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1 Prime number estimates

Lemma 1. (*") >4"/(2n +1).
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Lemma 2. If a prime p|(27:’) then p””( ) <2n.
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Lemma 3. For alln >2, [[, ;.. pefn P <

Theorem 1 (Bertrand’s postulate, Chebyshev 1848). For all n € N>, there is a prime p € (n,2n].

Proof. We will prove this by contradiction. Let n > 3 be such that there is no prime number in (n,2n].

Then, consider the prime factors p| (27?) By the hypothesis we get p € (1, n].

If p € (2n/3,n] then v, (*") = v,((2n)!) —2-vy(n!) =2 —2-1 = 0. Thus, p € (1,2n/3]. We want to use
this information to upper bound (*").

By Lemma [2, we deduce that any prime p € (v/2n,2n/3] dividing (27?) has to divide with exponent
exactly one. Combining this with Lemma [3| we get:
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PE(V2n,2n/3]
< (Zn)m . 42n/3

So, with Lemma [T} we get
477/
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< (Qn)m . 42n/3

By taking log, both sides, and fixing n = 2°, it can be checked that the above is false. So, we have proved
the theorem for all n > 29.
For smaller n, the theorem can be verified by considering the following 11 primes:

2,3,5,7,13,23,43,83,163,317,631
and noticing that the gap is within a multiple of two. O

Note 1. This immediately implies that m(z) > log, x, for all z > 2.

Open question: (Legendre’s conjecture, 1800s) Give a good estimate on the prime gaps. Eg. is there a
prime in the interval (n2, (n + 1)?), for alln > 2 ?

The above tools are powerful enough to give us a better estimate for 7(z).

Theorem 2. For all x > 5,




p, there

Proof. First, we discuss the upper bound. This is hinted by Lemma |3| In the product Hprimc p<z

are w(z) — m(y/x) many primes in the interval (v/z,x]. So,

SO I »<4

prime p<z

By taking log, both sides, we get:
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where the last inequality holds for x > 2.
Next, we discuss the lower bound. This is hinted by Lemma |l} Let p be a prime dividing (27?), then
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By taking log, both sides, we get:
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Further, by Lemma [I]
2n —logy(2n + 1)
log,(2n)

Coming back to z, we can pick an n such that 2n < z < 2(n + 1). Then,

w(2n) >

x —2—logy(z +1) z
> m(2 = —1 4 4
o) 2 m(zn) > T s~ log (a4 4) >

logy
where the last inequality holds for x > 5. O

Note 2. PNT says that m(x) tends to —£— -log, e as x — 0.

log, x
Finally, we prove a cute consequence of the Bertrand’s postulate.

Theorem 3 (Greenfield-Greenfield, 1998). For n > 1 the set [2n] can be partitioned into n pairs
Useny{ai, bi} such that a; + b; is a prime for all i € [n].

Proof. The proof is by a simple induction on n. For n = 1 it is trivial. Assume it to be true for numbers
below n.

By Bertrand’s postulate there is a prime p € (2n,4n). Let m := p — 2n; it is an odd number in (0, 2n).
We can pair up the numbers in the interval [m,2n] as: {m + i,2n — i}, for every ¢ € [0,n + [m/2]| — m].
Clearly, the sum of each pair is p. For the remaining interval [m — 1], we can apply induction.
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