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Theorem 1 (Chernoff, 1952). Let X be a random variable which takes value 1 with probability p and
0 otherwise. Let X1, X2, · · · , Xn correspond to random variable X measured n times (the experiment is
independently repeated n times). Define S =

∑n
i=1Xi, then (for any δ ∈ (0, 1))

P (S < (1− δ) · n · E[X] ) ≤ e−nE[X]δ2/2 .

Note 1. We have taken a very special form of random variable X, but it can be generalized.

Proof. (This proof is taken from John Canny’s lecture notes, http://www.cs.berkeley.edu/~jfc/cs174/
lecs/lec10/lec10.pdf.)

The proof of Chernoff bound follows by looking at the random variable e−tS , where t is a parameter and
will be optimized later. Define u := E[S] = nE[X], so

P (S < (1− δ)u) = P (e−tS > e−t(1−δ)u) .

We can apply Markov’s inequality for e−tS ,

P (S < (1− δ)u) ≤ E[e−tS ]

e−t(1−δ)u
.

But e−tS is the product of e−tXi , where Xi are independent. So,

P (S < (1− δ)u) ≤ Πn
i=1E[e−tXi ]

e−t(1−δ)u
. (1)

Exercise 1. Show that E[e−tXi ] = 1− p(1− e−t) ≤ ep(e−t−1).

Usetheinequality1−x≤e−x.

The above exercise implies that Πn
i=1E[e−tXi ] ≤ eu(e−t−1). From Eq. 1, we get

P (S < (1− δ)u) ≤ eu(e
−t+t(1−δ)−1) .

Exercise 2. Show that the bound on the right is minimized for t = ln 1
1−δ .

Putting the best t, we get

P (S < (1− δ)u) ≤
(

e−δu

(1− δ)u(1−δ)

)
.

Using the Taylor expansion of ln (1− δ),

P (S < (1− δ)u) ≤ e−uδ
2/2 .

Hence proved.

Exercise 3. Similarly, show that P (S > (1 + δ) · n · E[X] ) ≤ e−nE[X]δ2/3 .

? Edited from Rajat Mittal’s notes.
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1 Probabilistic methods

Now we will see examples of probabilistic methods. This is used to prove the existence of a good structure
using probability theory. We will define a probability distribution over the set of structures. Then we prove
that the good event happens with positive probability, which implies that a good structure exists.

These ideas are best illustrated with the help of applications.

1.1 Ramsey numbers

Previously in class we proved that if we color the edges of K6 using blue or red, then either there is a blue
K3 or a red K3 as a subgraph. Here Kn is the complete graph (every pair of vertices are connected) on n
vertices.

We can generalize the above concept and ask, are there complete graphs for which any 2-coloring (of
the edges) gives rise to either a blue Kk or a red K`. It has been shown that there always exists n, s.t.,
any two-coloring of Kn will have a monochromatic blue Kk or a monochromatic red K`. The smallest such
number n is called the Ramsey number R(k, `).

It has been a big open question to find out the bounds on R(k, `). We will use probabilistic method to
give a lower bound on the diagonal Ramsey number R(k, k).

Call an edge coloring of Kn good, if there are no monochromatic Kk’s.

The idea would be to randomly color the edges of the graph Kn. If there is a positive probability (over the
random coloring) that none of the Kk subgraphs are monochromatic red or blue, then there exist a coloring
which is good.

We color every edge either red or blue independently with probability 1/2. There are in total
(
n
k

)
subgraphs

Kk for a Kn.

Exercise 4. A particular subgraph Kk is monochromatic with probability 21−(k
2).

Thereare(k2)edgesandthefirstonecouldbeofanycolor.

We have already proved that,

P (∪mi=1Ei) ≤
m∑
i=1

P (Ei) [Union bound] .

So the total probability that some Kk is monochromatic is at most
(
n
k

)
· 21−(k

2). If this probability is less
than 1, then there is a positive probability that none of the Kk’s are monochromatic.

Since the probability was over random coloring, there exists a good coloring (such that no Kk is monochro-
matic).

Theorem 2. If
(
n
k

)
· 21−(k

2) < 1 then R(k, k) > n.

To get an explicit lower bound, you can check that n =
⌈
2k/2

⌉
will satisfy the above equation.

The essential argument in the above proof is that the number of colorings are much higher than the total
number of graphs which have monochromatic Kk.

A counting argument for the above theorem can also be constructed. Actually, in all our applications,
a counting argument can always be given. But the probabilistic argument in general is much simpler and
easier to construct.
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1.2 Probabilistic algorithm for construction

One of the important thing to notice in a probabilistic method of proofs is that the proofs are non-
constructive. In the previous example, we were only able to show the existence of a good coloring. This
proof does not construct the required coloring and hence is called non-constructive.

But suppose we choose n to be 1
2

⌈
2k/2

⌉
. Then the probability of having a monochromatic Kk is very

small. This shows that most of the random colorings will be good colorings.
This suggests a randomized algorithm. We takeKn and color the edges randomly. Because of the argument

above, with high probability we will get a good coloring.

1.3 Sum-free subsets

Let us take another example. Given a set of integers S, S + S is defined as the subset of integers which
contain all possible sums of pair of elements in S,

S + S := {t : t = s1 + s2, s1, s2 ∈ S} .

A set S is called sum-free if S does not contain any element of S + S.

Exercise 5. Construct a set of 10 elements which is sum-free. Construct a set of n elements which is sum-free.

Eg.youcantakeasequenceofrapidlygrowingintegers.

Using probabilistic method, we will show that every subset of integers contains a large sum-free subset.

Theorem 3. For any subset S of n non-zero integers, There exists a subset of S which is sum-free and has
size more than n/3.
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