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1 Generating functions (Fibonacci)

We had obtained φ(t) =
∑

i≥0 Fit
i = 1

1−t−t2 .

We can factorize the polynomial, 1− t− t2 = (1− αt)(1− βt), where α, β ∈ C.

Exercise 1. Show that α = 1+
√
5

2 , β = 1−
√
5

2 .

We can simplify the formula a bit more,

φ(t) =
1

1− t− t2
=

c1
1− αt

+
c2

1− βt
= c1(1 + αt+ α2t2 + · · · ) + c2(1 + βt+ β2t2 + · · · ) .

We got the second equality by putting c1 = 1√
5
α and c2 = − 1√

5
β. The final expression gives us an explicit

formula for the Fibonacci sequence,

Fn =
1√
5

(αn+1 − βn+1) .

This is actually a very strong method and can be used for solving linear recurrences of the kind, Sn =
a1Sn−1 + · · · + akSn−k. Here k, a1, a2, · · · , ak are constants. Suppose φ(t) is the recurrence for Sn, then by
the above method,

φ(t) =
b1 + b2t+ · · ·+ bkt

k−1

1− a1t− a2t2 − · · · − aktk
=

c1
1− α1t

+ · · ·+ ck
1− αkt

.

Where α1, · · · , αk are the roots (assumed distinct) of polynomial xk − a1xk−1 − · · · − ak = 0 (replace t
by 1

x ). This is known as the characteristic polynomial of the recurrence.

Exercise 2. How are the coefficients b1, · · · , bk or c1, · · · , ck determined?

Initialconditions.

So we get Sn = c1α
n
1 + · · ·+ ckα

n
k .

Note 1. For a linear recurrence if Fn and Gn are solutions then their linear combinations aFn + bGn are
also solutions. For a k term recurrence, the possible solutions are αn

1 , · · · , αn
k and their linear combinations

(where α1, · · · , αk are roots of the characteristic polynomial). The coefficients of the linear combination are
fixed by the initial conditions.

Exercise 3. Does every polynomial over C has a complex root?

Fundamentaltheoremofalgebra.

Exercise 4. What happens when the characteristic polynomial has repeated roots?

Usethepowerseriesfor(1−αt)−d.

? Edited from Rajat Mittal’s notes.



2 Exponential generating function

What do we do when the recurrence is non-linear ? We will now see some related methods.
A permutation is called an involution if all cycles1 in the permutation are of length 1 or 2. We are

interested in counting the total number of involutions of {1, 2, · · · , n}, call that I(n). Eg. I(0) = I(1) = 1,
I(2) = 2.

There can be two cases.

1. The number n maps to itself. This case will give rise to I(n− 1) involutions.
2. The number n maps to another number i. There are n−1 choices of i and then we can pick an involution

for remaining n− 2 numbers in I(n− 2) ways.

By this argument, we get a simple recurrence,

I(n) = I(n− 1) + (n− 1)I(n− 2) .

Exercise 5. Why is this not a linear recurrence?

Since the coefficient of I(n − 2) is not a constant, we cannot apply the usual approach of generating
functions. Even without getting an explicit formula for I(n), the recurrence can give us some information
about the quantity.

Theorem 1. For n ≥ 2, the number I(n) is even and greater than
√
n! .

Proof. Both the statements can be proven using induction.

Exercise 6. What will be the base case and the induction step ?

CheckthatI(2),I(3)arebotheven.Verifythat1+
√
n−1≥

√
n,forn≥1.

In the case of involutions, the regular generating function will not be of much help. We define exponential
generating function for the sequence I(n) to be,

θ(t) :=
∑
k≥0

I(k)tk

k!
.

Exercise 7. Why is it called an exponential generating function?

PutI(k)=1,forallk,andwegettheseriesfortheexponentialfunctione
t
.

Note 2. It is merely the generating function of I(k)/k!.
We can actually come up with a closed form solution for the exponential generating function of involutions.

We will differentiate the function θ(t),

d

dt
θ(t) =

∑
k≥1

I(k)tk−1

(k − 1)!
(formal differentiation) (1)

=
∑
k≥1

I(k − 1)tk−1

(k − 1)!
+

∑
k≥1

(k − 1) · I(k − 2) · tk−1

(k − 1)!
(recurrence relation) (2)

= θ(t) + t
∑
k≥2

I(k − 2)tk−2

(k − 2)!
(second term’s first entry is zero) (3)

= θ(t) + tθ(t) . (4)

1 Every permutation can be decomposed into cycles. Eg. (12)(3)(45)(67)(8) is an involution. Permutation (123) is
not an involution.
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This transforms into the differential equation,

d

dt
log θ(t) = 1 + t .

We can solve this, as,

θ(t) = et+
t2

2 +c .

Comparing the constant coefficient, we get c = 0 (since I(0) = 1). Thus,

θ(t) = et+
t2

2 .

Note 3. Again we should notice that the power series we are considering are not shown to be well behaved
(convergence etc.). But there is a justification for being able to differentiate and do other formal operations
on them; the details are outside the scope of this course.
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