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1 Euclid’s GCD (Contd.)

Theorem 1 (Bézout’s identity). For integers a ≥ b > 0, there exist integers α, β, such that,

gcd(a, b) = α · a+ β · b .

Moreover, the identity is unique if we assume 0 ≤ α < b/ gcd(a, b).

Proof. By hypothesis, the GCD is a positive number. The extended Euclid’s gcd algorithm gives us at least
one such identity.

For convenience we will work with the coprime numbers a′ := a/ gcd(a, b) and b′ := b/ gcd(a, b). The
above identity can be written as:

1 = αa′ + βb′ .

We can ensure 0 ≤ α < b′, by dividing α by b′ (say α = qb′+ r), using the remainder (r) and accordingly
changing β (to β − qa′). Then, |βb′| = |αa′ − 1| ≤ |b′a′|. Thus, |β| ≤ a′.

Finally, suppose that α, β in the above range are not unique. Then,

(α1 − α2) · a′ = (−β1 + β2) · b′ .

By Lemma 1, we get that b′|(α1−α2). Since the difference is smaller than b′, we deduce it to be zero. Hence,
(−β1 + β2) is also zero. This contradiction implies the uniqueness of (α, β) in the range [0, . . . , b′ − 1] ×
[−a′, . . . , a′] .

Using Theorem 1, we can prove the following lemma.

Lemma 1. Let gcd(a, b) = 1. If a | bc then a | c.

Proof. We know that there exist k, `, such that,

1 = ka+ `b .

Multiplying both sides by c, we get

c = kac+ `bc .

Since a divides both the terms on the right hand side, a divides c too.

Using this basic lemma, we can prove the fundamental theorem.

? Edited from Rajat Mittal’s notes.



1.1 Fundamental theorem of arithmetic

From the definition of primes it is clear that we can start finding the factors of any number n. Either n is
prime or it can be written as mm′. If we keep applying this procedure to m > 1 and m′ > 1, we get that
any number n can be written as,

n = p1p2 · · · pk , for some k, where pi’s are primes.

Collecting the identical primes in one power, we get the factorization,

n = p`11 p
`2
2 · · · p

`k
k , for some k.

This is called the prime factorization of n. It is not clear from the method above that this factorization is
unique.

Can two different prime factorizations exist? It turns out, this factorization is unique up to the ordering
of primes.

For the sake of contradiction, suppose there are two such factorizations p1 · · · pk and q1 · · · q`. By cancelling
the common primes, we can assume that no pi is equal to any qj .

We know that since p1 is a prime, it will divide either q = q1 · · · q`−1 or q` (Lemma 1). If it divides
q = q1 · · · q`−1, we can further divide q and ultimately get that p1 divides qi for some i.

This implies that p1 divides some qi. But p1 and qi are both primes. So, p1 = qi, which is a contradiction.
This gives the theorem,

Theorem 2 (Unique factorization). Given a number n, it can be written in a unique way as a product
of increasing primes,

n = p`11 p
`2
2 · · · p

`k
k ,where pi’s are primes.

2 Modular arithmetic

What is the day on the 184th day of an year, if it started with a Sunday?
What is the last digit of 264 ? This number is too big and it is very difficult to calculate the last digit by

computing the whole number 264. But, the problem becomes simpler if you realize that the last digit of 264

is the remainder of 264 when divided by 10. Denote the remainder of n when divided by 10 as r(n). Next
observation is, r(264) can be calculated by multiplying r(232) and r(232) and then taking the remainder by
10.

Exercise 1. Prove that r(ab) = r(r(a)r(b)) .

Applying this technique recursively (or iteratively), we get, r(28) = 6 ⇒ r(216) = 6 ⇒ r(232) = 6 ⇒
r(264) = 6. So the last digit of 264 is 6.

Exercise 2. Show that the last digit of 22
n

for any n ≥ 2 is 6.

The above trick of dealing with remainders is called modular arithmetic. There are many uses of modular
arithmetic in mathematics, computer science and even in chemistry. Please read the Wikipedia article for
more applications.

Let us study modular arithmetic more formally, following Gauß (1801).

Definition 1. We say a = b mod n iff a− b is divisible by n.

Note 1. a = b mod n is read as, a is congruent to b modulo n. Some books also use the notation, a ≡ b
mod n .

It is clear from the definition that if a = b mod n then a = kn+b mod n for any integer k. For a number
b, the set {b + kn|k ∈ Z} is called the residue class of b modulo n and is denoted by the same notation b
mod n. (It is a set, technically called a coset.)
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For example, the set {· · · ,−10,−7,−4,−1, 2, 5, 8, 11, · · · } is the residue class of 2 modulo 3.
The set of all residue classes of n is denoted by Zn. (Technically, we should use Z/nZ, but for this course

we use the former as a shorthand.)
Notice that any element c ∈ a mod n is of the form a + kn for some k. Using this definition, we can

define the operations like addition and multiplication on these modulo classes (in a natural way).

1. a mod n+ b mod n = a+ b mod n
2. (a mod n) · (b mod n) = ab mod n

We can easily check that these definitions are consistent. For the first relation, this means, take any two
elements c ∈ a mod n and d ∈ b mod n. Then c+ d = e mod n for any e ∈ (a+ b) mod n.

Exercise 3. Check the consistency for the second relation.

For doing calculations, it generally makes sense to take the smallest nonnegative number in a mod n as
the representative and do the calculations using that representative. The representatives will be {0, 1, 2, · · · , n−
1} and all of them will belong to different residue class. Whenever doing these calculations, we can subtract
any number of the form kn to keep the calculation in the range {0, 1, 2, · · · , n− 1}.

Another way to say the same thing is, Zn = {0, 1, 2, · · · , n− 1}. Where it is understood that 0 stands for
the residue class of 0 modulo n and so on. You can add and multiply numbers in this set modulo n.

Exercise 4. What is the last digit of 239 ?

2
39

=2
32+4+2+1

=2·4·6·6
8

=2·4·6=8mod10.

Though you should be careful not to overuse your intuition of integer operations. For example, if ab = 0
mod n and a 6= 0 mod n, it does not mean that b = 0 mod n. Take a = 2, b = 3, n = 6 as an example.

This property also tells you that, in general, cancellation rule fails: ab = ac mod n 6⇒ b = c mod n.

Exercise 5. Solve the following questions,

1. What is 1235 mod 25?
2. Show that 2468× 13579 = −3 mod 25.
3. Show that 5n mod 10 = 5 for all n.
4. If n has representation xrxr−1 · · ·x1x0 in decimal, i.e., n = x0 + 10x1 + · · ·+ 10rxr. Then n = x0 + x1 +
· · ·+ xr mod 9.

5. Show that 9787× 1258 6= 12342046 by calculating both sides mod 9.
6. Suppose 3a = 0 mod p where p is a prime and 0 < a < p. What is p?
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