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SYNOPSIS

Motion Planning

Humans and most other animals are very good at avoiding obstacles and navigating in

complex environments just by visually observing the world. They routinely use prior

sensorimotor experience to build motor models, and use vision for gross motor tasks in

novel environments. Achieving similar abilities in robots, without having to calibrate a

robot’s own body structure, or estimate exact 3-D positions, is a touchstone problem for

robotics.

The notion of Configuration Space (also known as C-Space) is fundamental to con-

ceptualizing multibody motion and to address the problem of Robot Motion Planning –

planning obstacle-free paths from a source configuration to a destination configuration.

Traditional solutions to the motion planning problem involve constructing an explicit rep-

resentation of the robot in terms of the number of degrees of freedom, joint and link

geometry, rules for forward kinematics and inverse kinematics to map from the configu-

ration space to the work-space and vice versa. Once such a representation is available,

obstacle-free paths can be planned in the configuration space. This approach is quite cum-

bersome because different representations need to be hand-engineered for different robots,

obstacles and workspaces. If we consider the triple 〈robot, obstacles, workspace〉 as a

system, the traditional approach is quite system specific. Any change in the system would

require operating on a different hand-engineered model.
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In this thesis, we propose an alternative characterization of configuration space, which

we call the Visual Configuration Space (VCS), to address the motion planning problem.

Beginning with a dense enough set of images of the robot in random configurations, it is

possible to discover the topology of its motion manifold, using manifold learning methods

such as Isomap (Tenenbaum, De Silva, and Langford, 2000). This is possible because,

in spite of the robot images being very high-dimensional, the governing parameters of its

motion are much fewer and as a result the robot images can only change in very restricted

ways. This manifold, discovered using the robot images, is the visual configuration space.

A path between two configurations of the robot is a curve between the corresponding

points on the VCS. Since we can only use a finite sample of images, we will only have a

discrete representative of the VCS, which we call the Visual Roadmap (VRM). The VRM

is a graph in which each node corresponds to an image of the robot in some configuration

with an edge between two nodes whose poses are near-by according to some metric in the

image space. We use the VRM to compute shortest paths between configurations.

We discuss the conditions under which the visual configuration space is homeomorphic

to the canonical C-Space. We also discuss how obstacles in the workspace are mapped on

to VCS and VRM and the issues involved in and advantages of using the VRM for motion

planning. We present empirical results related to motion planning for various types of

simulated planar robots and some real 3-D robots.

Basic Framework

Given a set of robot images in random configurations, we build a graph using these images

and plan paths using this graph. In this graph, each node corresponds to a configuration

of the robot and so the graph will have as many nodes as the number of images sampled.

Two nodes will be connected if the corresponding images are such that one of them is a k-

nearest neighbour of the other one, for some value of k. The corresponding edge will have

a weight equal to the distance between those two images, for some distance metric such as
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the Euclidean distance. We call this k-nearest neighbours (k-NN) graph a Visual Roadmap

(VRM). The idea of VRM is an analog to Probabilistic Roadmap (PRM) (Kavraki et al.,

1996). While PRM samples the conventional C-space, VRM samples the VCS.

In addition to the raw images of the robot, we also consider random projections of

raw images, a set of ideal points tracked on the robot body, Shi-Tomasi features (Shi

and Tomasi, 1994) for each link of the robot, to save distance computation time. For

these different representations, we use different distance metrics to construct the VRM.

We use Euclidean metric for the raw images of the robot, for random projection vectors,

and for ideal track points. For Shi-Tomasi feature based representation, we use Hausdorff

distance. We study empirically, the effect of using these different representations and

distance metrics to compute the visual roadmap.

When there are no obstacles in the workspace, finding a path for the robot from a

source configuration to a destination configuration corresponds to finding a path in the

k-NN graph.

Static Obstacle Avoidance

When there are any static obstacles, we find the configurations in which the robot images

have a non-empty intersection with the obstacle image and remove from the roadmap, the

nodes corresponding to these configurations. Paths planned using the remaining graph

will be almost obstacle-free. The paths are not yet fully safe because the edge between two

free configurations may not be free from obstacles. This is the problem of local planning

and will be handled separately.

For spatial robots, avoiding an obstacle would require multiple cameras. We collect

multiple images of each configuration from different fixed views. A given configuration

is free, if there is at least one view in which the robot image does not intersect with

the obstacle image. If the images from all the views have a non-empty intersection with

the obstacle image in the respective views, then that configuration will be considered a
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collision configuration.

Local Planner

Once we know that all the nodes in the k-NN graph correspond to free configurations, it

is the responsibility of the local planner to make sure that all the edges connecting the

free nodes are free from obstacles. For this purpose, we propose three approaches: (i)

Local Tangent Space based planner, (ii) Track-points based local planner, and (iii) Local

planner using Shi-Tomasi features. We present an empirical analysis of these three local

planners for some simulated robots.

Dynamic Obstacle Avoidance

To handle dynamic obstacles, we make certain assumptions about the speed of the obstacle.

These assumptions facilitate us to update only small portions of the graph that correspond

to collision configurations, instead of having to recreate the whole graph all over again

every time the obstacle moves. Firstly, we assume that the speed of the obstacle is less

than the speed of the robot, so that there is enough time for the robot to plan alternate

paths. Secondly, we assume that in each move, the obstacle moves at most by certain

amount, so that the updates on the graph can be limited to a small number of layers of

neighbours around the current obstacle region in the graph.

Modelling Body Schema

We also discuss how similar manifold-based computational models can be used to model

body schema and sensorimotor integration. Body schema of a cognitive agent is a rep-

resentation of its body that allows it to infer the position and orientation of its limbs

relative to its world, and to move and perform actions in that world. Such a model could

be learned by the agent in the early stages of its life by performing random motions and
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observing their outcomes (motor babbling) and is grown and adapted to deal with more

and more complex situations to perform complex tasks.

Head Motion Animation of Avatars in Virtual Environments

We apply the idea of Visual Roadmap for animating avatars in a virtual environment

designed to support remote collaboration between distributed work teams in which users

are represented by avatars. There are usually long periods of time when a user is not

actively controlling the avatar and working on his official task. We need to animate his

avatar with a ’working-at-desk’ animation that should be non-looping and sufficiently

random for a single avatar as well as between multiple avatars to appear realistic. We

present a technique for generating multiple head motions using the gaze space images to

control the avatar motion. Our technique can automatically generate long sequences of

motion without any user intervention. We present results from synthetic data.
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Chapter 1

Introduction and Preliminaries

1.1 Motion Planning

Motion planning is the problem of getting an agent, such as a robot, to move from one

configuration to another configuration without hitting any obstacles present in its environ-

ment. This is a very important problem in robotics because planning obstacle-free paths is

a necessary step to perform any task involving a robot’s motion. For example, if a robotic

arm has to reach a tool to fix something, it has to move from its current configuration to

a configuration in which its end effector is ready to hold the tool. This is a very common

task to be performed for any industrial robotic arm. Similarly for a mobile robot, moving

from one place to another place in its environment is a common task. During this motion,

we do not want any part of the robot to hit anything in the environment, in order that

no damage be caused either to the robot or to any other object in the environment.

1.1.1 Motion Planning: Examples

Consider a circular mobile robot in a planar workspace as in Figure 1.1. Given a source

position and a goal position, how does the robot move from the source to the goal?

Planning a path for a mobile robot such as this one corresponds to computing a continuous

1



2

sequence of positions in the workspace, that begins with the source position and ends with

the goal position, such that in no position of the sequence does the robot collide with any

obstacle in the workspace.

Circular mobile
robot in source
position

Obstacles

Destination
position

Figure 1.1: A circular mobile robot in a planar workspace with obstacles. The goal is to
generate a sequence of motion instructions for the robot to move from the source position
to the destination position without hitting obstacles.

RMP: 2-link arm example 

3 

Source pose Destination pose 

Figure 1.2: A 2-link planar arm in a planar workspace with obstacles (white objects). The
goal is to guide the arm to change its configuration from the source pose to the destination
pose, through a continuous motion without hitting obstacles.
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Motion is not always necessarily translational. A lot of industrial robots are articulated

chains of links connected by joints. Consider a 2-link planar arm as in Figure 1.2. Motion

planning for such an arm corresponds to creating a continuous sequence of poses of the

arm that begins with the source pose and ends with the destination pose such that no

pose in the sequence leads to a collision with an obstacle in the workspace.

Even though we used simple planar models for illustration, the motion planning prob-

lem is universally applicable to all kinds of autonomous robots such as industrial robots,

humanoid robots, self-driving cars, unmanned air vehicles (UAVs), medical robots, fire-

fighting robots, robots for defense and landmine clearance, etc. In addition to robotics,

motion planning also has applications in many other fields like animating digital agents

in virtual environments, architectural design walk-through, studying protein folding and

RNA folding, etc[1].

In this thesis, we propose a purely vision-based approach to motion planning, inspired

by human cognition. We will apply the proposed visual approach to robot motion planning

(chapter 4), modelling body schema and infant motor learning (chapter 5) and animating

avatars in virtual environments (chapter 6). Before introducing the proposed approach,

we will first look at the traditional approach to robot motion planning and the complexity

associated with it.

1.2 Traditional Approach to Robot Motion Planning

To make things slightly more specific, we define a multibody system as a collection of

rigid or flexible bodies, called links, connected through joints allowing for various kinds

of translational and rotational motion of the links. A robot is a programmable multibody

system, equipped with some sensors and actuators. Under this definition, even human

bodies qualify as robots. Programmability of robots allows us to make them autonomous.

[1]More details on the applications of motion planning can be found in (Choset et al., 2005).
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In this thesis, we will assume that the links of a robot are rigid. The workspace (W) of the

robots considered in this thesis is a part of Rk, where k is either 2 or 3. If the workspace

of a robot is a subset of R2, it is a planar robot and if the workspace is a subset of R3, it

is a spatial robot.

For the purposes of automatic motion planning, we need to be able to specify the robot

completely. A fundamental question in this context is, what is a minimal representation

for a complete specification of the robot. Answer to this question lies in the concept of

configuration and configuration space (Lozano-Perez, 1983).

1.2.1 Configuration Space

The notion of configuration space (also known as C-space) is fundamental to conceptualiz-

ing multibody motion. The configuration of a multibody system is a complete description

of the position of every point of the system, with respect to a fixed point in its world. The

configuration space of the system is the set of all possible configurations of the system.

For a robotic system, typically, its configuration is given by a parameter vector which

can be mapped to the positions of all points on the robot body. So, each configuration

of the robot is a point in its configuration space. A configuration is denoted by q and

configuration space is denoted by Q. Essentially, configuration space is a representational

tool that allows us to view the robot as a point in a space.

The configuration of a robot can be specified by a parameter vector, and hence the

configuration space is a vector space. The minimum number of parameters needed to

specify the configuration or the dimension of the configuration space, is called the degrees

of freedom (DOF) of the robot.

Configuration Space: Examples

For the circular mobile robot in Figure 1.1, given its radius, which is fixed, coordinates

of its center are sufficient to specify the position of every point on the robot. So, the set



5

of all possible coordinate values that the center can take forms the configuration space

of this robot. Hence, its C-space is R2. Thus, both the workspace and the configuration

space, in this case, have the same topology[2] (topology of R2). However, because of the

size of the robot, there are some regions of the workspace where the center of the robot

cannot be — any point which is at a distance less than the radius of the robot, from a

border of the workspace, cannot be the center of the robot. So, as shown in Figure 1.3,

its configuration space excludes some part of the workspace to accommodate for the size

of the robot. This is done so that each point in the configuration space corresponds to the

robot in some position in the workspace, and different points of the C-space correspond

to the robot in different positions in the workspace. Since each configuration of this robot

is a point in a 2-dimensional configuration space, it’s a 2-DOF robot.

