Lecture 18: Basic graph theory

Nitin Saxena *
IIT Kanpur

1 Hamiltonian cycle

Similar to Euler circuits, a path $x_{0}, x_{1} \cdots, x_{k}$ is called a Hamiltonian path if it goes through all the vertices of the graph. Remember that in a path we are not allowed to repeat the vertices.

It might seem like an easy task to give a necessary and sufficient condition for the existence of Hamiltonian path like Eulerian circuit, but it turns out to be a really hard problem.

You will study later that finding a Hamiltonian path in a graph is an $N P$-complete problem (the list of problems which are assumed to be hard for computers to solve efficiently).

There are many sufficient conditions known for existence and non-existence of Hamiltonian path.
Exercise 1. Show that a complete graph has a Hamiltonian path.
Exercise 2. If the first and the last vertex of a Hamiltonian path is same then it is called a Hamiltonian cycle. Show that if a graph has a vertex of degree one then it cannot have a Hamiltonian cycle.

2 Adjacency matrix

Adjacency matrix is a representation of a graph in matrix format. Given a graph G, its adjacency matrix A_{G} is a $|V| \times|V|$ matrix. Its rows and columns are indexed by the vertices of the graph. The (i, j)-th entry of the matrix is one if and only if vertex i is adjacent to vertex j, otherwise it is zero.

The adjacency matrix for the graph in Fig. 1 is,

$$
A_{G}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Note 1. The adjacency matrix for an undirected graph is always symmetric.
Another matrix representation of a graph is called the incidence matrix. Here the rows are indexed by vertices and columns are indexed by edges. An entry (i, e) is one if and only if vertex i is part of edge e, otherwise it is zero. The incidence matrix for the graph in Fig. 1 is,

	$\mid c c c c c c$						
v_{1}	1	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	
v_{2}	0	0	1	1	0	0	0
v_{3}	0	0	0	0	1	1	
v_{4}	1	1	0	0	0	0	
v_{5}	0	1	0	0	1	0	
v_{6}	0	0	1	0	0	1	

[^0]

Fig. 1. A simple graph

Note 2. Here v_{i} represents the i-th vertex.
The eigenvalues and eigenvectors of the adjacency matrix provide us with a lot of information about the graphs. We will see a few examples below. First, a lemma which will help us in proving results about eigenvalues.

Lemma 1 (Matrix shift). Suppose $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$ are the eigenvalues of M. Then the eigenvalues of $\lambda I+M$ are $\left\{\lambda+\lambda_{1}, \lambda+\lambda_{2}, \cdots, \lambda+\lambda_{n}\right\}$, where I is the identity matrix. The converse is also true.

Proof. Exercise in linear algebra.
Exercise 3. The eigenvalues of a symmetric real matrix are real.
Hence, adjacency matrices have real eigenvalues.
A graph is called regular if every vertex has the same degree d. In this case, d is called the degree of the graph.

Theorem 1. The maximum eigenvalue of the adjacency matrix of a regular graph G is d, the degree of the graph.

Proof. By using Lemma 1, it is sufficient to prove that all eigenvalues of $d I-A_{G}$ are greater than zero.
For the sake of contradiction, assume that $M=d I-A_{G}$ has a negative eigenvalue μ with eigenvector u. Then $u^{T} M u=\mu u^{T} u<0$. We will prove that for every vector $v, v^{T} M v \geq 0$, hence get a contradiction.

Let v_{i} be the i-th entry of v and $M_{i j}$ be the (i, j)-th entry of M. Then,

$$
\begin{align*}
v^{T} M v & =\sum_{i, j} M_{i j} v_{i} v_{j} \\
& =\sum_{i} d \cdot\left(v_{i}\right)^{2}-\sum_{(i, j) \in E_{G}} v_{i} v_{j} \tag{1}\\
& =\sum_{(i, j) \in E_{G}}\left(v_{i}-v_{j}\right)^{2} \geq 0 \quad\left[\text { Count } v_{i}^{2}\right] .
\end{align*}
$$

Note 3. The term $v^{T} M v$ is known as the quadratic form of M.
To prove that d is an eigenvalue, notice that every row of the matrix A_{G} sums up to d.
Exercise 4. What is the eigenvector corresponding to the eigenvalue d ?

References

1. K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 1999.

[^0]: * Edited from Rajat Mittal's notes.

