## Lecture 18: Basic graph theory

Nitin Saxena \*

IIT Kanpur

## 1 Hamiltonian cycle

Similar to Euler circuits, a path  $x_0, x_1 \cdots, x_k$  is called a *Hamiltonian path* if it goes through all the vertices of the graph. Remember that in a path we are not allowed to repeat the vertices.

It might seem like an easy task to give a necessary and sufficient condition for the existence of Hamiltonian path like Eulerian circuit, but it turns out to be a really hard problem.

You will study later that finding a Hamiltonian path in a graph is an *NP*-complete problem (the list of problems which are assumed to be hard for computers to solve efficiently).

There are many sufficient conditions known for existence and non-existence of Hamiltonian path.

*Exercise 1.* Show that a complete graph has a Hamiltonian path.

*Exercise 2.* If the first and the last vertex of a Hamiltonian path is same then it is called a *Hamiltonian cycle*. Show that if a graph has a vertex of degree one then it cannot have a Hamiltonian cycle.

## 2 Adjacency matrix

Adjacency matrix is a representation of a graph in matrix format. Given a graph G, its adjacency matrix  $A_G$  is a  $|V| \times |V|$  matrix. Its rows and columns are indexed by the vertices of the graph. The (i, j)-th entry of the matrix is one if and only if vertex i is adjacent to vertex j, otherwise it is zero.

The adjacency matrix for the graph in Fig. 1 is,

$$A_G = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Note 1. The adjacency matrix for an undirected graph is always symmetric.

Another matrix representation of a graph is called the *incidence matrix*. Here the rows are indexed by vertices and columns are indexed by edges. An entry (i, e) is one if and only if vertex i is part of edge e, otherwise it is zero. The incidence matrix for the graph in Fig. 1 is,

|       | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|-------|-------|-------|-------|-------|-------|-------|
| $v_1$ | 1     | 0     | 0     | 0     | 0     | 1     |
| $v_2$ | 0     | 0     | 1     | 1     | 0     | 0     |
| $v_3$ | 0     | 0     | 0     | 0     | 1     | 1     |
| $v_4$ | 1     | 1     | 0     | 0     | 0     | 0     |
| $v_5$ | 0     | 1     | 0     | 0     | 1     | 0     |
| $v_6$ | 0     | 0     | 1     | 0     | 0     | 1     |

<sup>\*</sup> Edited from Rajat Mittal's notes.



Fig. 1. A simple graph

Note 2. Here  $v_i$  represents the *i*-th vertex.

The eigenvalues and eigenvectors of the adjacency matrix provide us with a lot of information about the graphs. We will see a few examples below. First, a lemma which will help us in proving results about eigenvalues.

**Lemma 1 (Matrix shift).** Suppose  $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$  are the eigenvalues of M. Then the eigenvalues of  $\lambda I + M$  are  $\{\lambda + \lambda_1, \lambda + \lambda_2, \dots, \lambda + \lambda_n\}$ , where I is the identity matrix. The converse is also true.

*Proof.* Exercise in linear algebra.

*Exercise 3.* The eigenvalues of a symmetric real matrix are real. Hence, adjacency matrices have real eigenvalues.

A graph is called *regular* if every vertex has the same degree d. In this case, d is called the degree of the graph.

**Theorem 1.** The maximum eigenvalue of the adjacency matrix of a regular graph G is d, the degree of the graph.

*Proof.* By using Lemma 1, it is sufficient to prove that all eigenvalues of  $dI - A_G$  are greater than zero. For the sake of contradiction, assume that  $M = dI - A_G$  has a negative eigenvalue  $\mu$  with eigenvector u.

Then  $u^T M u = \mu u^T u < 0$ . We will prove that for every vector  $v, v^T M v \ge 0$ , hence get a contradiction.

Let  $v_i$  be the *i*-th entry of v and  $M_{ij}$  be the (i, j)-th entry of M. Then,

$$v^{T}Mv = \sum_{i,j} M_{ij}v_{i}v_{j}$$
  
=  $\sum_{i} d \cdot (v_{i})^{2} - \sum_{(i,j) \in E_{G}} v_{i}v_{j}$   
=  $\sum_{(i,j) \in E_{G}} (v_{i} - v_{j})^{2} \ge 0$  [Count  $v_{i}^{2}$ ]. (1)

Note 3. The term  $v^T M v$  is known as the quadratic form of M.

To prove that d is an eigenvalue, notice that every row of the matrix  $A_G$  sums up to d.

*Exercise* 4. What is the eigenvector corresponding to the eigenvalue d?

## References

1. K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 1999.