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0.1 Linearity of expectation

One of the most important property of expectation is that it is linear. This means that given two random
variables X and Y ,

E[X + Y ] = E[X] + E[Y ] .

This property is known as linearity of expectation.

Proof. The expectation E[X + Y ] is given using the joint probability mass function P (X = x, Y = y).

E[X + Y ] =
∑
x,y

(x+ y)P (X = x, Y = y)

=
∑
x,y

xP (X = x, Y = y) + yP (X = x, Y = y)

=
∑
x

x
∑
y

P (X = x, Y = y) +
∑
y

y
∑
x

P (X = x, Y = y)

=
∑
x

xP (X = x) +
∑
y

yP (Y = y)

= E[X] + E[Y ] .

Exercise 1. Extend the linearity of expectation to more than two random variables using induction.

Because this property works irrespective of the dependence between random variables, it has many
applications. Let us look at one example.

Suppose you want to collect stickers which accompany your favorite chewing-gum. Every time you buy
one, one sticker comes out of n, with equal probability. How many chewing-gums should you expect to buy
before you collect all the stickers?

Let T be the random variable which counts the number of packets to be bought to collect n stickers.
Let S1 be the count at which we get the first sticker (clearly S1 = 1). Let S2 be the extra number

of chewing-gums for getting the second different sticker, similarly define Sk. We need to calculate E[T ] =
E[S1 + S2 + · · ·+ Sn].

By linearity of expectation, we only need to worry about E[Sk]. The probability that Sk = r is,

P (Sk = r) = ((k − 1)/n)
r−1

(
1− k − 1

n

)
.

Exercise 2. Show that E[Sk] = n
n−(k−1) .

E[Sk]=∑r≥0r·P(Sk=r)=∑r≥0r·((k−1)/n)
r−1(1−k−1

n)=(1−k−1
n)−1=

n
n−k+1.

This implies that the expected number of chewing-gums needed to collect all n stickers is E[T ] =∑
k∈[n]

n
n−k+1 = n ·

∑
k∈[n] k

−1 ≈ n lnn. (It is between n ln(n+ 1) and n lnn+ n.)

? Edited from Rajat Mittal’s notes.



1 Markov, Chernoff bounds

We interpreted expectation in the previous section as: if the random variable is measured a large number of
times, then the average is close to the expected value with high probability. This statement will be formalized
in this section.

First, we will prove Markov’s inequality. It follows from the definition of expectation.

Theorem 1 (Chebyshev-Markov, 1867). Given a positive random variable X and a > 0,

P (X ≥ a) ≤ E[X]

a
.

Note 1. If the random variable is not positive then, P (|X| ≥ a) ≤ E[|X|]
a , by applying Markov’s inequality

to |X|.

Proof. The result will be proved by contradiction. Assume that the converse holds, P (X ≥ a) > E[X]
a .

E[X] =
∑
x

P (X = x)x

≥
∑
x<a

P (X = x) · 0 +
∑
x≥a

P (X = x) · a

= a
∑
x≥a

P (X = x)

> E[X] .

Where the last inequality follows from assumption. So the assumption is false and hence Markov inequality
is proved.

Using Markov’s inequality we can prove Chernoff bound– it is a stronger result in the case of independent
experiments. Suppose an experiment succeeds with probability p. The expected value of success is p. If we
repeat the experiment n times then the expectation is np by linearity of expectation. Chernoff bound shows
that if we repeat the experiment many times (say n), then the number of successes will be close to np with
“very high” probability (close to 1 depending inverse-exponentially upon n).

Theorem 2 (Chernoff, 1952). Let X be a random variable which takes value 1 with probability p and
0 otherwise. Let X1, X2, · · · , Xn correspond to random variable X measured n times (the experiment is
independently repeated n times). Define S =

∑n
i=1Xi, then (for any δ ∈ (0, 1))

P (S < (1− δ) · n · E[X] ) ≤ e−nE[X]δ2/2 .

Note 2. We have taken a very special form of random variable X, but it can be generalized.

Proof. (This proof is taken from John Canny’s lecture notes, http://www.cs.berkeley.edu/~jfc/cs174/
lecs/lec10/lec10.pdf.)

The proof of Chernoff bound follows by looking at the random variable e−tS , where t is a parameter and
will be optimized later. Define u := E[S] = nE[X], so

P (S < (1− δ)u) = P (e−tS > e−t(1−δ)u) .

We can apply Markov’s inequality for e−tS (note: it is positive valued),

P (S < (1− δ)u) ≤ E[e−tS ]

e−t(1−δ)u
.

But e−tS is the product of e−tXi , where Xi are independent. So,

P (S < (1− δ)u) ≤ Πn
i=1E[e−tXi ]

e−t(1−δ)u
. (1)
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Exercise 3. Show that for mutually independent random variables the expectation operator E[·] is multi-
plicative.
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