow M$ between the sets M and N, then there exists a bijective function $h: M \rightarrow N$.

A sketch of proof......

- let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}_{1}$ be the bijection and $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{M}_{1}$ be the other bijection. Let $\mathbf{M}-\mathbf{M}_{1}=\mathbf{A}_{\mathbf{0}}$
- Now, using ' f ' map elements of A_{0} to that of N, call the range of f applied over A_{0} to be B_{1}.
- Apply ' g ' over B_{1} to get A_{1}.
- Going in the similar way, you will have something like an infinite sequence of sets which are equal in caridinality.

We get

$$
A_{0} \sim B_{1} \sim A_{1} \sim B_{2} \ldots .
$$

Pictorially, it looks like

-> 1 corresponds to ' f ' and 2 corresponds to ' g '
-> "~" means that there exist bijection between two sets

Define

$$
\begin{aligned}
& A=A_{0} \cup A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \ldots \ldots . \\
& B=B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{5} \ldots \ldots .
\end{aligned}
$$

- To obtain a bijection, let's define a rule.
- RULE-
> Consider any element of M : ' m '
$>$ If m belongs to A, then, map it according to $\mathrm{f}: \mathbf{M}->\mathrm{N}_{1}$
$>$ If m belongs to $M-A$ (in which case m belongs to M_{1}; since, $M-A_{0}=M_{1}$) then, map it according to $\mathbf{g}^{-1}: \mathbf{M}_{\mathbf{1}}>\mathbf{N}$
From this we conclude that if b belongs to B, then $g(b)$ belongs to $A_{1} \cup A_{2}$ $\cup \mathrm{A}_{3}$.
(B_{1} is mapped to A_{1} under g, B_{2} is mapped to A_{2} and so on).
In other words, we can say that $g(B)=A-A_{0}$

- The mapping defined above is one-to-one:
\square If two elements m_{1} and m_{2} belongs to A or both belongs to $\mathrm{M}-\mathrm{A}$, then there image will be different because of bijective mapping.
\square Let m_{1} belongs to A, then its image belongs to B.
\square Let m_{2} belongs to $M-A$, then its image belongs to $N-B$ (If its image belongs to B, then g when applied over B give some element in M A, but it is not the case as we have seen earlier)
- The mapping defined above is onto:
\square The elements of B corresponds to A
\square Since $g(B)=A-A_{0} ; g(N-B)$ is a subset of $M-A$. But we know that g is a bijection from N to $M_{1}=M-A_{0}$.
\square So , as $g(B)=A-A_{0}$, then $g(N-B)=M-A$.

ZFC

Zermelo Fraenkel Axiom of choice

Axioms of ZFC

1. Axiom of extensionality

Two sets having the same members are equal.
2. Empty set axiom

There is a set having no members.
3. Comprehension Axiom or subset Axiom

Given a set "a" and a property E(x). So, there exists a set " b " whose members are exactly in "a" the those sets which satisfy $\mathrm{E}(\mathrm{x})$.
Mathematically, we have

$$
b=\{x \text { belongs to } a: E(x)\}
$$

4. Pairing Axiom

For any sets \mathbf{a} and \mathbf{b}, there is a set having as its members just \mathbf{a} and \mathbf{b}. We denote this by $\{a, b\}$ and it is unordered pair of a and b.
Ordered pair : $(\mathrm{a}, \mathrm{b})=\{\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$

5. Union Axiom

For any set a, there exists a set whose members are exactly the members of the members of a.
6. Power Set Axiom

For any set a, there exists a set whose members are exactly the subsets of a.

7. Infinity Axiom

There is a set which has the empty set as a member, and has the member $b \cup\{b\}$ whenever b is a member of it
8. Replacement Axiom

If the property $\mathrm{E}(\mathrm{a}, \mathrm{b})$ is functional, that means that for any sets a, b and c we can conclude $b=c$ from $E(a, b)$ and $E(a, c)$, then for each set A, there is a set B whose members are exactly those sets b for which there exists a member a of A satisfying $E(a, b)$.

9. Regularity Axiom or Foundation Axiom

Any nonempty set has a member which is minimal amongst its members with respect to the relation ε; or : Any nonempty set has a member which has no members common with it.

AXIOM of CHOICE

For any set A whose members all are nonempty, there is a function with domain A such that, for any member a of A, the value of this function at a is a member of a; such a function is called choice function.