Q : Configuration space
W : Workspace

Figure 1.3: Configuration space of a circular mobile robot, with the position of the center
being used as its configuration, excludes the points (the dark part in the right half of the
figure) which cannot be the center of the robot in the workspace. Correspondence between
the workspace and the configuration space representations of the robot is shown by the
dotted lines. In this case, the workspace and the configuration space, both have an R2

topology.

Configuration space is not always a simple Euclidean space. For a 2-link robotic

arm such as the one in Figure 1.4(a), we can use its joint angles (θ1, θ2) to specify its

[2]See Appendix A for a quick refresher on topology.
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C-space of a 2-link arm 

5 

θ1 

θ2 

Link 1 

Link 2 

(a) 2-link arm 

θ1 

θ2 

0 2𝛑 

2𝛑 

A A’ 

B B’ 

(c) Flattened torus (b) C-space is a torus 

θ2 θ1 

A A’ B 
B’ 

Figure 1.4: Configuration space of a 2-link robotic arm, with the joint angle vector (θ1, θ2)
being used as its configuration, is a torus which can be cut and flattened into a plane. The
robot’s configuration is shown as a point on the torus and in the plane. Because of the
circular topology of each joint angle, each pair of opposite edges of the plane is actually
the same line. This illustration is based on a figure from (Choset et al., 2005).

configuration. If both the links can rotate fully around independently, then θ1 and θ2 take

values from [0, 2π]. Since 0 and 2π are indistinguishable from each other, each joint angle

has a circular topology S1 and because of the independence of the two joint angles, the

combined set of values has an S1×S1 = T 2 topology. That makes the configuration space

a torus as shown in Figure 1.4(b). This torus can be cut and flattened into a plane as in

Figure 1.4(c).

The basic motion planning problem is to compute a collision-free path between a pair

of source and destination configurations. A path between two configurations qs, qd is a

curve γ : [0, 1] → Q such that γ(0) = qs and γ(1) = qd. When there are no obstacles in

the workspace, a straight line (geodesic) between the two configurations would serve as a

path. But when there are obstacles, things get complicated. We need to first map each

workspace obstacle to a set of corresponding points in the C-space. A collision-free path

from qs to qd would then be a curve from qs to qd that does not pass through any obstacle

configurations.
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1.2.2 Free Configuration Space

An obstacle in the workspace is a region of the workspace occupied by anything other than

the robot, and hence not accessible to the robot. Free workspace, denoted byWfree, is the

workspace excluding all the obstacles in the workspace:

Wfree =W \
⋃
i

Bi,

where Bi is the region occupied by the ith obstacle in the workspace.

We define the shape of the robot corresponding to a configuration q, denoted by R(q),

to be the set of all points of the workspace which are occupied by the robot, when its

configuration is q. If Bi is an obstacle in the workspace, the corresponding obstacle in

C-space, denoted by CBi, is the set of configurations q for which the corresponding shape

of the robot has a non-empty intersection with Bi, i.e.,

CBi = {q ∈ Q : R(q) ∩Bi 6= ∅}.

The free configuration space, denoted by Qfree, is the configuration space minus the union

of configuration space obstacles:

Qfree = Q \
⋃
i

CBi.

These definitions and notations are inspired by (Choset et al., 2005).

The shape of an obstacle in the C-space depends on the size, shape, and position of

the obstacle and the robot in the workspace. Precise maps need to be defined between

the workspace and the configuration space. A map from the configuration space to the

workspace is called forward kinematics and the inverse map is called inverse kinematics.

The definition of forward and inverse kinematics heavily depends on obstacle and robot

geometry. So, the standard way of defining free configuration space requires the knowledge

of the geometry of the obstacles as well as that of the robot in order to compute the free
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space.

Free Space Computation: Example

Figure 1.5 shows an obstacle in the workspace and in the configuration space, for the

circular mobile robot considered in Figure 1.3. As noted earlier, each point of the configu-

ration space corresponds to the robot in some position of the workspace. The shape of the

C-space obstacle depends on the geometry of the robot and of the obstacle. In particular,

for this robot, we need to consider the shape and size of the robot and obstacles.

CB: Obstacle in Q

Q : Configuration space

B: Obstacle in W

W : Workspace

Figure 1.5: An obstacle in the workspace vs. in the configuration space for a circular
mobile robot. The geometry of the robot and obstacle play a crucial role in computing
the free C-space. Center of the robot cannot be inside the dotted region in the workspace,
for any configuration of the robot, and hence the shape of a rectangular obstacle in the
workspace takes the form of a bigger rounded rectangle in the C-space as shown on the
right side. Some corresponding configurations are shown in the free workspace and in the
free C-space.
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1.2.3 Path Planning in Free C-Space

A path from a source configuration to a destination configuration is a curve in the free

C-space, that starts at the source configuration and ends at the destination configuration.

There is a large variety of methods of motion planning using the traditional configu-

ration space approach. The method of potential functions treats the robot and obstacle

configurations as positive charges and the goal configuration as a negative charge so that

there is a natural attraction between the robot and the goal configuration and a natural

repulsion between the robot and obstacle configurations. And the path planning problem

is solved in terms of moving in a force field induced by these charges.

Roadmap methods construct a data structure called a roadmap in the form of a graph,

which is a topological map of the environment based on the robot’s sensory data. A

roadmap is a graph embedded in the free configuration space, where each node corresponds

to a free configuration of the robot and an edge between two nodes corresponds to a path

between the corresponding configurations. Once a roadmap is computed, multiple path

queries can be answered using it. Paths can be computed using standard graph algorithms

such as the Dijkstra’s algorithm for shortest path computation.

A particular class of roadmap methods is cell-decomposition methods that divide the

free C-space into a union of regions called cells. The most popular methods in this class

are trapezoidal decomposition and Morse cell decomposition. Trapezoidal decomposition

divides the free space into a collection of simple trapezoidal regions and treats each region

as a node in a graph and connects the nodes that correspond to neighbouring regions. It is

applicable to polygonal planar C-spaces which can be broken down into polygonal regions.

Morse decomposition is a more general method that is particularly useful in scenarios

where the robot has to cover the whole free space, such as a de-mining robot.

Another class of roadmap methods is probabilistic methods. The most popular ones

in this category are probabilistic roadmap (PRM) (Kavraki et al., 1996), rapidly exploring
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random trees (RRT) (LaValle, 1998) and their derivatives. They sample the free config-

uration space and build a roadmap using the sampled points. Even though the nodes

of the network correspond to free configurations, it is still not guaranteed that the edge

connecting two free configurations is completely in the free-space. Ensuring edge safety is

the problem of local planning. To check for the safety of an edge, a typical local planner in

PRM interpolates several points between the configurations corresponding to the terminal

nodes of that edge. If any of the interpolated points are not in the free C-space, then that

edge is discarded; otherwise, it is retained in the roadmap. Paths planned on a roadmap

after it is pruned using a local planner are safe. An extensive survey of sampling-based

methods can be found in (Karaman and Frazzoli, 2011; Elbanhawi and Simic, 2014).

1.2.4 Complexity of the Traditional Approaches

Traditional solutions to the robot motion planning (RMP) problem involve constructing

an explicit representation of the robot in terms of the number of degrees of freedom,

joint and link geometry, rules for forward kinematics and inverse kinematics to map from

the configuration space to the workspace and vice versa. Once such a representation is

available, obstacle-free paths can be planned in the configuration space. This approach

is cumbersome because different representations need to be hand-engineered for different

robots, obstacles, and workspaces. If we consider the triple 〈robot, obstacles, workspace〉

as a system, the traditional approach is quite system specific. Any change in the system

would require operating on a different hand-engineered model.

In this thesis, we propose an approach which requires much less system-specific infor-

mation to plan paths. In order to plan obstacle-free paths, we assume the availability of a

set of images of the robot in various configurations in its workspace. Using these images

alone, we construct models that can be used for planning safe paths. This approach is

motivated by studies in human cognition which suggest that human babies around the age

of one month vigorously move their limbs and observe them to learn latent representations
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for voluntary motion.

1.3 An Inspiration from Human Cognition

Motion planning is a problem that humans and other animals have to solve all the time to

move from one place to another place and to perform the necessary motor tasks for their

survival. They can easily navigate through complex environments, without hitting each

other or any other objects in the environment. For example, a person can easily navigate

through a busy marketplace or a road congested with heavy traffic. They do this, largely,

by just visually observing the world. Vision also plays a major role in performing various

tasks in the peripersonal space (i.e., part of the surrounding space which is immediately

reachable to the agent’s limbs, while the body is in a fixed position). From a very early

stage of life, humans acquire sensorimotor models by observing the world visually and

through touch.

With the aim of bringing similar capabilities in robots, in this work, we propose to

solve the motion planning problem purely based on vision. For this purpose, we develop

a vision based characterization of configuration space, which we call visual configuration

space (VCS). We use the formalism of manifolds to develop the notion of VCS. We use

VCS in the following ways:

(i) To address the problem of robot motion planning. (Chapter 4)

(ii) To model body schema and explain how a cognitive agent, such as a human baby,

might learn the ability to perform motor tasks in its peripersonal space, as it grows

and gains experience with its world. (Chapter 5)

(iii) To generate animations for avatars in virtual environments. (Chapter 6)

1.3.1 Main Claims of This Thesis

1. The proposed approach to the RMP problem is much less system specific than the
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traditional methods because it does not assume the knowledge of robot geometry,

kinematic and inverse kinematic maps of the robot and obstacle geometry.

2. The proposed manifold based model of body schema for infant motor learning has

more explanatory power than other models in the current literature on body schema.

In the subsequent sections, we discuss some preliminaries necessary to develop the

concept of visual configuration spaces.

1.4 Configuration Manifold

Configuration space is a vector space defined by the coordinates used to specify the con-

figuration of the robot. The dimension of this vector space is the degrees of freedom of the

robot. However, in many cases, not all the vectors in this space are valid configurations

of the robot. The set of actual values taken by the configuration parameters is usually

a subspace of the vector space. This subspace is sometimes linear, especially for mobile

robots, and most of the times non-linear, especially for articulated arms whose motion

involves an S1 topology. Often, this subspace satisfies the requirements of a manifold and

whenever it does, the configuration space is called a configuration manifold.

1.4.1 Manifolds

Let (X, τX) and (Y, τY ) be two topological spaces. A function f : X → Y is said to be

continuous if the inverse image under f , of every open set in τY is open in τX , i.e.,

∀V ∈ τY , f−1(V ) = {x ∈ X : f(x) ∈ V } ∈ τX .

If f is a continuous bijection and its inverse is also continuous, then f is said be a home-

omorphism and if a homeomorphism exists between the spaces X and Y , then they are

said to be homeomorphic to each other. A homeomorphism is some kind of equivalence

of spaces. Two homeomorphic spaces can be transformed into each other through a series
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of continuous deformations like stretching, shrinking, twisting, etc. For example, a circle

and an ellipse are homeomorphic, and a coffee cup and a torus are homeomorphic.

If f and its inverse are smooth (i.e., infinitely differentiable), then f is said to be a

diffeomorphism. If a diffeomorphism exists between the spaces X and Y , then they are

said to be diffeomorphic to each other.

A space (X, τX) is said to be locally homeomorphic to (Y, τY ), if for every point x ∈ X,

there is an open set U ∈ τX containing x, which is homeomorphic to some open set V in

τY .

A p-dimensional topological manifold M is a Hausdorff topological space, with a count-

able basis for the topology, which is locally homeomorphic to Rp. See Figure 1.6 for an

illustration.

M

f

U'

U
x

Figure 1.6: For every point x ∈ M, there is an open neighbourhood U containing x, an
open set U ′ ⊂ Rp and a homeomorphism f : U → U ′.

Intuitively speaking, M looks like a p-dimensional Euclidean space on a small enough

scale. Another way of looking at it is, that the tangent space at any point on M is a

p-dimensional vector space.

