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1 Generating functions (Fibonacci)

We had obtained ¢(t) = Zz’zo Fit' = %

t—t2
We can factorize the polynomial, 1 — ¢ — 2 = (1 — at)(1 — Bt), where a, 3 € C.

Ezercise 1. Show that o = 1+T‘/‘?’,ﬂ = # )

We can simplify the formula a bit more,
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We got the second equality by putting ¢; = %a and ¢y = —% B. The final expression gives us an explicit
formula for the Fibonacci sequence,
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This is actually a very strong method and can be used for solving linear recurrences of the kind, S,, =
a1Sn-1 + -+ agSn—x. Here k,a1, a9, - ,ax are constants. Suppose ¢(t) is the recurrence for S, then by
the above method,
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Where oy, - - ,ay are the roots (assumed distinct) of polynomial 2% — a;2*~! — ... — a; = 0 (replace ¢

by %) This is known as the characteristic polynomial of the recurrence.
Ezxercise 2. How are the coefficients by, -+ , by or ¢y, -, cp determined?
"SUOTHPUOD Tejiu]
So we get S, = ciof + -+ craf .

Note 1. For a linear recurrence if F,, and G, are solutions then their linear combinations aF,, + bG,, are
also solutions. For a k term recurrence, the possible solutions are o, --- ,af and their linear combinations
(where aq,- -+, ay are roots of the characteristic polynomial). The coefficients of the linear combination are
fixed by the initial conditions.

Ezercise 3. Does every polynomial over C has a complex root?
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Ezercise 4. What happens when the characteristic polynomial has repeated roots?
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* Edited from Rajat Mittal’s notes.



2 Exponential generating function

What do we do when the recurrence is non-linear 7 We will now see some related methods.

A permutation is called an involution if all cycle&EI in the permutation are of length 1 or 2. We are
interested in counting the total number of involutions of {1,2,--- ,n}, call that I(n). Eg. I(0) = I(1) =1
1(2) =2.

There can be two cases.

1. The number n maps to itself. This case will give rise to I(n — 1) involutions.
2. The number n maps to another number i. There are n— 1 choices of ¢ and then we can pick an involution
for remaining n — 2 numbers in I(n — 2) ways.

By this argument, we get a simple recurrence,
In)=In—-1)+(n—1I(n—2).
Ezercise 5. Why is this not a linear recurrence?

Since the coefficient of I(n — 2) is not a constant, we cannot apply the usual approach of generating
functions. Even without getting an explicit formula for I(n), the recurrence can give us some information
about the quantity.

Theorem 1. Forn > 2, the number I(n) is even and greater than v/n! .
Proof. Both the statements can be proven using induction.
Ezercise 6. What will be the base case and the induction step ?
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In the case of involutions, the regular generating function will not be of much help. We define exponential
generating function for the sequence I(n) to be,

!
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Exercise 7. Why is it called an exponential generating function?
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Note 2. Tt is merely the generating function of I(k)/k!.

We can actually come up with a closed form solution for the exponential generating function of involutions.
We will differentiate the function 6(¢),

d I(k)th—1 : i
—0(t) = — f 1 different 1
p (t) kz;l =] (formal differentiation) (1)
—1k]— —1)-I(k—2) -tk
= Z t + Z (k1) k(k o )t (recurrence relation)  (2)
k>1 k>1 (k—1)!
k 2) t’f 2 _
)+t Z (second term’s first entry is zero)  (3)
k>2
=0(t) + t0(t) . (4)

! Every permutation can be decomposed into cycles. Eg. (12)(3)(45)(67)(8) is an involution. Permutation (123) is
not an involution.



This transforms into the differential equation,

d
—1 =1 .
7t og 0(t) +t

We can solve this, as,
2
O(t) = etz e,

Comparing the constant coefficient, we get ¢ = 0 (since 1(0) = 1). Thus,
0(t) = et .

Note 3. Again we should notice that the power series we are considering are not shown to be well behaved
(convergence etc.). But there is a justification for being able to differentiate and do other formal operations
on them; the details are outside the scope of this course.
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