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1 The probabilistic method

1.1 Sum-free subsets

Let us take another example. Given a set of integers S, S + S is defined as the subset of integers which
contain all possible sums of pair of elements in S,

S + S := {t : t = s1 + s2, s1, s2 ∈ S} .

A set S is called sum-free if S does not contain any element of S + S.

Exercise 1. Construct a set of 10 elements which is sum-free. Construct a set of n elements which is sum-free.

Eg.youcantakeasequenceofrapidlygrowingintegers.Eg.{3,3
2
,...,3

n
}.

Fermat’s last theorem says that the set {1, 2a, 3a, . . . , na} is sum-free, for every a ∈ N>2.
Using probabilistic method, we will show that every subset of integers contains a large sum-free subset.

Theorem 1. For any subset S of n non-zero integers, There exists a subset of S which is sum-free and has
size more than n/3.

Proof. Suppose S = {s1, s2, · · · , sn}. The idea would be to randomly transform S to rS = {rs1, rs2, · · · , rsn},
for a random r mod p (p is a fixed prime). If some subset of rS is sum-free then the corresponding set in S
will also be sum-free (Why?).

First, pick a prime p of the form 3k + 2, such that, p is at least 3 times bigger than the absolute value of
any element of S.

Exercise 2. Show that there are infinitely many primes of the form 3k + 2.

ModifyEuclid’sproofforinfiniteprimes.

We will do the calculations modulo prime p = 3k + 2.
Notice that the set T = {k + 1, k + 2, · · · , 2k + 1} is a sum-free subset when we do addition modulo p. It

is the middle-1/3rd of [0, . . . , p− 1].
For applying the probabilistic method, pick a random r and consider the set rS mod p := {rs1 mod p, rs2

mod p, · · · , rsn mod p}.

Exercise 3. Show that if we pick an r at random from 0, 1, · · · , p − 1 then rs1 mod p is also random with
uniform probability.

Since,s16=0modpasweassumedptobelargeandtheelementsofStobenonzero.

Define a random variable Y which is the intersection size of rS mod p and T .
Using linearity of expectation,

E[Y ] =
∑
i

E[rsi mod p ∈ T ] .

? Edited from Rajat Mittal’s notes.



Exercise 4. Show that E[Y ] > |S|
3 .

This implies that there exists at least one r for which rS mod p ∩ T is of size at least |S|/3. Call that
particular r, x0. Then T ′ := x0S mod p ∩ T is sum-free when addition is considered modulo p (∵ T is
sum-free). This implies that the pre-image in S which maps to T ′ is also sum-free.

Exercise 5. Show that x−10 T ′ is sum-free with respect to addition over integers.

This also gives a fast randomized algorithm to find a sum-free subset of a given set S.

2 Using linearity of expectation

We have already discussed linearity of expectation. It is a simple result to prove, but has profound implica-
tions. Again, the importance of linearity lies in the fact that we can even take dependent random variables
and still decompose the expectation into components.

E[X + Y ] = E[X] + E[Y ].

for any two random variables X and Y .
Notice that we used linearity of expectation for the proof in the previous section. We will take some more

examples now.

2.1 Ramsey number revisited

First, let us look at the example of Ramsey number in the light of expectation.
Suppose we color each edge of Kn uniformly at random with blue or red. Define T to be the random

variable which counts the number of monochromatic Kk in the coloring. We are interested in the expectation
of T .

Define Ti (for i from 1 to
(
n
k

)
) to be the random variable which assigns 1 if a particular Kk is monochro-

matic otherwise 0. Convince yourself that T =
∑

i Ti.

Note 1. The random variables Ti are dependent on each other.
Then,

E[T ] =
∑
i

E[Ti] =
∑
i

21−(k
2) =

(
n

k

)
21−(k

2).

If E[T ] < 1 then there exists a coloring which has less than or equal to E[T ] number of monochro-
matic Kk’s. Since number of monochromatic Kk’s is an integer, there exists a coloring for which number of
monochromatic Kk’s is zero.

Let us take another example of probabilistic method which utilizes linearity of expectation.

2.2 Discrepancy

Given n arbitrary vectors we want to partition them into two parts such that the “discrepancy” between the
two sums is “small”.

Theorem 2. Given n unit vectors vi ∈ Rn, i ∈ [n], there always exists a “bit” string b ∈ {−1, 1}n, such
that, ∥∥∥∥∥∑

i

bivi

∥∥∥∥∥ ≤ √n .
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