Lecture 33: Basic probability theory

Nitin Saxena *
IIT Kanpur

1 The probabilistic method

Let us take another example of probabilistic method which utilizes linearity of expectation.

1.1 Discrepancy

Theorem 1. Given n unit vectors $v_{i} \in \mathbb{R}^{n}, i \in[n]$, there always exists a"bit" string $b \in\{-1,1\}^{n}$, such that,

$$
\left\|\sum_{i} b_{i} v_{i}\right\| \leq \sqrt{n} .
$$

Proof. Again, we will pick b_{i} 's uniformly at random from $\{-1,1\}$ and calculate the expected value of $N:=$ $\left\|\sum_{i} b_{i} v_{i}\right\|^{2}$.

From the definition of the length of a vector,

$$
N=\left(\sum_{i} b_{i} v_{i}\right)^{T}\left(\sum_{i} b_{i} v_{i}\right)=\sum_{i, j} b_{i} b_{j} v_{i}^{T} v_{j} .
$$

Notice that $v_{i}^{T} v_{j}$, the dot product between v_{i} and v_{j}, is a fixed number and the "boolean" random variables are the b_{i} 's. Hence,

$$
E[N]=\sum_{i, j} E\left[b_{i} b_{j}\right] v_{i}^{T} v_{j}
$$

By definition, we picked b_{i} and b_{j} independently, for $i \neq j \in[n]$. This implies that $E\left[b_{i} b_{j}\right]=E\left[b_{i}\right] \cdot E\left[b_{j}\right]$.
Exercise 1. Show that $E\left[b_{i} b_{j}\right]=1$ if $i=j$, otherwise it is zero.
Thus, $E[N]=\sum_{i} v_{i}^{T} v_{i}=n$.
This implies that there is a choice of b_{i} 's for which the length of the vector $\sum_{i} b_{i} v_{i}$ is less than or equal to \sqrt{n}.

Exercise 2. Given n unit vectors $v_{i} \in \mathbb{R}^{n}, i \in[n]$, there always exists a bit string $b \in\{-1,1\}^{n}$, such that,

$$
\begin{aligned}
& \left|\sum_{i} b_{i} v_{i}\right| \geq \sqrt{n} .
\end{aligned}
$$

Exercise 3. Read about the Kadison-Singer problem in discrepancy theory.

[^0]
1.2 Set families

Now we will see another clever usage of probability to prove something about extremal set families, that appear in many interesting applications.

Let $\mathcal{F}=\left\{\left(A_{i}, B_{i}\right) \mid i \in[h]\right\}$ be a family of pairs of subsets of an arbitrary set. We call \mathcal{F} a (k, ℓ)-system if $\left|A_{i}\right|=k,\left|B_{i}\right|=\ell, A_{i} \cap B_{i}=\emptyset$ and $A_{i} \cap B_{j} \neq \emptyset$, for all $i \neq j \in[h]$.

For example, if we take the universe to be $U=[k+\ell]$, then $\mathcal{F}:=\left\{\left(A, A^{c}\right) \left\lvert\, A \in\binom{U}{k}\right.\right\}$ is a (k, ℓ)-system. Note that it has size $h=\binom{k+\ell}{k}$. Could there be a system with a bigger h ?

Theorem 2 (Bollobás, 1965). If \mathcal{F} is a (k, ℓ)-system then $h \leq\binom{ k+\ell}{k}$.

References

1. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, 2008.
2. H. Tijms Understanding Probability. Cambridge University Press, 2012.
3. D. Stirzaker. Elementary Probability. Cambridge University Press, 2003.
4. U. Schöning. Gems of Theoretical Computer Science. Springer-Verlag, 1998.

[^0]: * Edited from Rajat Mittal's notes.

