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Cantor Sets 

• Step 1-Start with the closed unit interval (K0 =[0,1]). Divide 
it into three equal sections and remove the open middle 
third.  

• Thus we now have K1 = [0,1/3] U [2/3,1]. We then continue 
inductively.  

• At step n, Kn consists of 2n closed subintervals.  
• For the (n + 1)st step, divide each of the closed subintervals 

in the previous step into three parts and remove the open 
middle third. 

• Continuing indefinitely gives us the collection of sets 
n=0{Kn}∞. 

• Finally, the Cantor Set is given by 
     C1/3  = n=0∩

∞
 Kn 

 



A Representation of first four steps 



Cantor sets : Measure and Cardinality 

Measure 

    For a set A, it is defined as the greatest lower 
bound of the set of “length of all coverings of 
a set A”. 

• Measure of cantor sets is ZERO. 

Cardinality 

• Cantor sets have cardinality equal to that of 
[0,1] or real numbers. 



Note that.... 

• Numbers such as 0, 1, 1/3, 2/3, 1/9, 2/9......... 

    are never removed from the set     

• Points in [0,1] have some base 3 
representation.  

• it can be shown that a number is in cantor set 
if and only if its base-3 representation consists 
of 0’s and 2’s only 

• Using this fact, we will define CANTOR 
FUNCTION. 



Cantor Function 

• Each x in Cantor set may be written as 

    x=n=1∑∞ (2bn / 3n ), where bn is equal to 0 or 1. 

 

•  The function is defined from cantor set to [0,1]. 

 

•  And, the function is  

     f(n=1∑∞ (2bn / 3n ) ) = (n=1∑∞ (bn /2n )), 
 where bn is equal to 0 or 1. 



Properties of ‘f’ 

 
• The function is onto. 
• It is not one-one -: 

f(1/3)=f(2/3) 
• Because f(1/3) = f((0.02222...)3 )=(0.011111.... )2  
• (0.011111....)2 =(0.1)2  
• f(2/3)= f((0.2)3 )= (0.1)2  

 
• This happens at endpoint of any discarded 

middle-third interval, such as f(1/9)=f(2/9). 
 



Properties of ‘f’ 

• f(x)=f(y) if and only if ‘x’ and ‘y’ are endpoints 
of a discarded middle-thirds interval. 

• Thus, f is not one-one  

• But if we remove the end points of discarded 
middle-third interval, then f is one-to-one. 

• So, we say that f is one-to-one except at the 
endpoints of discarded “middle-third” 
interval. 



Extending the domain of ‘f’ 

• We defined it over cantor set. 

• What about the points not inside the cantor 
sets??? (they have ‘1’ in their base-3 
representation) 

• So, we have to redefine f over the set 
[0,1]\cantor set 

    



Formal Definition of 
 CANTOR FUNCTION 

• For x belongs to cantor set , we have given the definition 

 f(n=1∑∞ (2bn / 3n ) ) = (n=1∑∞ (bn /2n )) 

 
• For x not belonging to cantor set , define  

 
f(x) = sup { f(y) : y ≤ x and y belongs to cantor set} 

 



Graph  



Properties of extended ‘f’ 

• Increasing 

• Continuous!!!!!!! 

• f’=0 when x is not in cantor set and otherwise 
not differentiable 

• The function is sometimes referred to as  
singular because f’=0 at almost every point in 
[0,1].  

• That is f’=0 on [0,1]\cantor set, a set of 
measure one. 



Schroder Bernstein Theorem 

 

   THEOREM :  If there exist  injective 
functions  f : M → N and g : N → M between 
the sets M and N, then there exists 
a bijective function h : M → N.  

https://en.wikipedia.org/wiki/Injective_function


A sketch of proof...... 

• let f:M →N1 be the bijection and g:N →M1 be     
the other bijection. Let M-M1 = A0  

• Now, using ‘f’ map elements of A0 to that of N, 
call the range of f applied over A0 to be B1. 

• Apply ‘g’ over B1 to get A1.  

• Going in the similar way, you will have       
something like an infinite sequence of sets 
which are equal in caridinality. 



