Lecture 19: Basic graph theory

Nitin Saxena *

IIT Kanpur

1 Adjacency matrix

Lemma 1 (Matrix shift). Suppose $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ are the eigenvalues of M. Then the eigenvalues of $\lambda I + M$ are $\{\lambda + \lambda_1, \lambda + \lambda_2, \dots, \lambda + \lambda_n\}$, where I is the identity matrix. The converse is also true.

Recall that a symmetric real matrix A has only real eigenvalues. (Hint: $(u^*Au)^* = u^*A^*u = u^*Au$, for all vectors u.)

Theorem 1. The maximum eigenvalue of the adjacency matrix of a regular graph G is d, the degree of the graph.

Proof. By using Lemma 1, it is sufficient to prove that all eigenvalues of $dI - A_G$ are greater than zero.

For the sake of contradiction, assume that $M = dI - A_G$ has a negative eigenvalue μ with eigenvector u. Then $u^T M u = \mu u^T u < 0$. We will prove that for every vector v, $v^T M v \ge 0$, hence get a contradiction.

Let v_i be the *i*-th entry of v and M_{ij} be the (i, j)-th entry of M. Then,

$$v^{T}Mv = \sum_{i,j} M_{ij}v_{i}v_{j}$$

= $\sum_{i} d \cdot (v_{i})^{2} - \sum_{(i,j) \in E_{G}} v_{i}v_{j}$
= $\sum_{(i,j) \in E_{G}} (v_{i} - v_{j})^{2} \ge 0$ [Count v_{i}^{2}]. (1)

Note 1. The term $v^T M v$ is known as the quadratic form of M.

To prove that d is an eigenvalue, notice that every row of the matrix A_G sums up to d.

Exercise 1. What is the eigenvector corresponding to the eigenvalue d?

A graph is called *bipartite* if the vertex set can be divided into two parts A and B, s.t., there are no edges inside A and no edges inside B. A regular bipartite graph can be characterized by its eigenvalues.

Theorem 2. The minimum eigenvalue of the adjacency matrix of a d-regular, connected graph is greater than or equal to -d.

It is bipartite if and only if the minimum eigenvalue is -d.

Proof. By using Lemma 1, it is sufficient to prove that all eigenvalues of $M := dI + A_G$ are greater than or equal to zero. We will prove that: There will be an eigenvalue 0 iff the graph is bipartite.

^{*} Edited from Rajat Mittal's notes.

Again we will notice the quadratic form $v^T(dI + A_G)v$,

$$v^{T}Mv = \sum_{i,j} M_{ij}v_{i}v_{j}$$

= $\sum_{i} d(v_{i})^{2} + \sum_{(i,j)\in E_{G}} v_{i}v_{j}$
= $\sum_{(i,j)\in E_{G}} (v_{i} + v_{j})^{2} \ge 0$ [Count v_{i}^{2}]. (2)

Suppose equality holds in the above equation. Notice that v_i corresponds to the *i*-th vertex. If for some $i, v_i = 0$ then, by repeatedly using the identities $v_i + v_j = 0$ for $(i, j) \in E_G$, we deduce that v is the zero vector. Thus, for all $i, v_i \neq 0$.

Let us say S_1 is the set of vertices for which v_i is positive and S_2 is the set of vertices for which v_i is negative. Then there are no edges inside S_1 and inside S_2 .

This implies that the graph is bipartite, with V(G) partitioned into S_1 and S_2 .

Conversely, if the graph is bipartite, then assign 1 to one part and -1 to the other part of the vertices. This will show that the least eigenvalue of $dI + A_G$ is zero (why?). Thus, the least eigenvalue of A_G is -d.

Exercise 2. Show that the bipartite graph cannot have an odd cycle.

A complete graph is a simple graph where every possible edge is present. A complete graph on n vertices is called K_n .

Exercise 3. How many edges are there in a complete graph?

The adjacency matrix of the complete graph K_n is J - I, where J is all 1's matrix and I is the identity matrix, both of dimension $n \times n$.

Exercise 4. What are the eigenvalues of the adjacency matrix of the complete graph.

. r^{-1} once and the rest are -1.

References

1. K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 1999.

2. N. L. Biggs. Discrete Mathematics. Oxford University Press, 2003.