For each open set U ⊆ M that is homeomorphic to an open neighbourhood of Rp by

a homeomorphism φ, the pair (U, φ) is called a chart of M. A collection of charts that
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coversM is called an atlas ofM. See (Choset et al., 2005) for details of charts and atlases

in the context of configuration spaces.

Examples of Manifolds

For example, a circle, an ellipse and a parabola can be formed by stitching together

a collection of small lines; that is, all these objects are locally homeomorphic to R1 and

hence they are 1-dimensional manifolds. See Figure 1.7 for examples of some 2-dimensional

manifolds.

Figure 1.7: The surface of a hyperboloid, a sphere, a torus and a Klein bottle are some
examples of 2-dimensional manifolds. These surfaces share the common property that
they can be formed by stitching together a set of 2-dimensional patches; that is, all these
surfaces are locally homeomorphic to R2 and hence they are all 2-dimensional manifolds.

The configuration of an articulated robot with p rotary links connected by p joints, can

be given by its p joint angles θ1, ..., θp. If there are no constraints put on the joint angles,

then its configuration space is a p-dimensional torus, which is a p-dimensional manifold.

In particular, for a 2-link arm, whose links can rotate fully around is a 2-dimensional torus

as was seen in Figure 1.4.
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In the next section, we discuss some methods of discovering the intrinsic structure of a

manifold, which we employ in later chapters. These methods are called manifold learning

methods, or more generally dimensionality reduction methods because they use a set of

high-dimensional points to discover the intrinsic low-dimensional structure of the subspace

on which the given points lie.

1.5 Manifold Learning

A dimensionality reduction method is a procedure that maps points living in a high-

dimensional space onto a low-dimensional space without losing much information. This

is possible when the given data points lie on or near a low-dimensional subspace of the

high-dimensional ambient space. More precisely, given X ∈ Rm×n, a set of n points

living in an m dimensional space, dimensionality reduction methods seek a p-dimensional

embedding Y ⊆ Rp×n of X, with p ≤ min(m,n− 1), when the data points lie on or near a

p-dimensional subspace of the m-dimensional ambient space. Usually, for a lot of real-life

data sets, p� m. See (Ghodsi, 2006).
Manifold Learning 

ℝp ℝm 

M 
x(i) 

X= {x(1), …, x(n) } 

y(i) 

Y = {y(1), …, y(n) } 

Figure 1.8: Manifold learning seeks to obtain a low-dimensional representation of high-
dimensional points lying on or near a low-dimensional manifold.

There are several methods of dimensionality reduction which can be classified into two

broad types: (i) linear methods, and (ii) non-linear methods. Linear methods perform

well when the given data points lie on or near a linear subspace of the ambient space. If

the data lies on a non-linear subspace, then we will need to employ non-linear methods.
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Non-linear dimensionality reduction is also called manifold learning, since the non-linear

subspace on which the given data points lie, is assumed to be a manifold.

Given a set of n points X = {x(1), x(2), . . . , x(n)} ⊂ Rm, lying on or near a p-

dimensional manifold M, with p < m, manifold learning algorithms seek to learn a p-

dimensional representation Y = {y(1), y(2), . . . , y(n)} ⊂ Rp of X. See Figure 1.8.

1.5.1 Principal Components Analysis

Principal components analysis (PCA)(Jolliffe, 1986; Hotelling, 1933) is a linear dimen-

sionality reduction method that reduces the data dimension while preserving the variance

in data. In other words, PCA is a statistical procedure that converts a set of data points

measured on a set of possibly correlated variables into a set of values of uncorrelated vari-

ables, called principal components (or PCs). One way of doing this is to find a sequence

of directions in the descending order of data variance, and project the data points onto

some of these directions, so as to retain most of the variance after the projection. Then

the resulting points are a low-dimensional representation of the original data.

Another way of looking at PCA is as a rotation of the coordinate axes, after mean-

centering the given data, to align them with the directions of maximum variance, and then

discarding some of the insignificant directions, i.e., the directions in which the data does

not vary much. See Figure 1.9 for an illustration.

Given a set X ∈ Rm×n of n iid random points in Rm; the goal of PCA is to find an

orthonormal basis U = {û1, û2, . . . , ûm} such that the columns of Y = UTX are in the

descending order of variance. Without loss of generality, assume that X is mean-centered

along each of the m directions so that the empirical mean X̄ = 0 and the covariance matrix

C = XXT .

A p-dimensional embedding of X can be obtained by projecting the data to the p

eigenvectors of C, corresponding to the top p eigenvalues.
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PCA Example 

Given 2-D data points Mean-centring the data 
Rotation of the axes to align 
them with the directions of 
maximum variance in data 

Projection of points onto u1 
(first principal component) 
and dropping u2 

x2 

x1 

z1 

z2 u1 

u2 

u1 

u2 

(a) (b) (c) (d) 

Figure 1.9: Illustration of PCA on a 2-dimensional data set: (a) Original 2-D data points
(b) Mean-centring the data (c) Rotation of the coordinate axes to align them with the
directions of maximum variance in data (d) Projection of points onto u1 (the first principal
component) and discarding u2 (the second principal component).

Reconstruction and Interpolation

Along with the projections on to the top p principal components, PCA also gives a pro-

jection matrix Wm×p s.t. W Tx ∈ Rp, ∀x ∈ Rm. So, if y(i) ∈ Y is the PCA projection of

x(i) ∈ X, we can have x(i) reconstructed from y(i), as x̂(i) = Wy(i). This is applicable to

any point in the projection space, even to those points which are not in Y . For exam-

ple, we can interpolate between y(i) and y(j) ∈ Y , as yα = αy(i) + (1 − α)y(j), for some

α ∈ (0, 1), and construct the corresponding point in the original space as x̂α = Wyα.

1.5.2 Multidimensional Scaling

Multidimensional Scaling (MDS) is another method of dimensionality reduction, which

tries to preserve the pairwise distances between points in the high-dimensional space.

Given Xm×n, let DX be the matrix of pairwise distances such that DX
ij = dist(x(i), x(j)).

To find a lower dimensional embedding Y , conceptually, MDS solves the following opti-

mization problem:

Y = argmin
Y

n∑
i=1

n∑
j=1

(DX
ij −DY

ij )
2,
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where DY
ij = dist(y(i), y(j)). Solution of this optimization problem is obtained through

an eigenvalue decomposition (EVD) of the similarity matrix S = XTX, after X is mean-

centered. If V ΛV T is the EVD of S, where Λ is the diagonal matrix of eigenvalues and

the columns of V are the eigenvectors of S, then

Yp×n =
√

ΛpV
T
p ,

is a p-dimensional embedding of X, where Λp and Vp are the matrices of top-p eigenvalues

and eigenvectors.

If we have access to the mean-centered data matrix X, we can apply EVD on XTX

and get Y . Alternatively, we can also apply SVD on X as done in PCA and get the

p-dimensional embedding as

Yp×n = ΣpV
T
p ,

where Σp is the diagonal matrix of top-p singular values and the columns of Vp are the

top-p right-singular vectors of X, which are same as the top-p eigenvectors of XTX.

If we are not given the data matrix X, but only the pairwise distance matrix DX , then

we can compute the similarity matrix S by the following formula:

S = −1

2
HDXH, where H = In −

1

n
11T ,

with In being the n×n identity matrix and 1 being an n×1 column vector of all ones. Here,

H is called the centering matrix, which is needed to make sure that the similarities are

calculated for the mean-centered data. This is needed because distances are translation-

invariant while similarities are not.

The classical version of metric MDS preserves Euclidean distances, but any other

distance metric can be used. In particular, Isomap preserves (approximate) geodesic

distances between points on the manifold on which the given data points lie in the original

space. The geodesic distance between two points on a manifold is the length of the shortest

path between them, along the manifold.
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1.5.3 Isomap

The Isomap algorithm is a non-linear extension of the metric MDS algorithm. It generates

a low-dimensional embedding of high-dimensional points, that approximately preserves the

geodesic distance between the points lying on a manifold.

As before, we are given a finite sample X of n high-dimensional points in Rm —

i.e., X ∈ Rm×n — lying on or near a smooth and uniform low-dimensional manifold of

dimension p. We want to learn a low dimensional representation Y ∈ Rp×n of X, such

that ∀x ∈ X,∃y ∈ Y : x = f(y) + ε, where f is the function that generated X from a

latent parameter space (the underlying manifold).

Isomap first computes a nearest-neighbours graph G(V,E) such that |V | = n and

each vertex corresponds to a data point in X and an edge is added between two vertices

v(i), v(j) if the corresponding points x(i), x(j) ∈ X are near neighbours. Neighbourhoods

can be decided in two ways: ε-neighbourhood and k-NN. In the first method, (v(i), v(j)) ∈

E if dist(x(i), x(j)) < ε, for a predetermined real value ε > 0. In the second method,

(v(i), v(j)) ∈ E if x(i) is one of the k nearest neighbours of x(j) or vice versa, for some

predetermined integer k > 0. In each case, an edge (v(i), v(j)) is weighted by dist(x(i), x(j)).

This distance function is usually the Euclidean distance.

Then a distance matrix Dn×n is computed such that Dij is the shortest path length

on G. The shortest path length between two vertices of G is an approximation of the

geodesic distance between the corresponding points on the manifold. See Figure 1.10.

Finally, MDS is applied on D to get a low-dimensional embedding Yp×n.

We next discuss run length encoding, which we will use in chapter 4, for fast collision

detection.
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Figure 1.10: Illustration of geodesic approximation using shortest path distance on the
neighbourhood graph. (A) A set of points lying on a “Swiss roll” in R3, with the Euclidean
distance (dotted straight line in blue) and the geodesic distance (solid curved line in
blue) between two points (marked by small circles). (B) The neighbourhood graph G
computed on a set of 1000 data points with K = 7, along with the shortest path on G
(in red), approximating the geodesic between the chosen points. (C) The 2-dimensional
Isomap embedding of points, along with the actual geodesic (in blue) and the approximate
geodesic (in red). The embedding preserves the shortest path distances on G, with the
hope of preserving the actual geodesic distances. This illustration has been taken from
(Tenenbaum, De Silva, and Langford, 2000).

1.6 Run Length Encoding (RLE)

Run Length Encoding (RLE) is a data compression mechanism that works by representing

each run of a symbol (i.e., a sequence in which the same symbol occurs consecutively) by

a pair (c, s), where s is the symbol in the run and c is the length of that run. It is

space-efficient when the data contains long runs. For example, the string

00000000001111111111111110000000000001111111111

has the encoding

〈(10, 0), (15, 1), (12, 0), (10, 1)〉,

which tells that the given string has 10 0s followed by 15 1s followed by 12 0s followed by

10 1s. Here, in the encoding, symbols other than numbers are used only for readability

and explanation purposes.

If the data contains only binary digits, then we can store just the run lengths of each bit

with the assumption that the first run is always a run of 0s and the runs alternate between

0s and 1s. Under this encoding, the string in the previous example can be represented as
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0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0


Figure 1.11: A binary image shown as a pixel grid and as a binary matrix.

〈10, 15, 12, 10〉.

If the data begins with a 1, then the first run can be treated as a run of 0s of length zero.

1.6.1 RLE for Binary Images

A binary image is a pixel grid which can be represented as a matrix of 0s and 1s. An

example of this is shown in Figure 1.11, with a white pixel represented by a 0 and a dark

pixel represented by a 1.

For binary images RLE can be applied row-wise, in which case the image in Figure 1.11

will have the following encoding:

10; 〈10, 3, 4, 3, 2, 1, 4, 1, 2, 2, 1, 4, 1, 2, 3, 5, 2, 7, 1, 2, 7, 1, 2, 2, 1, 4, 1, 2, 3, 4, 3, 10〉,

where the 10 at the beginning indicates the width of the image in pixels, without which

it will not be possible to know when to start a new row while trying to reconstruct the

original image from the encoding.

