Lecture 16: Basic graph theory

Nitin Saxena *
IIT Kanpur

1 Paths and cycles

An important question in graph theory is that of connectivity. Given a graph, can we reach from a source vertex s to target vertex t using the edges of the graph?

A walk of length k in a graph is a sequence of vertices $x_{0}, x_{1}, \cdots, x_{k}$, where any two consecutive vertices are connected by an edge in the graph. In a walk, it is allowed to take an edge or a vertex multiple times.

If all the vertices in a walk are distinct, except possibly the first and the last vertex, then it is called a path. In some texts, paths are called simple paths and walks are called paths.

A path of length greater than two is called a cycle if the first and the last vertex are the same.
Example 1. Consider the simple graph $V(G)=[4], E(G)=\{(1,2),(2,3),(3,4),(4,1),(4,2)\}$. The sequence $(1,2,3,4,1)$ is a walk, path and a cycle.

On the other hand, the sequence $(1,2,4,3,2,1)$ is a walk, but not a path or cycle.
The sequence $(1,2,3,4)$ is a walk and a path, but not a cycle.
Lemma 1. If there is a walk between two vertices in a graph then there is a path between them.
Proof. Consider the walk of least length, say $P=\left\{x_{0}, x_{1}, \cdots, x_{k}\right\}$. If all vertices are distinct then it is a path.

Suppose that there is a vertex v which occurs twice in the walk. If we delete the portion of the walk between the two occurrences of the vertex v, we still get a walk P^{\prime} from x_{0} to x_{k}.

But P was the smallest walk from x_{0} to x_{k}, this is a contradiction. Thus, P is already a path.
Exercise 1. Show that if there is a walk with the same first and last vertex and no two consecutive edges are the same, then there is a cycle in the graph.

A graph is called connected if there is a path between every pair of vertices of the graph.
A graph can always be divided into disjoint parts which are connected within themselves but not connected to each other. These are called the connected components of the graph. They are uniquely determined.

Exercise 2. Show that if there is path between a particular vertex v and every other vertex of the graph, then the graph is connected.

References

1. K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 1999.
[^0]
[^0]: * Edited from Rajat Mittal's notes.

