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1 Prime number estimates

Lemma 1.
(
2n
n

)
≥ 4n/(2n+ 1).

Lemma 2. If a prime p|
(
2n
n

)
then pvp(2n

n ) ≤ 2n .

Lemma 3. For all n ≥ 2,
∏

prime p∈[n] p ≤ 4n .

Theorem 1 (Bertrand’s postulate, Chebyshev 1848). For all n ∈ N≥1, there is a prime p ∈ (n, 2n].

Proof. We will prove this by contradiction. Let n ≥ 3 be such that there is no prime number in (n, 2n].
Then, consider the prime factors p|

(
2n
n

)
. By the hypothesis we get p ∈ (1, n].

If p ∈ (2n/3, n] then vp
(
2n
n

)
= vp((2n)!)− 2 · vp(n!) = 2− 2 · 1 = 0. Thus, p ∈ (1, 2n/3]. We want to use

this information to upper bound
(
2n
n

)
.

By Lemma 2, we deduce that any prime p ∈ (
√

2n, 2n/3] dividing
(
2n
n

)
has to divide with exponent

exactly one. Combining this with Lemma 3, we get:

(
2n

n

)
< (2n)

√
2n ·

∏
p∈(
√
2n,2n/3]

p

< (2n)
√
2n · 42n/3 .

So, with Lemma 1, we get
4n

2n+ 1
< (2n)

√
2n · 42n/3 .

By taking log2 both sides, and fixing n = 29, it can be checked that the above is false. So, we have proved
the theorem for all n ≥ 29.

For smaller n, the theorem can be verified by considering the following 11 primes:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631

and noticing that the gap is within a multiple of two.

Note 1. This immediately implies that π(x) ≥ log2 x, for all x ≥ 2.

Open question: (Legendre’s conjecture, 1800s) Give a good estimate on the prime gaps. Eg. is there a
prime in the interval (n2, (n+ 1)2), for all n ≥ 2 ?

The above tools are powerful enough to give us a better estimate for π(x).

Theorem 2. For all x ≥ 5,
x

log2 x
− 2 ≤ π(x) <

6x

log2 x
.



Proof. First, we discuss the upper bound. This is hinted by Lemma 3. In the product
∏

prime p≤x p, there

are π(x)− π(
√
x) many primes in the interval (

√
x, x]. So,

√
x
π(x)−π(

√
x)
<

∏
prime p≤x

p ≤ 4x .

By taking log2 both sides, we get:

π(x) <
4x

log2 x
+ π(
√
x) ≤ 4x

log2 x
+
√
x ≤ 6x

log2 x
,

where the last inequality holds for x ≥ 2.
Next, we discuss the lower bound. This is hinted by Lemma 1. Let p be a prime dividing

(
2n
n

)
, then(

2n

n

)
=

∏
p|(2n

n )

pvp(2n
n ) ≤

∏
p|(2n

n )

(2n) ≤ (2n)π(2n) .

By taking log2 both sides, we get:

π(2n) ≥
log2

(
2n
n

)
log2 2n

.

Further, by Lemma 1,

π(2n) ≥ 2n− log2(2n+ 1)

log2(2n)
.

Coming back to x, we can pick an n such that 2n < x ≤ 2(n+ 1). Then,

π(x) ≥ π(2n) >
x− 2− log2(x+ 1)

log2(x)
=

x

log2 x
− logx(4x+ 4) >

x

log2 x
− 2 ,

where the last inequality holds for x ≥ 5.

Note 2. PNT says that π(x) tends to x
log2 x

· log2 e as x→∞.

Finally, we prove a cute consequence of the Bertrand’s postulate.

Theorem 3 (Greenfield-Greenfield, 1998). For n ≥ 1 the set [2n] can be partitioned into n pairs
ti∈[n]{ai, bi} such that ai + bi is a prime for all i ∈ [n].

Proof. The proof is by a simple induction on n. For n = 1 it is trivial. Assume it to be true for numbers
below n.

By Bertrand’s postulate there is a prime p ∈ (2n, 4n). Let m := p − 2n; it is an odd number in (0, 2n).
We can pair up the numbers in the interval [m, 2n] as: {m + i, 2n − i}, for every i ∈ [0, n + bm/2c − m].
Clearly, the sum of each pair is p. For the remaining interval [m− 1], we can apply induction.
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