To decode such an encoded sequence, one just needs to go through the sequence and

create data bits as per the run lengths specified in the sequence. In the beginning, a

variable, indicating the sum of run lengths processed so far, is initialized to 0. A new row

is created in the image when the run lengths sum to the image width.
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Alternatively, we can first flatten the image matrix into a one-dimensional array by

concatenating all the rows into a single row and then apply RLE on the resulting array.

In this case, the image in Figure 1.11 will be encoded as:

10; 〈13, 4, 5, 1, 4, 1, 4, 1, 4, 1, 5, 5, 9, 1, 9, 1, 4, 1, 4, 1, 5, 4, 13〉.

1.6.2 Interval Based RLE for Binary Images

Equivalently, we can store the positions of intervals of 1s in the image array. An integer

interval [lb, ub) can be taken to mean that the array contains a 1 from position lb (short

for lower bound) till and excluding position ub (short for upper bound), with the indices

beginning from 0. All other positions can be assumed to have a 0. If we do that for the

image in Figure 1.11, the resulting encoding will be as follows:

10× 10; 〈[13, 17), [22, 23), [27, 28), [32, 33), [37, 38),

[43, 48), [57, 58), [67, 68), [72, 73), [77, 78), [83, 87)〉.

Here, 10× 10 at the beginning indicates the original image size without which reconstruc-

tion of the image from the encoding would not be possible. An interval such as [13, 17)

indicates that the image array contains a 1 from position 13 to position 16 (indexing is

assumed to be zero-based and the intervals do not include upper bounds).

We will use interval based RLE for the purposes of collision detection in robot motion

planning in Chapter 4.



Chapter 2

Literature Survey

Humans and animals routinely use prior sensorimotor experience to build motor models,

and use vision for gross motor tasks in novel environments. Achieving similar abilities in

a robotic system, without having to calibrate the robot’s own body structure, or estimate

the exact 3-D positions, is a touchstone problem for robotics (e.g. see (Engelberger, 1980)

ch.9). Such an approach would enable a robot to work in less controlled environments, as

is being increasingly demanded in social and interactive applications for robots.

There have been two methods for approaching this problem — either based on learning

a body schema (Poincaré, 1895; Hoffmann et al., 2010; Pierce and Kuipers, 1997; Philipona

et al., 2003; Arleo, Smeraldi, and Gerstner, 2004; Stober, Fishgold, and Kuipers, 2009),

or by fitting a canonical robot model (Sigaud, Salaün, and Padois, 2011). Body schema

approaches have not scaled up to full scale robotic models or used for global motion

planning, and robot model regression requires intrusive structures on the robot (Sturm,

2013) and even then it cannot sense the environment.

Another approach, visual servoing attempts to estimate the motion needed for small

changes in image features. However, visual servoing models cannot construct models

spanning large changes in robot pose, since the pseudo-inverse of the image Jacobian can

be computed only over small motions. Recently, global motion planning algorithms have

23



24

been proposed by stitching together local visual servos (Kazemi, Gupta, and Mehrandezh,

2010), but these require that the goal be constantly visible.

A number of schemes have been proposed for learning the body schema from visual

inputs (Review: (Hoffmann et al., 2010)). Most of them involve varying degrees of knowl-

edge about the kinematics (Hikita et al., 2008; Martinez-Cantin, Lopes, and Montesano,

2010). Some require special decals pasted on the robot to remain visible (Sturm, 2013).

Alternately, one may discover the dimensionality of the input-output relation by analyzing

locally linear tangent spaces (Philipona, O’Regan, and Nadal, 2003). Other work, often

termed developmental robotics, attempts to establish visuomotor correlations by analyzing

random motions (motor babbling) (Caligiore et al., 2008), by observing smooth patches in

optical flow data (Olsson, Nehaniv, and Polani, 2006), or via clusters of sensory data that

permit the recognition of object categories and shapes (Modayil and Kuipers, 2007; Mo-

dayil, 2010). Other approaches have focused on discovering the topology (Ranganathan

and Dellaert, 2011), or on constructing dynamical system models (Shatkay and Kaelbling,

2002).

(Sturm, 2013) proposes methods of learning the kinematic structure and properties

of a mobile manipulation robot and methods of learning novel manipulation tasks from

human demonstrations. This work uses visual self-observation to learn the robot’s own

body schema from scratch and use it to learn the properties of articulated objects. Here,

the visual observations of the links of the arm are modelled as a Gaussian process and

the body schema of the robot is defined in terms of Bayesian networks that describe the

kinematics of the system. This work also describes approaches to automatically update

the body schema after the robot uses a tool.

(Hoffmann, 2014) addresses cognitive developmental robotics through a case study on

a quadruped robot. This work interprets the results of the case study from an enactive

perspective. Enactive robots construct their identity by interacting with the environment

continuously. (Lanillos, Dean-Leon, and Cheng, 2017) is another work that acquires the
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sensorimotor self through enaction. It describes algorithms to learn the body schema

and to enable tool-extension, and shows their usefulness in generalizing the computational

model of enactive self.

Goal babbling is an extension of the findings in developmental psychology that suggest

that human infants try to make goal-directed movements, in addition to random motor

babbling, in the early stages of development. (Schmerling, Schillaci, and Hafner, 2015)

investigates how goal babbling relates to a visuomotor coordination task in Aldebaran Nao.

This work also suggests that goal babbling is effective in coordinating the motion of head

and arm.

(Roncone et al., 2016) investigates a computational model inspired by the receptive

fields of polymodal neurons in brain areas F4 and VIP. They use this model to identify

the peripersonal space of an iCub humanoid robot. They argue for several advantages of

the peripersonal space representation that can be learned using the proposed model.

(Schillaci, Hafner, and Lara, 2016) surveys the studies in exploration behaviors such as

random motor babbling, internal body representations such as body schema, and sensori-

motor simulation processes for cognitive development in artificial agents such as robots.

(Lanillos and Cheng, 2018) is a work that formulates body learning as a problem of

predictive coding. In this work, the authors propose a method of obtaining a forward

model which encodes the sensor values as a function of the body variables, and solve it

using Gaussian process regression. They model the problem of body estimation as one of

minimizing the discrepancy between the robot’s belief about its body configuration and

the observed posterior. They test the proposed formulation on a real multisensory robotic

arm and show how different sensory modalities help in refining the body estimation.

(Zenha et al., 2018) considers touch events to incrementally adapt a body schema in

robots. The authors of this work enable a humanoid robot to incrementally estimate model

inaccuracies by allowing it to touch some known planar surfaces like walls, through motor

babbling, thereby making it adapt its own body schema using the contact information
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alone. They formulate this problem as an adaptive parameter estimation using Extended

Kalman Filter, that uses planar constraints obtained at each contact detection. They

perform a set of experiments to compare different incremental update methods, using a

simulated version of the iCub humanoid robot.



Chapter 3

Visual Configuration Space

3.1 Configuration Space and Generalized Coordinates

The notion of Configuration Space (also known as C-Space) is fundamental to concep-

tualizing multibody motion. The configuration of a multibody system is any complete

description of the position of every point of the system, with respect to a fixed point in

its world. The configuration space of the system is the set of all possible configurations

of the system. For a robotic system, typically, its configuration is given by a parameter

vector which can be mapped to the set of positions of all points on the robot body. Each

configuration is a point in the configuration space. The degrees of freedom of the robot is

the dimension of the configuration space, which is given by the minimum number of inde-

pendent parameters required to specify the configuration. These independent parameters

are called the generalized coordinates. The configuration of a system with d degrees of

freedom can be specified in terms of d generalized coordinates. In this and the subsequent

chapters, we will sometimes use the word pose synonymously with configuration.

For a planar robotic arm with two links, the canonical choice for generalized coordinates

is to use the joint angles (θ1, θ2). Given the knowledge of a robot’s geometry, such as the

shape of the links, position of joints on the links, link lengths, and other such parameters,
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all of which are fixed for a given multibody system, generalized coordinates like joint angles

are sufficient to specify the position of every point on the robot body. More generally,

the generalized coordinates of an open chain articulated robot with d links connected by

d revolute joints, can be given by its d joint angles (θ1, ..., θd).

However, this is only one of the many (potentially infinite) choices of coordinates, each

resulting in a different C-space. Generalized coordinates need not specify joint angles or

any motion parameter — they just need to uniquely specify the position of every point on

the body. One of our main aims is to show that an alternate set of generalized coordinates

can be learned from the robot’s appearance alone, i.e. from a set of images of the robot

in various configurations.

3.2 Visual Configuration Space (VCS)

In order to understand the idea of a Visual Configuration Space (VCS), let us consider

the images of a robot, all of which are captured by a camera in a fixed position in the

robot’s workspace, such that each image corresponds to a configuration of the robot, for

example for the 2-DOF robot of Figure 3.1. Let the set of all such images, where each

image corresponds to one configuration of the robot, be denoted by I. If each image is

600 × 600 RGB pixels, it is represented by 3 ∗ 600 ∗ 600 ≈ 106 integer values each in the

range [0, 255]. Here the factor 3 corresponds to the three color channels: red, green and

blue. Then, I ⊂ R106 , so that each image of the robot is a point in a million dimensional

space. So, at first sight, the elements of I seem to be very high dimensional points.

However, not every point in R106 corresponds to an image of the robot in a valid

configuration. To see why this is the case, consider an image formed by randomly turning

on some of the pixels in a 600×600 RGB image. The probability that such an image looks

like an image of the robot in a valid configuration is vanishingly small. Thus, only a very

small fraction of the points of R106 make up robot images.
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Moreover, given an image x ∈ I, it can be altered in only as many ways as the degrees

of freedom of the robot, without the resulting image leaving I, because all the pixels

corresponding to a moving link of the robot vary together. So the robot images lie on a

very small subspace I of the ambient space R106 . As we will see later in this chapter, for

a d-DOF robot, the intrinsic dimensionality of I would be d.

(a) Two images of a 2-DOF planar arm, each in a different configuration of the arm.

(b) A sample of 50 images from the image space of the arm in Figure 3.1a.

Figure 3.1: Image space of a 2-DOF planar arm: each image corresponds to one configu-
ration of the robot. If the images are of 600× 600 RGB pixels, then each image is a point
in a space of 3 ∗ 600 ∗ 600 ≈ 106 dimensions.
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For the 2-DOF robot of Figure 3.1, the intrinsic dimensionality of I is 2. Further,

if we allow both joints to rotate fully around from 0 to 2π radians, as each link keeps

rotating starting from a home configuration, at some point the image sequence of that

link returns to the original image, because that link reaches the original position after a

full rotation of 2π radians. Thus the topology of I is not Euclidean (R2), but S1×S1, i.e.,

a 2-dimensional torus. And in general, the topology of I for a d-DOF articulated arm,

without any restrictions on the link rotations, is a d-torus.

This low-dimensional subspace of the ambient Euclidean space is a manifold which is

homeomorphic to a canonical C-space, under some conditions discussed in section 3.2.1.

We call this manifold a Visual Configuration Space (VCS), as it is discovered from a

set of images. The coordinates assigned to the points on the VCS will be called Visual

Generalized Coordinates, akin to the generalized coordinates of the conventional C-space.

We now establish the conditions under which the space of all images of the robot would

form a manifold.

3.2.1 Visual Distinguishability Assumption

Let Rq be the set of all points of the workspace occupied by the robot (its volume) in

configuration q (i.e., Rq is the shape of the robot in configuration q) and let R(Q) = {Rq :

q ∈ Q} be the set of all robot shapes. Let φ : Q → R(Q) and ψ : R(Q) → I be the

functions that map a configuration to a shape and a shape to an image respectively. Then

the visual distinguishability assumption requires that the function ψ ◦ φ : Q → I be a

bijection as illustrated in Figure 3.2.

