Lecture 7: Counting

Nitin Saxena *
IIT Kanpur

1 Generating functions

If one wants to find a "closed form" expression from the recurrence of F_{n}, one forms a formal power series and studies it.

The power-series $\phi(t)=\sum_{i \geq 0} F_{i} t^{i}$ is called the generating function for sequence F_{i}.
Exercise 1. Why is it not called a polynomial but a power-series?

We will be doing additions, multiplications and other operations on these power-series without worrying about the notion of convergence (or avoid substituting any real value to t). These are known as formal power series. The justification for not worrying about the convergence is outside the scope of this cours ${ }^{1}$,

What can we do with the generating function? Say, we continue studying the Fibonacci sequence. If we multiply it with t, we get,

$$
t \phi(t)=\sum_{i \geq 0} F_{i} t^{i+1}=\sum_{i \geq 1} F_{i-1} t^{i}
$$

Notice how we changed the summation index. Convince yourself that it works. Multiplying it again by t,

$$
t^{2} \phi(t)=\sum_{i \geq 0} F_{i} t^{i+2}=\sum_{i \geq 2} F_{i-2} t^{i}
$$

Since $F_{i-1}+F_{i-2}=F_{i}$ (for $i \geq 2$), adding the above two equations will give us the original generating function. Almost (why?) !!

$$
\phi(t)-1=t \phi(t)+t^{2} \phi(t) .
$$

All the coefficients for terms higher than t^{2} agree. The constant term 1 appears by comparing the constant coefficient and the coefficient of t. This is where we use initial conditions !! We get the formula for $\phi(t)$,

$$
\phi(t)=\frac{1}{1-t-t^{2}}
$$

We can factorize the polynomial, $1-t-t^{2}=(1-\alpha t)(1-\beta t)$, where $\alpha, \beta \in \mathbb{R}$.
Exercise 2. Show that $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$.
We can simplify the formula a bit more,

$$
\phi(t)=\frac{1}{1-t-t^{2}}=\frac{c_{1}}{1-\alpha t}+\frac{c_{2}}{1-\beta t}=c_{1}\left(1+\alpha t+\alpha^{2} t^{2}+\cdots\right)+c_{2}\left(1+\beta t+\beta^{2} t^{2}+\cdots\right) .
$$

We got the second equality by putting $c_{1}=\frac{1}{\sqrt{5}} \alpha$ and $c_{2}=-\frac{1}{\sqrt{5}} \beta$. The final expression gives us an explicit formula for the Fibonacci sequence,

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n+1}-\beta^{n+1}\right)
$$

[^0]
References

1. P. J. Cameron. Combinatorics: Topics, Techniques and Algorithms. Cambridge University Press, 1994.
2. K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 1999.

[^0]: * Edited from Rajat Mittal's notes.
 ${ }^{1}$ Formal power series in the variable t form a ring- $\mathbb{Z}[[t]]$. So, it is a well-defined mathematical object.

