Lecture 11: Basic number theory

Nitin Saxena *
IIT Kanpur

1 Euclid's GCD (Contd.)

In general, the equations in the algorithm will look like,

$$
\begin{align*}
\operatorname{gcd}(a, b) & \rightarrow a=q_{1} \times b+r_{1} \\
\operatorname{gcd}\left(b, r_{1}\right) & \rightarrow b=q_{2} \times r_{1}+r_{2} \\
\vdots & \tag{1}\\
\operatorname{gcd}\left(r_{k-2}, r_{k-1}\right) & \rightarrow r_{k-2}=q_{k} \times r_{k-1}+r_{k} \\
\operatorname{gcd}\left(r_{k-1}, r_{k}\right) & \rightarrow r_{k-1}=q_{k+1} \times r_{k}+0 \\
\operatorname{gcd}\left(r_{k}, 0\right) & \rightarrow r_{k} .
\end{align*}
$$

In this case $\operatorname{gcd}(a, b)$ will be r_{k}.
Notice that $r_{k-1} \geq r_{k}, r_{k-2} \geq r_{k-1}+r_{k}, \cdots, b \geq r_{1}+r_{2}$ and $a \geq b+r_{1}$. This reminds one of Fibonacci recurrence. Indeed this observation can be used to bound the number of steps k.

Coming from the other direction, r_{1} can be written as an integer linear combination of a, b, i.e., $r_{1}=$ $c_{1} a+c_{2} b$ for some integers c_{1}, c_{2} using the first equation. Similarly r_{2} can be written as an integer combination of b, r_{1} and hence a, b.

Keeping track of these coefficients (i.e. by induction), ultimately we can write the $\operatorname{gcd}(a, b)=r_{k}$ as the integer combination of a, b.

Theorem 1 (Bézout's identity). For integers a, b, there exist integers α, β, such that,

$$
\operatorname{gcd}(a, b)=\alpha \cdot a+\beta \cdot b
$$

It is clear from the argument before that these coefficients can be obtained by keeping track of coefficients in Euclid's algorithm. This is called the extended Euclidean algorithm. You can write the extended Euclidean pseudocode as an exercise.

Exercise 1. What can you say about the size of α, β ? Are they unique?
Proof. Wlog assume $a>b>0$. In that case, the GCD is a positive number.
For convenience we will work with the coprime numbers $a^{\prime}:=a / \operatorname{gcd}(a, b)$ and $b^{\prime}:=b / \operatorname{gcd}(a, b)$. The above identity can be written as:

$$
1=\alpha a^{\prime}+\beta b^{\prime}
$$

We can ensure $0 \leq \alpha<b^{\prime}$, by dividing α by b^{\prime} (say $\alpha=q b^{\prime}+r$), using the remainder (r) and accordingly changing β (to $\beta-q a^{\prime}$). Then, $\left|\beta b^{\prime}\right|=\left|\alpha a^{\prime}-1\right| \leq\left|b^{\prime} a^{\prime}\right|$. Thus, $|\beta| \leq a^{\prime}$.

Finally, suppose that α, β in the above range are not unique. Then,

$$
\left(\alpha_{1}-\alpha_{2}\right) \cdot a^{\prime}=\left(-\beta_{1}+\beta_{2}\right) \cdot b^{\prime}
$$

By Lemma 1, we get that $b^{\prime} \mid\left(\alpha_{1}-\alpha_{2}\right)$. Since the difference is smaller than b^{\prime}, we deduce it to be zero. Hence, $\left(-\beta_{1}+\beta_{2}\right)$ is also zero. This contradiction implies the uniqueness of (α, β) in the range $\left[0, \ldots, b^{\prime}-1\right] \times$ $\left[-a^{\prime}, \ldots, a^{\prime}\right]$.

[^0]Using Theorem 1. we can prove the following lemma.
Lemma 1. Let $\operatorname{gcd}(a, b)=1$. If $a \mid b c$ then $a \mid c$.
Proof. We know that there exist k, ℓ, such that,

$$
1=k a+\ell b
$$

Multiplying both sides by c, we get

$$
c=k a c+\ell b c .
$$

Since a divides both the terms on the right hand side, a divides c too.

References

1. N. L. Biggs. Discrete Mathematics. Oxford University Press, 2003.
2. P. J. Cameron. Combinatorics: Topics, Techniques and Algorithms. Cambridge University Press, 1994.
3. K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 1999.

[^0]: * Edited from Rajat Mittal's notes.