In general, the imaging transformation ψ is not invertible — i.e., the 3D positions are

not recoverable from the image. In such cases, the visual distinguishability assumption

does not hold. This can happen when there is any visual symmetry in the robot’s motion,

as in Figure 3.3. For example, for a cylinder rotating about its own axis, unless the

boundary is coloured to break the visual symmetry, all configurations result in the same
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Figure 3.2: Correspondence between robot configuration, robot shape, image and visual
configuration spaces: In order for visual generalized coordinates to exist, two robot con-
figurations cannot generate the same image. If this condition holds, we show that any
coordinate for the image manifold constitutes a generalized coordinate system. Under
such conditions, the map ψ ◦ φ between Q, the shape space R(Q) and the image space
I is bijective, and the image manifold does not self-intersect. The latent space V is a
specification of generalized coordinates on the image manifold and is a member of the
collection of C-spaces. The bijective map f : V ↔ I relates robot images to unique points
in V.

image. This can also happen when the changes in the robot pose are hidden from the

camera view, and hence two different configurations of the robot result in the same image.

To ensure visual distinguishability in all such cases, we assume that at least one of the

following requirements is satisfied:

• The robot is coloured differently at each local patch on its body, for example by use

of some colour texture.

• There is a restricted range of motion, that permits distinguishability of all robot

poses.

• There are multiple cameras, as discussed in section 3.2.5, and for every pair of

configurations of the robot, the resulting images look different in at least one view.
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(a) (b) (c)

Figure 3.3: Imaging the workspace. (a) The robot and obstacle lie along the projection
bundle from the optical center via their image regions in the virtual image plane. If these
bundles do not intersect, R ∩ A = ∅. However, the converse is not true. (b, c) Images
of CRS A465 6-axis robot appear to be neighbouring poses, but close observation reveals
that the base joint θ1 has rotated by nearly 180 degrees, while θ2 and θ3 have changed sign.
Such situations are avoided in the analysis by additional cameras, or by adding decals.

This is the visual distinguishability assumption. Formally, this assumption holds when

ψ ◦ φ : Q → I is a bijection.

The imaging transformation ψ ◦ φ maps each configuration q to an image Iq projected

by the boundary δRq of shape Rq. If the visual distinguishability assumption holds, then

both φ and φ−1 exist. Moreover, these maps are continuous because small changes in the

robot configuration lead to small changes in its shape and the corresponding images and

vice versa. So, whenever Q is a manifold, I is also a manifold of the same dimension

(i.e., for a d DOF robot whose configuration space is a manifold, the image space is a

d-dimensional manifold). We refer to this image manifold as the Visual Configuration

Space. We will later discuss how to build a Visual Roadmap (VRM) on this manifold.

Even though for practical purposes, we use discrete pixel values on a discrete pixel grid

to represent digital images, the intensity of the optical signal that makes up the image

and the image plane are continuous in theory. So, the image space changes smoothly as

long as the robot motions are smooth.
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3.2.2 Visual Manifold Theorem

Definition 3.1. A Smoothly Moving Piece-wise Rigid body (SMPR) is any multibody

system with a smooth map from its configuration space Q to its shape space R(Q).

Definition 3.2. A visually distinguishable system is one for which the visual distinguisha-

bility assumption holds.

Hence, for a visually distinguishable SMPR, ψ ◦ φ : Q → I is a homeomorphism.

Theorem 1. For a visually distinguishable SMPR, whenever Q is a manifold, I is a

manifold of the same dimension.

Proof. The imaging transformation ψ ◦ φ maps each configuration q to an image Iq pro-

jected by the boundary δRq of shape Rq. If the visual distinguishability assumption holds,

then both φ−1 and ψ−1 exist. Since ψ is a perspective projection with no singularities, ψ

and ψ−1 are continuous. The functions φ and φ−1 map infinitesimal changes in a configu-

ration to infinitesimal changes in the corresponding shape and vice versa; hence φ and φ−1

are continuous. Therefore, the image space I is locally homeomorphic to the configuration

space Q. Hence I constitutes a manifold of the same dimension as that of Q, whenever

Q is a manifold.

While these properties hold for the continuous image space, in practice we work with

a representative sample X = {x(1), ..., x(n)} ⊂ I. We now discuss how the VCS can be

discovered using manifold learning algorithms.

3.2.3 VCS Discovery through Manifold Learning

Since the robot images lie on a very small subspace of the ambient space, it should be

possible to assign a low-dimensional point to each image. This can be achieved by any of

a number of non-linear dimensionality reduction (NLDR) algorithms (Lee and Verleysen,

2007). These algorithms discover the subspace on which the given high-dimensional data
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points lie and give a low-dimensional representation to each of those points. One such

algorithm is the well-known Isomap algorithm (Tenenbaum, De Silva, and Langford, 2000),

which generates a low-dimensional representation for the high-dimensional points, in such

a way as to preserve the distances between points.

In many such algorithms, the first step is to construct a nearest neighbourhood graph

(based on a measure of distance in I). If the graph is connected, then distances between

any two distal images can now be approximated by a shortest path through the edges con-

necting near neighbours. The Isomap algorithm constructs a low-dimensional embedding

by attempting to preserve this geodesic distance.

For the demonstrations presented here, we restrict ourselves to Isomap for this reason:

though far from exact, it gives a closer resemblance to the global metric distances compared

to other algorithms. In order to estimate the robot DOFs, we simply try out a range of

target dimensions and choose the lowest dimension that is able to adequately explain the

variance in the data (based on residual variance). See Figure 3.4.

If we are able to discover the DOF of the robot, the lower-dimensional space can be

described in terms of d latent parameters v1, . . . , vd, which act as (state) parameters of the

robot. These are visual analogs of nonlinear combinations of the configuration parameters

of the robot and the space of these visual latent parameters is the Visual Configuration

Space (VCS).

However, such methods have difficulty in introducing new data points and in inter-

polating local data. So, for the purposes of motion planning, we avoid computing the

manifold altogether, and restrict ourselves to a piecewise algorithm, as in (Kambhatla and

Leen, 1997; Yang, Li, and Wang, 2005).

3.2.4 Difficulties with Manifold Discovery Algorithms

For robots which involve a motion with an S1 topology, the C-space and hence the VCS is

not globally Euclidean. For example, the C-space of a freely-rotating 2-DOF articulated
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(a) Scree plot of Isomap dimensions

(b) A 3-dimensional Isomap embedding

Figure 3.4: Isomap on a set of 5000 images of the 2-DOF articulated robotic arm of
Figure 3.1: (a) The scree plot has a ‘knee’ at dimension 2, which suggests that the intrinsic
dimension of the image manifold is 2, which is same as the DOF of the arm. (b) The
embedding very closely resembles the toroidal structure of the topology of the canonical
C-space of a 2-link arm in Figure 1.4. Even though the intrinsic dimension of the image
manifold is 2, this Isomap embedding is not globally homeomorphic to R2 and hence
cannot be embedded in 2-D, without losing some information along θ2.

robot is S1 × S1 = T2, which is a torus (Choset et al., 2005). Traditional nonlinear

dimensionality reduction (NLDR) algorithms assume that the target space for dimen-

sionality reduction is a Euclidean space (a subspace of RD). This means that a d-torus
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manifold, which is d-dimensional, cannot be globally mapped to an Rd space, with which

it is locally homeomorphic. Another practical difficulty with NLDR algorithms is that

it is very challenging to add new points to the manifold without recomputing the entire

structure (Bengio et al., 2004).

Figure 3.5: A 2-dimensional Isomap embedding of the 2-DOF arm images of Figure 3.1a.

Hence, a 2-dimensional Isomap embedding of the image manifold, as shown in Fig-

ure 3.5, resembles the torus in capturing the variability along the θ1 dimension of this

space, but not θ2.

At the same time, the global non-linear coordinate is little more than a convenience and

does not materially affect the modelling, which can be done in a piecewise linear manner.

Thus, we avoid computing global coordinates altogether and use the local neighbourhood

graphs for planning global paths and local tangent spaces, discovered using Principal

Component Analysis (PCA), for checking the safety of edges (local planner). These local

tangent spaces, in theory, correspond to charts which when stitched together form an atlas

for the image manifold.

We note that much of this topological complexity would be reduced for most of the

real world robots because they have a restricted range of rotation and their motion man-
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ifold does not have a torus topology. For example, the Scara arm demonstrated later in

section 4.8.1 has −135◦ to 135◦ for both θ1 and θ2. This implies that the mapping, though

it is part of the surface of a torus, can be stretched and would fit in a subspace of R2.

We next describe how obstacles are mapped on the VCS for collision detection.

3.2.5 Collision Detection in VCS

In the imaging process, robot and obstacle are mapped to a bundle of rays converging on

the camera optical center (Figure 3.3). Robot configurations that do not intersect with

this bundle are guaranteed to be in free space.

Figure 3.6: Conservative modelling of 3-D obstacles. For 3-D obstacles, the robot image
must not overlap with the obstacle in at least one camera view. This is a depiction of this
situation, shown via a 2D simplification. If some part of the robot occludes the obstacle in
the cones for all the cameras, then our system will consider it to be a collision situation.

Let CRi be the bundle subtended at camera optical center CO by the robot in config-

uration q(i), CB be the bundle subtended at CO by the obstacle B and IRi,
IB be the

image regions corresponding to the robot and the obstacle.

Lemma 3.1. If CRi ∩ CB = ∅, then B ∩R(q(i)) = ∅.

Proof. If the obstacle B had a non-empty intersection with the robot region in the
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workspace for configuration q(i), so that B ∩ R(q(i)) = ∅), then the optical bundles sub-

tended by the robot and the obstacle would also overlap, so that CRi ∩ CB 6= ∅.

Thus, robot configurations for which the bundles do not intersect with the obstacle

bundle are guaranteed to be in the free space Qfree. Note that the converse is not true.

Even when a configuration of the robot is free, it is possible, in some view of the camera,

that the obstacle is in between the camera and the robot, or the robot is in between the

camera and the obstacle and hence that configuration may appear as a collision configu-

ration from that view.

Lemma 3.2. CB ∩ CR = ∅ iff IB ∩ IR = ∅.

Proof. IR and IB are sections of cones CR and CB; so CB and CR are pyramids with

their apexes at CO, and IB and IR are their projections on the image plane. So, a non-

empty intersection of images requires and is required by a non-empty intersection of the

corresponding optical bundles.

Theorem 2. (Visual Collision Theorem) For a robot in a given pose q(i), if IRi ∩ IB = ∅,

then q(i) ∈ Qfree.

Proof. Follows from Lemma 3.1 and Lemma 3.2.

We note that the above is a necessary condition, but it is often rather conservative.

Indeed, the inverse condition defines occlusion situations: where B∩R = ∅ but CR ∩ CB

is non-null. This limitation is a result of the information loss in the imaging process. This

can cause particular difficulties for articulated arms. In such cases, one may use multiple

cameras; since the visual collision theorem holds for all cameras, we may define any space

as free if CR ∩ CB = ∅ in at least one view. In this situation, both robot and obstacle

are less conservatively modelled as the intersection of multiple cones.

For non-planar motions, such as for 3D robot motion, one can consider multiple cam-

eras; free space is guaranteed to be the disjunction of the free spaces guaranteed by each

camera. Hence, the obstacle is guaranteed to be a subset of the conjunction.
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Visual Configuration Space (VCS) is the manifold on which the sampled robot images

lie. However, discovering this manifold is an expensive operation and we do not need the

concrete visual generalized coordinates of the VCS, for motion planning purposes. We can

work with a graph embedded on the VCS, which is constructed using the robot images.

We call this graph a Visual Roadmap (VRM).

In the next chapter, we describe how VRM is constructed and discuss how it could

be used to address various issues in robot motion planning and illustrate its use to plans

motions for some simulated planar robots and real 3-D robots.





Chapter 4

Robot Motion Planning in

Visual Configuration Space

Robot Motion Planning (RMP) is the problem of getting a robot to move from one config-

uration to another configuration without hitting any obstacles present in the workspace.

