Lecture 11: Basic number theory

Nitin Saxena *

IIT Kanpur

1 Euclid's GCD (Contd.)

In general, the equations in the algorithm will look like,

$$gcd(a,b) \rightarrow a = q_1 \times b + r_1$$

$$gcd(b,r_1) \rightarrow b = q_2 \times r_1 + r_2$$

$$\vdots$$

$$gcd(r_{k-2}, r_{k-1}) \rightarrow r_{k-2} = q_k \times r_{k-1} + r_k$$

$$gcd(r_{k-1}, r_k) \rightarrow r_{k-1} = q_{k+1} \times r_k + 0$$

$$gcd(r_k, 0) \rightarrow r_k.$$
(1)

In this case gcd(a, b) will be r_k .

Notice that $r_{k-1} \ge r_k$, $r_{k-2} \ge r_{k-1} + r_k$, \cdots , $b \ge r_1 + r_2$ and $a \ge b + r_1$. This reminds one of Fibonacci recurrence. Indeed this observation can be used to bound the number of steps k.

Coming from the other direction, r_1 can be written as an *integer linear combination* of a, b, i.e., $r_1 = c_1 a + c_2 b$ for some integers c_1, c_2 using the first equation. Similarly r_2 can be written as an integer combination of b, r_1 and hence a, b.

Keeping track of these coefficients (i.e. by induction), ultimately we can write the $gcd(a, b) = r_k$ as the integer combination of a, b.

Theorem 1 (Bézout's identity). For integers a, b, there exist integers α, β , such that,

$$gcd(a,b) = \alpha \cdot a + \beta \cdot b$$

It is clear from the argument before that these coefficients can be obtained by keeping track of coefficients in Euclid's algorithm. This is called the *extended Euclidean algorithm*. You can write the extended Euclidean pseudocode as an exercise.

Exercise 1. What can you say about the size of α, β ? Are they unique?

Proof. Wlog assume a > b > 0. In that case, the GCD is a positive number.

For convenience we will work with the *coprime* numbers $a' := a/\gcd(a, b)$ and $b' := b/\gcd(a, b)$. The above identity can be written as:

$$1 = \alpha a' + \beta b' \,.$$

We can ensure $0 \le \alpha < b'$, by dividing α by b' (say $\alpha = qb' + r$), using the remainder (r) and accordingly changing β (to $\beta - qa'$). Then, $|\beta b'| = |\alpha a' - 1| \le |b'a'|$. Thus, $|\beta| \le a'$.

Finally, suppose that α, β in the above range are not unique. Then,

$$(\alpha_1 - \alpha_2) \cdot a' = (-\beta_1 + \beta_2) \cdot b'$$

By Lemma 1, we get that $b'|(\alpha_1 - \alpha_2)$. Since the difference is smaller than b', we deduce it to be zero. Hence, $(-\beta_1 + \beta_2)$ is also zero. This contradiction implies the uniqueness of (α, β) in the range $[0, \ldots, b' - 1] \times [-a', \ldots, a']$.

^{*} Edited from Rajat Mittal's notes.

Using Theorem 1, we can prove the following lemma.

Lemma 1. Let gcd(a, b) = 1. If $a \mid bc$ then $a \mid c$.

Proof. We know that there exist k, ℓ , such that,

$$1 = ka + \ell b.$$

Multiplying both sides by c, we get

$$c = kac + \ell bc$$
.

Since a divides both the terms on the right hand side, a divides c too.

References

- 1. N. L. Biggs. Discrete Mathematics. Oxford University Press, 2003.
- 2. P. J. Cameron. Combinatorics: Topics, Techniques and Algorithms. Cambridge University Press, 1994.
- 3. K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 1999.