If we define the cartesian product or the set of choice function for A by
$\Pi \mathrm{A}:=\{\mathrm{f}: \mathrm{f}$ is a function from A into $\cup \mathrm{A}$ with $f(a)$ being a member of a for all a belonging to $A\}$

Then the axiom of choice says :
If A is a set of nonempty sets, then Π A must be non-empty

Ordinals

A class A is transitive iff every member of A is a subset of A.
(for all)y (for all)z (z ε y \& y $\varepsilon \mathrm{A} \Rightarrow \quad \mathrm{z} \boldsymbol{\varepsilon} \mathrm{A}$) An ordinal number or ordinal is a transitive set whose members are all transitive. We denote the class of ordinals by ON.
Example :
$A=\{\varphi, \quad\{\varphi\}, \quad\{\varphi,\{\varphi\}\}, \quad\{\varphi,\{\varphi\},\{\varphi,\{\varphi\}\}\}$ is an ordinal.

$$
0:=\varphi, 1:=\{0\}=\{\varphi\}, 2:=\{0,1\}=\{\varphi,\{\varphi\}\}
$$

Theorem-1

- Any member of an ordinal is an ordinal

Theorem-2

- ON is not a set

Successor and Limit Ordinal

Successor Ordinal

- If x is a set , then the set $S(x):=x \cup\{x\}$ is called the successor of x. An ordinal y is called a successor ordinal iff there is an ordinal z such that $y=S(z)$.
- We also write $\mathrm{z}+1$ instead of $\mathrm{S}(\mathrm{z})$.
- Let $0:=\boldsymbol{\varphi}$, called zero.

Limit Ordinal

- An ordinal y is called a limit ordinal, written Lim(y), iff y is not equal to zero and y is not a successor ordinal.

Transfinite Induction

ZF derives
$\varphi(0) \&$
(for all) $\alpha(\varphi(\alpha)=>\varphi(\alpha+1)) \&$
$($ for all) $\alpha(\operatorname{Lim}(\alpha) \& \square \beta<\alpha, \varphi(\beta))=>\varphi(\alpha)$
$=>($ for all) $\alpha \varphi(\alpha)$

Arithmetic of Ordinals

If α is an ordinal, then we define ordinal sum, ordinal product and ordinal exponentiation
Ordinal SUM -

1) $\alpha+0=\alpha$
2) $\alpha+(\sigma+1)=(\alpha+\sigma)+1$
3) $\operatorname{Lim}(\beta)=>\alpha+\beta=\sup \{\alpha+\sigma: \sigma<\beta$ (this is equivalent to saying that σ is an element of β \}

Ordinal PRODUCT-

1) $\alpha .0=0$
2) $\alpha .(\sigma+1)=(\alpha . \sigma)+\alpha$
3) $\operatorname{Lim}(\beta)=>\alpha \cdot \beta=\sup \{\alpha \cdot \sigma: \sigma<\beta\}$

Ordinal EXPONENTIATION

1) $\alpha^{0}=1$
2) $\alpha^{\wedge}(\sigma+1)=\left(\alpha^{\wedge} \sigma\right) \cdot \alpha$
3) $\operatorname{Lim}(\beta)=>\alpha^{\wedge} \beta=\sup \left\{\alpha^{\wedge} \sigma: \sigma<\beta\right\}$

Subtraction, division and logarithms are also defined for ordinals using transfinite induction

Cardinals

A cardinal number is an ordinal that cannot be mapped one-one , onto a smaller ordinal.
If x is a set, then we can obtain an ordinal σ such that it's in bijection with x (this is possible due to Axiom of Choice)
The smallest ordinal with this property is called the cardinality or cardinal number of x, written as $|\mathrm{x}|$.

Sum , product and exponentiation of cardinal numbers

- к+ $\lambda:=|\kappa \times\{0\} \cup \lambda \times\{1\}|$
- к. $\lambda:=|\kappa \times \lambda|$
- $\kappa^{\lambda}:=\left|\left.\right|^{\lambda}{ }^{\prime}\right|$
where ${ }^{x} y=\{f: f: x->y\}$

Continuum Hypothesis

There exists no set whose cardinality is greater than that of natural numbers and smaller than that of real numbers.

Hilbert's Paradox of grand hotel

- Consider a hypothetical hotel with a countably infinite number of rooms, all of which are occupied.
- One might be tempted to think that the hotel would not be able to accommodate any newly arriving guests, as would be the case with a finite number of rooms, where the pigeonhole principle would apply.

Finitely many new guests

- Suppose m new guests arrive and wish to be accommodated in the hotel.
- We can (simultaneously) move the guest currently in room 1 to room $\mathbf{m + 1}$.
- The guest currently in room 2 to room $\mathbf{m + 2}$.
- Moving every guest from his current room n to room n+m.
- After this, room 1 to m is empty and the new guests can be moved into that room.

Infinitely many new guests

- It is also possible to accommodate a countably infinite number of new guests.
- Just move the person occupying room 1 to room 2 , the guest occupying room 2 to room 4.
- In general, the guest occupying room n to room $2 n$.
- So, all the odd-numbered rooms (which are countably infinite) will be free for the new guests.

Idea behind the paradox

- Hilbert's paradox leads to a counter-intuitive result that is provably true.
- The statements "In every room there is a guest" and "no more guests can be accommodated" are not equivalent when there are infinitely many rooms.

Bibliography

- Real Analysis -N.L.Carothers
- Introduction to Metamathematics-S.C.Kleene
- Introduction to Cardinal Arithmetic-M.Holz
- Wikipedia

Thank You

