Lecture 36: Density of primes

Nitin Saxena

IIT Kanpur

1 Prime number estimates

Euclid's theorem tells us that the primes are infinitely many. But, in applications we often need precise information about the distribution of primes, and their density. Let $\pi(x)$ be the number of primes in $[1, x]$. What is $\pi(x) / x$?

Gauss, based on manual calculations, conjectured in 1793 that $\pi(x) / x \approx 1 / \log x$. Bertrand conjectured in 1845 that there ought to be a prime between every n and $2 n$. Chebyshev proved Bertrand's postulate in 1848. Moreover, he showed that the function $\pi(x) /(x / \log x)$ lies between two constants, and if it has a limit (as $x \rightarrow \infty$) then it is 1 . This was finally resolved by Hadamard \& de la Vallée-Poussin (1896); who proved the prime number theorem (PNT) using complex analysis. An impressive version of PNT:

$$
\pi(x)=\int_{2}^{x} \frac{d t}{\log t}+x \cdot e^{-\Omega(\sqrt{\log x})}
$$

Note- Riemann hypothesis (1859) states that the error term can be made as small as $\tilde{O}(\sqrt{x})$.
We will follow the ideas of Erdös, as simplified in [1] to estimate $\pi(x)$. Along the way we will also prove Bertrand's postulate and other interesting properties of primes. Surprisingly, the basic idea is to analyze the binomial $\binom{2 n}{n}$ carefully.
Lemma 1. $\binom{2 n}{n} \geq 4^{n} /(2 n+1)$.
Proof. We know that $\binom{2 n}{n}$ is the largest term in the binomial expansion of $(1+1)^{2 n}=\sum_{0 \leq i \leq 2 n}\binom{2 n}{i}$. Thus, by averaging we deduce that $\binom{2 n}{n} \geq 2^{2 n} /(2 n+1)$.

We are interested in a prime in $[n, 2 n]$. If there is no such prime then we intend to show that the lower bound from Lemma 1 would get contradicted. For that, let us define valuation wrt a prime p as, $v_{p}(m):=$ the largest e such that $p^{e} \mid m$.
Lemma 2. $v_{p}(m!)=\sum_{i \geq 1}\left\lfloor\frac{m}{p^{2}}\right\rfloor$.
Proof. The number of integers in $[m]$ divisible by p are $\left\lfloor\frac{m}{p}\right\rfloor$. The ones divisible by p^{2} are $\left\lfloor\frac{m}{p^{2}}\right\rfloor$ many, and so on.

We give a good upper bound on the prime powers that divide $\binom{2 n}{n}$.
Lemma 3. If a prime $p \left\lvert\,\binom{ 2 n}{n}\right.$ then $p^{v_{p}\binom{2 n}{n}} \leq 2 n$.
Proof. Let $r \in \mathbb{N}$ be s.t. $p^{r} \leq 2 n<p^{r+1}$. We have,

$$
\begin{aligned}
v_{p}\binom{2 n}{n} & =v_{p}((2 n)!)-2 \cdot v_{p}(n!) \\
& =\sum_{i \in[r]}\left(\left\lfloor\frac{2 n}{p^{i}}\right\rfloor-2\left\lfloor\frac{n}{p^{i}}\right\rfloor\right) \\
& \leq r .
\end{aligned}
$$

Thus, $p^{v_{p}\binom{2 n}{n}} \leq p^{r} \leq 2 n$.

[^0]Exercise 1. Show that $\lfloor 2 x\rfloor-2\lfloor x\rfloor \in[0,1]$, for any real x.

We will need an upper bound on the product of primes.
Lemma 4. For all $n \geq 2, \prod_{\text {prime } p \in[n]} p \leq 4^{n}$.
Proof. The proof is by induction on n. For $n=2$ it is clear. For even $n=2 m$, we have $\prod_{\text {prime } p \in[2 m]} p \leq$ $\prod_{\text {prime } p \in[2 m-1]} p \leq 4^{2 m-1}<4^{n}$.

For odd $n=2 m+1$, we have

$$
\begin{aligned}
\prod_{\text {prime }}^{p \in[2 m+1]} & p \\
& \prod_{\text {prime }} p \in[m+1] \\
& \leq 4^{m+1} \cdot\binom{2 m+1}{m} \\
& \leq 4^{m+1} \cdot 2^{2 m} \quad\left[\because\binom{2 m+1}{m}=\binom{2 m+1}{m+1} \text { in }(1+1)^{2 m+1} \cdot\right] \\
& =4^{n} .
\end{aligned}
$$

Note 1. $\prod_{i \in[n]} i=i!>(n / e)^{n}$. Thus, over primes the product is significantly smaller.

References

1. D. Galvin. Erdös' proof of Bertrand's postulate. https://www3.nd.edu/~dgalvin1/pdf/bertrand.pdf, 2015.

[^0]: ${ }^{1} \log$ to base $e:=\sum_{i \geq 0} 1 / i!$.