Traditional solutions to the RMP problem involve constructing an explicit representation

of the robot in terms of the number of degrees of freedom, joint and link geometry, rules

for forward kinematics and inverse kinematics to map from the configuration space to the

workspace and vice versa. Once such a representation is available, obstacle-free paths can

be planned in the configuration space. This approach is cumbersome because different rep-

resentations need to be hand-engineered for different robots, obstacles and workspaces. If

we consider the triple 〈robot, obstacles, workspace〉 as a system, the traditional approach

is quite system specific. Any change in the system would require operating on a different

hand-engineered model.

We propose an approach to motion planning that requires much less system-specific

information to plan paths. We use the ideas developed in the previous chapter and plan

obstacle-free motions on a graph that we call Visual Roadmap (VRM), which is embedded

on the Visual Configuration Space of the robot. This approach is motivated by studies in

41
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human cognition which suggest that human babies around the age of one month vigorously

move their limbs and observe them to learn latent representations for voluntary motion.

4.1 Visual Roadmap (VRM)

The VCS is the manifold on which the robot images lie. However, discovering this manifold

is an expensive operation and we do not need the concrete visual generalized coordinates

of the VCS, for motion planning purposes. We can work with a graph embedded on the

VCS, which is constructed using the robot images.

We assume the availability of a set of images of the robot in various configurations in

its workspace. Given a set of robot images, we build a neighbourhood graph G of these

images and plan paths using this graph. In this graph, each node corresponds to an image

of the robot in some configuration and so the graph will have as many nodes as the number

of images sampled. Two nodes will be connected by an edge, if the corresponding images

are such that one of them is a k-nearest neighbour of the other one, for some value of

k. The corresponding edge will have a weight equal to the distance between those two

images, under some distance metric on robot pose images. We call this graph a Visual

Roadmap (VRM).

We begin with a random image sampleX = {x(1), x(2), . . . , x(n)} of robot configurations

{q(1), q(2), . . . , q(n)}. We construct a graph G(V,E), which has n vertices, each vertex v(i)

corresponding to a robot image x(i) and hence to a robot configuration q(i). An edge

is added between v(i) and v(j), if and only if x(i) and x(j) are near-by. For example,

we can find the k-nearest neighbours of each image x(i) in the image space and an edge

between v(i) and the nodes corresponding to the k-nearest neighbours of x(i). This k-

nearest neighbours (k-NN) graph G is a VRM. We note that the construction of VRM

does not require any knowledge of the robot geometry.

When there are no obstacles in the workspace, finding a path for the robot from a
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Figure 4.1: Visual Roadmap as an analogue of Probabilistic Roadmap (PRM). In the Visual
Roadmap (VRM) approach, a graph is constructed from the neighbourhoods in the image
space. This requires no knowledge of robot kinematics or geometry. Just as with PRM,
one now deletes nodes overlapping the obstacles, and constructs a path on the remaining
edges of the graph. The process is illustrated with a simulated mobile robot : the manifold
(bottom right) is constructed solely from a sample of 2000 images. The VRM graph is
shown with all obstacle nodes removed and a path identified for a given source and goal.
The manifold discovery process preserves topology but may flip or deform the map, as it
has done in this case.

source configuration to a destination configuration corresponds to finding a path in the

VRM graph.

Figure 4.1 shows an overview of the VRM algorithm, demonstrated on a simulated

mobile robot. The idea of VRM is analogous to Probabilistic Roadmap (PRM) (Kavraki

et al., 1996). While PRM samples the conventional C-space, VRM samples the VCS.

4.1.1 Static Obstacle Avoidance

When there are any static obstacles, we find the configurations in which the robot images

have a non-empty intersection with the obstacle image and remove from the roadmap the
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nodes corresponding to these configurations. Paths planned using the remaining graph

will be almost obstacle-free. The paths are not yet fully safe because the edge between two

free configurations may not be free from obstacles. This is the problem of local planning

and will be handled separately.

For spatial robots, avoiding an obstacle would require multiple cameras. We collect

multiple images of each configuration from different fixed views. A given configuration

is free if there is at least one view in which the robot image does not intersect with the

obstacle image. If the images from all the views have a non-empty intersection with the

obstacle image in the respective views, then that configuration will be considered a collision

configuration.

4.1.2 Local Planner

Once we know that all the nodes in the VRM graph correspond to free configurations, it

is the responsibility of the local planner to make sure that all the edges connecting the

free nodes are free from obstacles. For this purpose, we propose three approaches: (i)

Local Tangent Space based planner, (ii) Track-points based local planner, and (iii) Local

planner using Shi-Tomasi features. We discuss these approaches in Section 4.4.

4.1.3 Dynamic Obstacle Avoidance

To handle dynamic obstacles, we make certain assumptions about the speed of the obstacle.

These assumptions allow us to update only small portions of the graph that correspond

to collision configurations, instead of having to recreate the whole graph all over again

every time the obstacle moves. Firstly, we assume that the speed of the obstacle is less

than the speed of the robot so that there is enough time for the robot to plan alternate

paths. Secondly, we assume that in each move, the obstacle moves at most by a certain

amount, so that the updates on the graph can be limited to a small number of layers

of neighbours around the current obstacle region in the graph. We discuss the details of
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dynamic obstacle avoidance in Section 4.6.

4.2 Motion Planning without Obstacles

When there are no obstacles in the environment, we directly plan a path on the VRM.

Given a source configuration, say s, and a destination configuration, say t, as images, first

we identify the nearest configurations to s and t in the initial image-set and add them to

the VRM temporarily. Next, we find a shortest path, say p, on the VRM from s to t using

an algorithm such as Dijkstra’s shortest path finding algorithm.

After finding a feasible path p, it is the job of a controller to decide how the robot

would move from one node to another node on the path p. Each node on p is a waypoint

for the controller. If the configuration parameters are known for all the configurations in

the image-set, the controller could use them to execute the path; otherwise, a visual servo

controller may be employed.

Figure 4.2 illustrates the use of VRM to plan paths for a circular mobile robot in a

planar workspace. For this robot, the C-space, as well as the workspace, are both R2.

This example uses a sample size of 5000 images and a neighbourhood size of 10, to build

the VRM.

Figure 4.3 illustrates the use of VRM to plan paths for a 2-DOF articulated arm in a

planar workspace. Both of its links can rotate fully around and hence its C-space has an

S1×S1 topology. Correspondingly, the VCS discovered by Isomap has a toroidal structure.

This example uses a sample size of 20000 images and a neighbourhood size of 10, to build

the VRM.

Computation of VCS using Isomap is done only for the purpose of demonstrations

here. The actual path planning is done on the VRM, which is just a neighbourhood graph

and hence computing VRM is much simpler than computing VCS.
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(a) (b)

(c) (d)

Figure 4.2: Path planning on VRM, for a circular mobile robot. (a) Start and goal con-
figurations of a circular mobile robot marked in a workspace with no obstacles. A path
is computed on the VRM, from the start to the goal configuration. This example uses
N = 5000 images and neighbourhood size k = 10. (b) The computed path is shown in the
workspace, as a superimposition of an outline of the robot images corresponding to the
configurations on the path. (c) The same path is shown, as a sequence of blue dots, on the
conventional C-space formed by the actual positions of the robot’s centre. (d) The path
is shown on the VCS computed by Isomap. Notice that Isomap preserves the topology of
the C-space and the metric relations among neighbours, but may flip and/or rotate the
map, as it has done in this case.
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(a) (b)

(c)

(d)

Figure 4.3: Path planning on VRM, for an articulated arm. (a) Start (green) and goal
(orange) configurations of a 2-link arm in its workspace. A path is computed on the
VRM, from the start to the goal configuration. This example uses N = 20000 images
and neighbourhood size k = 10. (b) The computed path is shown in the workspace, as a
superimposition of an outline of the robot images corresponding to the configurations on
the path. (c) The VCS, discovered by Isomap, has a toroidal shape since the C-space of
this arm has an S1 × S1 topology. (d) We cut the torus in such a way that it will stretch
into a rectangle and show the path between the start and goal configurations. Notice that
because of the toroidal topology, there is a wrap-around effect in the plot.
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4.3 Static Obstacle Avoidance

For handling obstacles, we take the background subtracted images, and test for intersec-

tion with the obstacle image. We find the configurations in which the robot images have a

non-empty intersection with the obstacle image and remove from the roadmap the nodes

corresponding to these configurations. A non-empty intersection implies that the config-

uration is not free and we remove the corresponding node and its incident edges from G.

If b ∈ Rp is the obstacle image vector, then the set of nodes to be removed from G is

Vcollision = {v(i) : x(i) ∗ b 6= 0}, where ∗ denotes entry-wise product (Hadamard product)

and 0 is the zero-vector. Thus, we obtain a modified graph in which every node represents

a free configuration.

However, the edges may still touch some part of the obstacle in an intermediate pose.

Guaranteeing edge-safety is the responsibility of the local planner, discussed in Section 4.4.

Note that this process applies to any number of static obstacles.

Figure 4.4 illustrates the use of VRM to plan paths for a circular mobile robot in a

planar workspace, with multiple obstacles. While the topological properties of the C-space

(with obstacles) are preserved in the VCS, there can be a rotation and reflection of the

points as can be seen in the figure. Such transformations are not problematic, as the

usability of the computed paths is not affected by them.

Figure 4.5 illustrates the use of VRM to plan paths for a 2-DOF articulated arm in a

planar workspace with many obstacles. Both of its links can rotate fully around and hence

its C-space has an S1×S1 topology. Correspondingly, the VCS discovered by Isomap has a

toroidal structure. This example uses a sample size of 20000 images and a neighbourhood

size of 10, to build the VRM.

For the purposes of collision detection, we use binary images without affecting the

correctness of the process and make it faster. See Section 4.7 for details.
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(a) (b)

(c) (d)

Figure 4.4: Path planning on VRM, for a circular mobile robot, in presence of obstacles.
(a) Start and goal configurations of a circular mobile robot marked in a workspace with
multiple obstacles (white objects). An obstacle-free path is computed on the VRM from
the start to the goal configuration, after discarding the collision configurations. This
example uses N = 5000 images and neighbourhood size k = 10. (b) The computed
path is shown in the workspace, as a superimposition of an outline of the robot images
corresponding to the configurations on the path. (c) The same path is shown, as a sequence
of blue dots, on the conventional C-space formed by the actual positions of the robot’s
centre. Here, the obstacle configurations are shown as red points. (d) The path is shown
on the VCS computed by Isomap. Notice that Isomap preserves the topology of the C-
space and the metric relations among neighbours, but may flip and/or rotate the map, as
it has done in this case.
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(a) (b)

(c)

(d)

Figure 4.5: Path planning on VRM, for an articulated arm, in presence of obstacles.
(a) Start (green) and goal (orange) configurations of a 2-link arm in its workspace with
multiple obstacles (white objects). An obstacle-free path is computed on the VRM from
the start to the goal configuration, after discarding the collision configurations. This
example uses N = 20000 images and neighbourhood size k = 10. (b) The computed
path is shown in the workspace, as a superimposition of an outline of the robot images
corresponding to the configurations on the path. (c) The same path is shown, as a sequence
of blue dots, on the VCS discovered by Isomap. Here, the obstacle configurations are shown
as red points. In this 3-D embedding of the VCS, it is not clear that the path shown is
obstacle-free. (d) We cut the torus in such a way that it will stretch into a rectangle
and plot the points of the free space and obstacle space, and show the obstacle-free path
between the start and goal configurations. Notice that because of the toroidal topology,
there is a wrap-around effect in the plot.
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4.4 Local Planner in VRM

We say that an edge (u, v) ∈ E(G) is safe, if every point on the geodesic from u to v in

the configuration space is in the free space. Assuming that every node of G is in the free

space, we need to guarantee that every edge is also safe. We describe three local planners

that work with robot images and can be used on visual roadmaps. To make sure that an

edge is safe, these methods construct a new image that estimates the swept volume of the

robot in the workspace and check this image for collision.

To illustrate these local planners, we will use a 3-DOF arm and the obstacles shown

in Figure 4.6.

