Lecture 37: Density of primes

Nitin Saxena

IIT Kanpur

1 Prime number estimates

Lemma 1. $\binom{2 n}{n} \geq 4^{n} /(2 n+1)$.
Lemma 2. If a prime $p \left\lvert\,\binom{ 2 n}{n}\right.$ then $p^{v_{p}\binom{2 n}{n}} \leq 2 n$.
Lemma 3. For all $n \geq 2, \prod_{\text {prime } p \in[n]} p \leq 4^{n}$.
Theorem 1 (Bertrand's postulate, Chebyshev 1848). For all $n \in \mathbb{N}_{\geq 1}$, there is a prime $p \in(n, 2 n]$.
Proof. We will prove this by contradiction. Let $n \geq 3$ be such that there is no prime number in $(n, 2 n]$. Then, consider the prime factors $p \left\lvert\,\binom{ 2 n}{n}\right.$. By the hypothesis we get $p \in(1, n]$.

If $p \in(2 n / 3, n]$ then $v_{p}\binom{2 n}{n}=v_{p}((2 n)!)-2 \cdot v_{p}(n!)=2-2 \cdot 1=0$. Thus, $p \in(1,2 n / 3]$. We want to use this information to upper bound $\binom{2 n}{n}$.

By Lemma 2, we deduce that any prime $p \in(\sqrt{2 n}, 2 n / 3]$ dividing $\binom{2 n}{n}$ has to divide with exponent exactly one. Combining this with Lemma 3, we get:

$$
\begin{aligned}
\binom{2 n}{n} & <(2 n)^{\sqrt{2 n}} \cdot \prod_{p \in(\sqrt{2 n}, 2 n / 3]} p \\
& <(2 n)^{\sqrt{2 n}} \cdot 4^{2 n / 3} .
\end{aligned}
$$

So, with Lemma 1, we get

$$
\frac{4^{n}}{2 n+1}<(2 n)^{\sqrt{2 n}} \cdot 4^{2 n / 3}
$$

By taking $\log _{2}$ both sides, and fixing $n=2^{9}$, it can be checked that the above is false. So, we have proved the theorem for all $n \geq 2^{9}$.

For smaller n, the theorem can be verified by considering the following 11 primes:

$$
2,3,5,7,13,23,43,83,163,317,631
$$

and noticing that the gap is within a multiple of two.
Note 1. This immediately implies that $\pi(x) \geq \log _{2} x$, for all $x \geq 2$.
Open question: (Legendre's conjecture, 1800s) Give a good estimate on the prime gaps. Eg. is there a prime in the interval $\left(n^{2},(n+1)^{2}\right)$, for all $n \geq 2$?

The above tools are powerful enough to give us a better estimate for $\pi(x)$.
Theorem 2. For all $x \geq 5$,

$$
\frac{x}{\log _{2} x}-2 \leq \pi(x)<\frac{6 x}{\log _{2} x}
$$

Proof. First, we discuss the upper bound. This is hinted by Lemma 3. In the product $\prod_{\text {prime } p \leq x} p$, there are $\pi(x)-\pi(\sqrt{x})$ many primes in the interval $(\sqrt{x}, x]$. So,

$$
\sqrt{x}^{\pi(x)-\pi(\sqrt{x})}<\prod_{\text {prime } p \leq x} p \leq 4^{x} .
$$

By taking $\log _{2}$ both sides, we get:

$$
\pi(x)<\frac{4 x}{\log _{2} x}+\pi(\sqrt{x}) \leq \frac{4 x}{\log _{2} x}+\sqrt{x} \leq \frac{6 x}{\log _{2} x}
$$

where the last inequality holds for $x \geq 2$.
Next, we discuss the lower bound. This is hinted by Lemma 1 . Let p be a prime dividing $\binom{2 n}{n}$, then

$$
\binom{2 n}{n}=\prod_{p \left\lvert\,\binom{ 2 n}{n}\right.} p^{v_{p}\binom{2 n}{n}} \leq \prod_{p \left\lvert\,\binom{ 2 n}{n}\right.}(2 n) \leq(2 n)^{\pi(2 n)}
$$

By taking $\log _{2}$ both sides, we get:

$$
\pi(2 n) \geq \frac{\log _{2}\binom{2 n}{n}}{\log _{2} 2 n}
$$

Further, by Lemma 1 ,

$$
\pi(2 n) \geq \frac{2 n-\log _{2}(2 n+1)}{\log _{2}(2 n)}
$$

Coming back to x, we can pick an n such that $2 n<x \leq 2(n+1)$. Then,

$$
\pi(x) \geq \pi(2 n)>\frac{x-2-\log _{2}(x+1)}{\log _{2}(x)}=\frac{x}{\log _{2} x}-\log _{x}(4 x+4)>\frac{x}{\log _{2} x}-2
$$

where the last inequality holds for $x \geq 5$.
Note 2. PNT says that $\pi(x)$ tends to $\frac{x}{\log _{2} x} \cdot \log _{2} e$ as $x \rightarrow \infty$.
Finally, we prove a cute consequence of the Bertrand's postulate.
Theorem 3 (Greenfield-Greenfield, 1998). For $n \geq 1$ the set $[2 n]$ can be partitioned into n pairs $\sqcup_{i \in[n]}\left\{a_{i}, b_{i}\right\}$ such that $a_{i}+b_{i}$ is a prime for all $i \in[n]$.

Proof. The proof is by a simple induction on n. For $n=1$ it is trivial. Assume it to be true for numbers below n.

By Bertrand's postulate there is a prime $p \in(2 n, 4 n)$. Let $m:=p-2 n$; it is an odd number in $(0,2 n)$. We can pair up the numbers in the interval $[m, 2 n]$ as: $\{m+i, 2 n-i\}$, for every $i \in[0, n+\lfloor m / 2\rfloor-m]$. Clearly, the sum of each pair is p. For the remaining interval $[m-1]$, we can apply induction.

References

1. D. Galvin. Erdös' proof of Bertrand's postulate. https://www3.nd.edu/~dgalvin1/pdf/bertrand.pdf, 2015.