 
 

We get 
A0 ~ B1 ~ A1 ~ B2 ..... 

 
 Pictorially , it looks like 

-> 1 corresponds to ‘f’ and 2 corresponds to ‘g’ 
-> “~” means that there exist bijection between two sets 

 



Define 

      A= A0 U A1 U A2 U A3 U A4...... 

      B= B1 U B2 U B3 U B4 U B5...... 

• To obtain a bijection, let’s define a rule. 

• RULE- 

  Consider any element of M : ‘m’ 

  If m belongs to A , then, map it according to    f : M->N1 

  If m belongs to M-A (in which case m belongs to M1 ; since, M-A0 =M1 ) 
then, map it according to g-1 : M1->N 

      From this we conclude that if b belongs to B , then g(b) belongs to A1 U A2 
U A3...............  

     (B1 is mapped to A1 under g, B2  is mapped to A2 and so on). 

In other words, we can say that g(B)=A-A0 

 

 

 



• The mapping defined above is one-to-one:  
 

  If two elements m1 and m2 belongs to A or both belongs to M-A , 
then there image will be different because of bijective mapping. 

 
 Let m1 belongs to A , then its image belongs to B. 
 Let m2 belongs to M-A, then its image belongs to N-B (If its image 

belongs to B, then g when applied over B give some element in M-
A, but it is not the case as we have seen earlier) 

 
• The mapping defined above is onto:  
 
 The elements of B corresponds to A  
 Since g(B)=A-A0 ; g(N-B) is a subset of M-A. But we know that g is a 

bijection from N to M1 = M-A0 . 
 So ,as g(B)=A-A0  , then g(N-B)=M-A. 
 



ZFC 
Zermelo Fraenkel Axiom of choice 

Axioms of ZFC 

 

1. Axiom of extensionality 

     Two sets having the same members are 
equal. 

2. Empty set axiom 

      There is a set having no members. 

 



3. Comprehension Axiom or subset Axiom 

    Given a set “a” and a property E(x). So, there 
exists a set “b” whose members are exactly in 
“a” the those sets which satisfy E(x). 
Mathematically, we have 

b= {x belongs to a : E(x)} 

4. Pairing Axiom  

    For any sets a and b, there is a set having as 
its members just a and b. We denote this by 
{a,b} and it is unordered pair of a and b. 
Ordered pair : (a,b) = {{a}, {a,b}} 



5. Union Axiom 

    For any set a, there exists a set 
whose members are exactly the 
members of the members of a. 

 

6. Power Set Axiom 

    For any set a, there exists a set 
whose members are exactly the 
subsets of a. 
 



7. Infinity Axiom 

    There is a set which has the empty set as a 
member, and has the member b U {b} 
whenever b is a member of it 

8. Replacement Axiom 

     If the property E(a,b) is functional, that 
means that for any sets a,b and c we can 
conclude b=c from E(a,b) and E(a,c),then for 
each set A , there is a set B whose members 
are exactly those sets b for which there exists 
a member a of A satisfying E(a,b). 



9. Regularity Axiom or Foundation Axiom 

     Any nonempty set has a member which is 
minimal amongst its members with respect to 
the relation ε ; or : Any nonempty set has a 
member which has no members common with 
it. 

     



AXIOM of CHOICE 
    For any set A whose members all are nonempty, there is a function 

with domain A such that, for any member a of A, the value of this 
function at a is a member of a; such a function is called choice 
function. 

 
     If we define the cartesian product or the set of choice function for 

A by  
 

  Π A := { f : f is a function from A into U A with 
      f(a) being a member of a for all a belonging to A} 

 
Then the axiom of choice says :  

If A is a set of nonempty sets, then  Π A must be non-empty 
 



Ordinals 

    A class A is transitive iff every member of A is a 
subset of A. 

         (for all)y (for all)z (z ε y   &   y ε A   =>    z ε A ) 
An ordinal number or ordinal is a transitive set 
whose members are all transitive. We denote the 
class of ordinals by ON.  