(a) (b) (c)

Figure 4.6: Two poses of a 3-DOF arm and the obstacles used to illustrate the proposed
local planners on VRM.

4.4.1 Interpolation on the Local Tangent Space (LTS)

For each edge (u, v) ∈ E, let X(u,v) = {xq : q ∈ N (u) ∩ N (v)} be the p×m matrix of

images corresponding to the intersection of neighbours of u and neighbours of v (including

u and v), where m is the cardinality of X(u,v). To see if (u, v) is safe, we interpolate the

intermediate images on the tangent space spanned by X(u,v), obtained using PCA. The

target dimension is the number of degrees of freedom d, and PCA maps X(u,v) to a Y (u,v)

(d ×m). In addition to Y (u,v), PCA also gives a p× d orthonormal matrix W (u,v) such
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that X(u,v) = W (u,v)Y (u,v) or Y (u,v) = W (u,v)TX(u,v). We then interpolate between yu and

yv to construct y(α) = α ∗ yu + (1−α) ∗ yv for various values of α ∈ (0, 1). For each α, the

image x(α) = Wy(α) must be in free space.

If this image has a non-empty overlap with the obstacle image, then the edge under

consideration is marked unsafe. In practice, the resulting image is a poor interpolation,

and rejects many valid edges; however, the probability of an edge being unsafe after being

passed by the local planner is low (i.e. it is conservative).

(a) (b)

Figure 4.7: PCA based interpolation: (a) Interpolation on the LTS using the intersec-
tion of neighbourhoods of the two terminal nodes of the edge under consideration. (b)
Interpolation using union of neighbourhoods.

The image obtained by a linear interpolation on the local tangent space (LTS) is a

weighted sum of the images in X(u,v). Thus, for collision detection purposes, it is sufficient

to look at the superimposition of images in X(u,v). This achieves the same effect as the

PCA based method described above and avoids the PCA computation.

Figure 4.7 illustrates this interpolation. In the example shown in Figure 4.7a, we

see just a superimposition of two configuration images, because the intersection of the

neighbourhoods of the nodes corresponding to these configurations is empty. In such

cases, we may consider a union of neighbourhoods instead of an intersection. The union-

based interpolation would result in an image shown in Figure 4.7b. However, the union
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ITP Interpolation 

(a) Points to be tracked on 
the robot body, across all 
poses of the robot. 

(b) Image obtained by joining the 
corresponding tracked points on two poses, 
superimposed on the obstacle image. 

Figure 4.8: Local planner using Ideal Tracked Points. We assume that some fixed points
on the robot body are tracked across all the poses. We use the image obtained by joining
the corresponding tracked points, for collision detection.

based interpolation would discard many more valid edges from the VRM, and would be

more conservative.

4.4.2 Ideal Tracked Points (ITP)

Here we assume that a set of points on the robot body can be tracked in all poses (including

occlusions). Then to see if an edge (u, v) is safe, we join each pair of corresponding tracked-

points to create a new image, as in Figure 4.8. This image is used for collision detection.

If this image has a non-empty overlap with the obstacle image, then the edge under

consideration is marked unsafe.
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Figure 4.9: Local planner using Joins of Nearest Shi-Tomasi features link-wise (JNST).

4.4.3 Joins of Nearest Shi-Tomasi features (JNST)

In practice, occlusion precludes the tracking of any set of points on the robot body. So, ITP

method is not always practical. Here, we propose an approximation to the ITP method,

based on high-contrast points known as the Shi-Tomasi features (Shi and Tomasi, 1994).

These are high contrast salient regions such as corners, ends of lines, intersection points

etc., in an image, and are good for tracking. We assume that each link of the robot can

be separated and that the Shi-Tomasi features are computed on each link.

As before, to ensure safety for an edge (u, v), we create the superimposed image of u and

v. Here, we do not know the correspondences between points in the two images. The Joins

of Nearest Shi-Tomasi features approach (JNST) involves associating each feature point

on each link in u with the nearest feature point in the corresponding link in v. We do the

same in both directions and add a line between each pair of such nearest points as before

and use the resulting image for collision detection (Figure 4.9). If the image thus obtained

has a non-empty overlap with the obstacle image, then the edge under consideration is

marked unsafe. We will refer to this local planner as JNST in the subsequent sections.
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(a) (b)

Figure 4.10: A 3-DOF simulated arm and a set of obstacles used for empirical analysis.

4.4.4 Start and Goal States

For motion planning on the VRM, we need to map the source (s) and target (t) images

onto the VRM G. We first ensure that the poses s, t themselves are in free space. We

then add these to G and connect them with their k-nearest neighbours in X. We then run

a local planner on the new edges and find the shortest path between s and t as before.

Adding a new node (image) to the graph is a computation that requires O(nk) distance

computation steps for finding. Time for distance calculation depends on the metric used.

This approach again is almost identical to traditional roadmap methods (Choset et al.,

2005), except that the tests are all visual.

4.5 Empirical Analysis: Metrics and local planners

Factors affecting the quality of paths in VRM include sampling density, the metric used,

and the local planner. We now present an empirical study of these aspects on a planar

3-link simulated arm and a set of obstacles shown in Figure 4.10.
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(a) Comparison of Metrics (b) Comparison of local planners

Figure 4.11: Empirical analysis of metrics and local planners. (a) Edge failures under
various metrics, without a local planner: for each case, we consider a representation of
the robot and an appropriate metric to measure the distance between two poses during
the computation of the neighbourhoods in the VRM. (b) Local planner performance plots
based on Hausdorff metric on the link-wise Shi-Tomasi feature-based representation of
robot images. The JNST local planner performs almost as well as the ITP local planner,
which is not implementable in practice. This suggests that JNST local planner can be
used as a good approximation for ITP local planner.

4.5.1 Gold Standard Local Planner

In the traditional configuration space, two configurations are assumed to be joined by a

linear join between them. To see if an edge (u, v) is actually safe, we generate intermediate

pose images by interpolating joint angle vectors at an ε resolution. We observe that a linear

interpolation in joint angle space need not be the same as an interpolation on visual C-

space, but we assume the difference would be fairly small for a reasonable sampling density.

If all these images are collision-free, we treat (u, v) to be safe. The performance of the

local planners is evaluated relative to this gold standard local planner. Results reported

here use ε = 1◦.
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4.5.2 Effect of Sampling Density and Distance Metric

Plots in Figure 4.11a clearly suggest that the sampling density (i.e., the number of images

used to construct the visual roadmap) heavily affects the fraction of unsafe edges and

hence the quality of paths. The denser the sample is, the better the paths.

We present the effect of several representations of the configuration space along with

appropriate distance metric for each case. Table 4.1 lists the different representations and

the corresponding distance metric used to compute neighbourhoods.

Table 4.1: Different representations of the configuration space and the distance metric
used with each representation. Short forms mentioned here have been used in Table 4.2.

Representation Distance Metric Short Form

1. Raw RGB images of the robot L2 Img L2

2. Random projections of images L2 RP L2

3. Joint angle vector of the robot Geodesic θ-G
4. Ideal tracked points L2 ITP L2

5. Shi-Tomasi features link-wise Hausdorff ST-H

Table 4.2: Percentage of bad edges remaining after pruning the VRM using each local plan-
ner on a graph with 20000 nodes with different metrics. See Table 4.1 for an explanation
of these metric spaces.

Local Planner
Metric Space

Img L2 RP L2 θ-G ITP L2 ST-H

None 10.59 10.79 1.25 0.39 0.55
LTS 9.18 9.34 0.43 0.09 0.19
ITP 7.97 8.11 0.17 0.11 0.12

JNST 9.58 9.74 0.16 0.12 0.12

To find the distance between two images we just flatten all the channels of each image

into a single vector and use the standard Euclidean (L2) distance on the resulting vectors.

In our experiments we used 30,000 (100x100x3) dimensional vectors for image distance.

Random Projection (RP) (Bingham and Mannila, 2001; Dasgupta, 2000) is a dimen-

sionality reduction method that preserves L2 distances. In our experiments, we projected

the 30,000-dimensional image vectors onto 2000 Gaussian random unit vectors to obtain

a 2000-dimensional representation of each image. The experiments show that the L2 dis-
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tance on RP vectors does almost as well as that on the image vectors. Since the distance

computation is done on much smaller vectors, the graph construction gets much faster

while preserving the neighbourhoods, when using RP.

The distance between two joint angle vectors is computed as the sum of the short-

est circular-distances (i.e., treating 0 and 2π to be the same angle) between individual

components. This is in some sense the geodesic distance between the two vectors.

The ideal tracked point (ITP) L2 distance between two configurations is computed

as the L2 distance between the vectors obtained by concatenating all the tracked point

coordinates of each configuration.

Finally, the Hausdorff distance between two configurations is computed as the sum of

Hausdorff distances between the sets of Shi-Tomasi feature points on the corresponding

links for the two configurations. Given two sets of points A and B, Hausdorff distance

dH(A,B) is defined as

dH(A,B) = max

{
sup
a∈A

inf
b∈B

dE(a, b), sup
b∈B

inf
a∈A

dE(a, b)

}
,

where dE(a, b) is the Euclidean distance between a and b.

As can be seen from Figure 4.11b and Table 4.2, JNST local planner performs almost

as well as ITP local planner.

4.6 Dynamic Obstacle Avoidance

In this section, we consider the problem of planning paths when there are moving obstacles.

To plan a path from a given source to a destination configuration, the planner initially

treats the current state of the obstacle as a static obstacle and finds the shortest path

to the destination, after removing the collision configurations from the graph. Then,

before making the next step on the already-computed path, it checks for a change in the

obstacle’s position. If there is a change in the obstacle’s position, then it updates the
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graph as required and finds a new path from the current configuration to the destination.

When there are multiple moving obstacles, the planner updates the graph every time a

change is detected in any of these moving obstacles.

We assume that the speed of a moving obstacle is within some range so that during

the update step, we do not have to update the entire graph, but only a small subset of it.

In particular, we maintain a set of boundary nodes among the collision nodes, which have

the property that the corresponding robot configurations just touch the boundary of the

obstacle in consideration. We say that the robot touches the boundary of an obstacle, if

the amount of overlap between the robot image and the obstacle image is below a certain

threshold. When an obstacle moves, we only look at the nodes which are within a certain

number of hops away from any of the boundary nodes. The number of hops to consider

depends on the speed of the obstacle and needs to be determined experimentally. Some of

these near-by nodes will become collision nodes for the new position of the obstacle and

some of the old collision nodes now become free nodes. We mark the nodes accordingly in

the graph and proceed to plan a path from the current state to the goal state. We repeat

this process until the robot reaches the goal state.

It is possible that a moving obstacle reaches a position such that the goal configuration

becomes a collision configuration. During this time, we can have the robot wait in its

current configuration until that obstacle moves away and the goal configuration becomes

free.

Figure 4.12 shows a circular mobile robot in a planar workspace. The workspace has

both static and dynamic obstacles. We wish to plan paths for this robot between any

start and goal configurations, such that the robot avoids hitting any of the obstacles.

Figure 4.13 shows the frames of the motion executed by this robot, for the start and goal

configurations marked in Figure 4.12.
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Figure 4.12: Circular mobile robot in a planar workspace with a static obstacle and a
dynamic obstacle, with the start and goal configurations marked. The objective is to plan
a path for the robot from the start state to the goal state, a path that avoids both static
and dynamic obstacles.
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(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6 (g) Frame 7 (h) Frame 8

(i) Frame 9 (j) Frame 10 (k) Frame 11 (l) Frame 12

(m) Frame 13 (n) Frame 14 (o) Frame 15 (p) Frame 16

(q) Frame 17 (r) Frame 18 (s) Frame 19 (t) Frame 20

Figure 4.13: Motion planning with dynamic obstacle avoidance. Frames in a path followed
by the robot to move from the start position to the goal position indicated in Figure 4.12,
while avoiding the static and dynamic obstacles. We can see that from Frame 5 to Frame
8 only the obstacle is moving and the robot is still since the moving obstacle is colliding
with the goal state in these frames. Once the obstacle moves out of the goal position, the
robot again starts moving from Frame 9. However, since the obstacle is now coming in
the way of the robot, the robot cannot take the path it started with. So, it backtracks
and takes a round-about route from the current position to the goal position.
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4.7 Fast Collision Detection using RLE

In robot motion planning, collision detection (i.e., detecting whether the robot hits an

obstacle in a given configuration) is extremely important because otherwise, the robot can

damage itself and/or the world. In this section, we discuss fast collision detection using

run-length encoding (RLE) of binary images. See Section 1.6 for a description of RLE.