Example :  
 A= {ϕ,     {ϕ},      {ϕ,{ϕ}},    {ϕ, {ϕ}, {ϕ,{ϕ}} } 

     is an ordinal. 
     0:= ϕ , 1:= {0}= {ϕ}, 2:= {0,1}= {ϕ,{ϕ}}......... 
 
 



Theorem-1  

• Any member of an ordinal is 
an ordinal 

 

 

Theorem-2 

• ON is not a set  



Successor and Limit Ordinal 

Successor Ordinal 

• If x is a set , then the set S(x) := x U {x} is called the 
successor of x. An ordinal y is called a successor 
ordinal iff there is an ordinal z such that y= S(z).  

• We also write z+1 instead of S(z). 

• Let 0:= ϕ, called zero. 

Limit Ordinal 

• An ordinal y is called a limit ordinal, written Lim(y), iff y 
is not equal to zero and y is not a successor ordinal. 

 



Transfinite Induction 

ZF derives  

ϕ(0) &  

(for all) α (ϕ(α) => ϕ(α+1)) & 

(for all) α (Lim(α) & ꓯ  β < α, ϕ(β)) => ϕ(α) 

=> (for all) α ϕ(α) 



Arithmetic of Ordinals 

If α is an ordinal, then we define ordinal sum, 
ordinal product and ordinal exponentiation 

Ordinal SUM – 

1) α + 0 = α 

2) α + (σ+1) = (α + σ) + 1 

3) Lim (β) => α + β = sup{α + σ : σ < β (this is 
equivalent to saying that σ is an element of β } 



Ordinal PRODUCT- 

1) α.0 = 0 

2) α.(σ+1) = (α.σ) + α 

3) Lim (β ) => α. β  = sup {α.σ : σ < β } 

 

Ordinal EXPONENTIATION 

1) α0 = 1 

2) α^(σ+1) = (α^σ) . α    

3) Lim(β) => α^β = sup{α^σ : σ < β} 

      Subtraction, division and logarithms are also 
defined for ordinals using transfinite induction  

 

 

 



Cardinals 

A cardinal number is an ordinal that cannot be 
mapped one-one , onto a smaller ordinal. 

If x is a set, then we can obtain an ordinal σ such 
that it’s in bijection with x  

   (this is possible due to Axiom of Choice) 

The smallest ordinal with this property is called 
the cardinality or cardinal number of x, 
written as |x|. 



Sum , product and exponentiation of 
cardinal numbers 

• κ+ λ := | κ  x {0} U λ x {1} | 

 

• κ . λ :=  | κ  x  λ |  

 

• κλ  := |λκ| 

    where    xy = {f : f : x -> y}     



Continuum Hypothesis 
 

   There exists no set whose cardinality 
is greater than that of natural 
numbers and smaller than that of 
real numbers. 

  



Hilbert’s Paradox of grand hotel 

• Consider a hypothetical hotel with a countably 
infinite number of rooms, all of which are 
occupied. 

• One might be tempted to think that the hotel 
would not be able to accommodate any newly 
arriving guests, as would be the case with a 
finite number of rooms, where the pigeonhole 
principle would apply. 



Finitely many new guests 

 
• Suppose m new guests arrive and wish to be 

accommodated in the hotel. 
•  We can (simultaneously) move the guest 

currently in room 1 to room m+1.  
• The guest currently in room 2 to room m+2. 
• Moving every guest from his current room n to 

room n+m. 
•  After this, room 1 to m is empty and the new 

guests can be moved into that room. 
 



Infinitely many new guests 

• It is also possible to accommodate a countably 
infinite number of new guests. 

•  Just move the person occupying room 1 to room 
2, the guest occupying room 2 to room 4.  

• In general, the guest occupying room n to room 
2n. 

•  So, all the odd-numbered rooms (which are 
countably infinite) will be free for the new guests. 

 

 



Idea behind the paradox 

• Hilbert's paradox leads to a counter-intuitive 
result that is provably true. 

•  The statements “In every room there is a 
guest" and "no more guests can be 
accommodated" are not equivalent when 
there are infinitely many rooms. 
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