Background Subtraction

Given a set of images of a robot in several different configurations in its workspace, an

image of just the background can be obtained by taking the mean of all these images.

Subtracting this background image from the robot image in each configuration will give a

background subtracted image for that configuration.

The quality of the background image obtained by this method heavily depends on the

number of images that were averaged, the uniformity of lighting conditions and absence of

any external noise leading to significantly visible changes in the environment, while taking

images of the robot. In the presence of sources of any changes visible to the camera, more

advanced methods will be needed to extract the background more reliably. The collision

detection method discussed here assumes a high-quality background subtraction.

Collision Detection by Image Intersection

To find if the robot collides with an obstacle in a given configuration of the robot, we can

overlap the background subtracted images of the robot and the obstacle and see if there

is an intersection between the two images. If the intersection is non-empty, then there

is a collision; otherwise, that configuration is free. This, in the worst case, requires O(p)

comparisons, where p is the number of pixels in the robot/obstacle image.
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Collision Detection using RLE

Collision detection can be made much faster by using the interval based RLE (see Sec-

tion 1.6.2) representations of the background subtracted images of the robot and obstacle.

A background-subtracted image can be treated as a binary image with a point on the

robot body or the obstacle represented by a 1 and a point of the background by a 0.

Let r = 〈[rli, rui) : i = 0 . . .m− 1〉 and o = 〈[olj , ouj) : j = 0 . . . n− 1〉 be the interval

based RLE encodings of the robot and obstacle images respectively, ignoring the image

size. Here rli and rui are the lower and upper bounds of the ith interval of r, the robot

image RLE; olj and ouj are the lower and upper bounds of the jth interval of o, the

obstacle image RLE; and m and n are the number of intervals in r and o respectively.

Then the robot collides with the obstacle if and only if

∃i < m, j < n : [rli, rui) ∩ [olj , ouj) 6= ∅.

A non-empty intersection between two integer intervals [rli, rui) and [olj , ouj) can occur

in four different ways as listed below:

1. olj ≤ rli < ouj ≤ rui

2. rli ≤ olj < rui ≤ ouj

3. olj ≤ rli < rui ≤ ouj

4. rli ≤ olj < ouj ≤ rui.

Equivalently, the robot collides with the obstacle if and only if

∃i < m, j < n : min(rui, ouj) > max(rli, olj).

A pseudocode implementing this method is shown in Algorithm 1. It takesO(min(m,n))

comparisons, which is usually much smaller than the number of pixels in the robot/obstacle

image.
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Algorithm 1 Collision Detection using Image RLE

Input: rl, ru, ol, ou,m, n // see the text in Section 4.7 for details.
Output: true if there is a collision, false otherwise.
1: i← 0, j ← 0
2: while i < m and j < n do
3: if min(rui, ouj) > max(rli, olj) then
4: return true
5: end if
6: if rui ≤ ouj then
7: i← i+ 1
8: else
9: j ← j + 1

10: end if
11: end while
12: return false

4.7.1 Degree of Penetration of Robot into the Obstacle

Sometimes we may want to allow the robot to touch the obstacle without any impact.

In such cases, it is useful to know how deep the robot would penetrate into the obstacle,

in a given configuration. For this, we consider the number of overlapping pixels in the

robot and obstacle images as a measure of the degree of penetration. For two intervals

[rli, rui) and [olj , ouj), the measure of overlap µij is given by

µij = min(rui, ouj)−max(rli, olj)

and the overall measure of penetration µ is given by

µ =
∑
i,j

µij .

A pseudocode implementing this method is shown in Algorithm 2. Since each interval of

the robot RLE can overlap with at most one interval of the obstacle RLE, the time required

to compute the measure of penetration is O(m+ n), as can be seen from Algorithm 2.
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Algorithm 2 Measure of Penetration using Image RLE

Input: rl, ru, ol, ou,m, n // see the text in Section 4.7 for details.
Output: measure of penetration of the robot into the obstacle
1: i← 0, j ← 0, µ← 0
2: while i < m and j < n do
3: µ = µ+min(rui, ouj)−max(rli, olj)
4: if rui ≤ ouj then
5: i← i+ 1
6: else
7: j ← j + 1
8: end if
9: end while

10: return µ

4.8 Demonstrations on Real Robots

4.8.1 Planar SCARA Robot

We now demonstrate the algorithm for a real robot, an MTAB SCARA 4 DOF arm, in

which two revolute joints move the first two links in a plane, so the motion has two degrees

of freedom. Two more degrees of freedom (at the wrist) are not used in this demonstration,

so the robot is effectively planar. See Figure 4.14. The length of link-1 is 200 mm and

that of link-2 200mm. The range of angles that each link can traverse is -135 to +135

degrees. For precautionary purposes and robot safety, we limit the range to -125 to + 125

degrees in our work.

We observe this robot with an overhead camera at a frame rate of 25 fps. 4000 images

are sampled from a video while the robot is moving between random poses throughout its

workspace. These images form the basic image dataset for our analysis. Background sub-

traction is performed on each image to generate the foreground robot. A visual roadmap

(VRM) is computed using the background subtracted images. Here, we used the Euclidean

metric to find neighbourhoods.
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Figure 4.14: MTAB SCARA robotic arm: (a, b) Two of the 4000 images of the arm. (c)
Scree plot of Isomap suggesting that around 95% of the variance in the data is explained
by 2 dimensions.
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(a)

(b)

(c)

Figure 4.15: Incorporating obstacles. (a) Background subtracted image of the arm. (b)
Image with obstacles. (c) Obstacles after image subtraction.
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Figure 4.16: Path planning for SCARA using Visual Roadmap (VRM). Visual Configura-
tion Space (VCS) discovered by Isomap. The points corresponding to free configurations
are shown in green and the points corresponding to obstacle configurations are shown in
black. An obstacle-free path from a start configuration to a goal configuration, computed
on the VRM embedded on the VCS, is shown in red. Images of SCARA in some of the
configurations pointing to the corresponding points on the VCS are also shown here.

Thereafter, several obstacles are introduced in the workspace and the obstacles are

discovered via background subtraction (4.15). Note that owing to the motion being planar,

a single camera view is quite adequate. Nodes corresponding to the obstacle configurations

on the VCS are removed from the VRM. A planned path is shown in Figure 4.16. Note

that the Isomap computations shown in the figures are only for the purpose of illustration.

The actual path planning does not require Isomap. We only need to compute the VRM,

which is a neighbourhood graph computed using the sampled random images of the robot.

Figure 4.17 shows some images of SCARA executing a path.
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(a)

(b)

(c)

Figure 4.17: Path being executed by SCARA. The last image in (c) is of the same config-
uration as in (b), from a different view.
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4.8.2 CRS A465 robot arm

Here, we have a robot in a 3-D workspace, a 6-DOF CRS A465 robot. Out of its 6 DOFs,

we used only 3. Since the motion is spatial (not restricted to a plane), a single camera

view will not suffice for identifying collision situations. Hence, we construct the VRM

using images from multiple views by stitching together the images coming from all the

cameras for each sampled configuration.

Figure 4.18: VRM for a 6-DOF CRS A465 robot, using images from two cameras. Since
this is a 3-D workspace, obstacles cannot be distinguished from a single view. Here we
use multiple cameras, and the intersection of the cones provides a (conservative) model
for both obstacle and robot. To identify potential collision states, background-subtracted
images of the obstacle (shown in white here) are overlaid on each foreground robot image.
Only if the robot overlaps the obstacle in all the views, it is a potential collision node.
Collision nodes are shown in black.

We compute the neighbourhoods using a Euclidean metric on the stitched images.

Using the foreground obstacle and robot images, we designate a robot state as an obstacle

only if it overlaps the obstacle in all of the camera views. The 3-DOF workspace and a
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path are shown in Figure 4.18, with the obstacle nodes marked in black. We used two

cameras for this demonstration.

4.9 Effect of Noise

Each source of noise would introduce some additional dimensions in the manifold learning

procedure, requiring many more images to be sampled. For example, additional noise

due to illumination changes in case of a 2 DOF robotic arm, would make its configuration

manifold 3 dimensional. In addition to requiring a dense enough image sample of the robot

in various poses, we would then require images under various lighting conditions as well.

While the DOFs of the robot have a direct relation with the robot’s motion, the additional

dimensions due to noise would only make the manifold discovery process harder, without

being useful.

Assuming all the sources of noise can be controlled, the proposed approach can be

used to plan motions for industrial robotic arms which are fixed in a position, where the

environment does not change frequently and the obstacles are introduced rarely. With the

help of external modules like tool-grasping, it can be used in assembly line automation.

The method can also be applied to plan motions for mobile robots to perform various

tasks (with the help of additional modules again) in restricted environments where the

robot is always observable with cameras and obstacles are not frequent.

As and when new technologies like 3D sensing become available, they can be incorpo-

rated into the proposed framework seamlessly to have better noise reduction and better

background removal, thus leading to a reduction in the sample complexity and a qualitative

improvement in the computed paths. In this thesis, we focused mainly on demonstrating

the possibility of using visual manifolds as a fundamentally new construct in cognitive

robotics to address various related problems, rather than worrying about extraneous fac-

tors such as background noise, which are more in the realm of computer vision.
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In the next chapter, we use similar manifold-based computational models to explain

how a cognitive agent such as a human infant might learn the necessary representations

to perform actions in its peripersonal space.



Chapter 5

Manifold Body Schema

In this chapter, we demonstrate the use of the manifold based framework developed in the

previous chapters in modelling things beyond motion planning, in particular how an infant

cognitive agent (e.g., a human infant) might learn to reach objects in its surroundings. A

body schema of a cognitive agent is a representation of its body that allows it to infer the

position and orientation of its limbs relative to its world, and to move and perform actions

in that world. We propose a computational model of body schema based on manifolds.

We suggest how it can be acquired just by observing one’s own body, and how it can

be updated as the body grows. We demonstrate how it could be used for tasks such as

moving to a desired pose, swatting and reaching of objects within peripersonal space,

avoiding obstacles and planning motions in the peripersonal space.

5.1 Introduction

Humans and animals are very good at producing smooth reaches and other movements

from visually presented inputs. The inverse and forward aspects of this problem — i.e.

going from the task space to the actuator space and vice versa — have long been a focus

of interest (Kawato, 1990; Wolpert and Ghahramani, 2000). However, in much of this

73
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work, the task is presented in terms of 3D coordinates, and not in terms of visual inputs

(e.g. an image of the desired goal pose). The few attempts to incorporate a visual map

also work via a set of intermediate workspace coordinates (Öfjäll and Felsberg, 2015). In

this work, we present an approach based on visuomotor babbling; i.e. the input is a set

of images sampled from the motion space, and corresponding actuation parameters (joint

angles). This differs from earlier work in motor babbling in that no workspace coordinates

are needed (Caligiore et al., 2008; Lee, 2011; Rolf, Steil, and Gienger, 2010; Rolf and

Asada, 2013).

5.1.1 Maps as Visuo-Motor manifolds

Another significant difference of the present approach is that it is based on the discovery

of low-dimensional manifolds in the image space. In executing any motor task, the sen-

sory feedback co-varies with the actuator signals, so that the input, output and combined

configurations lie on a low-dimensional subspace of the sensory, motor, or joint spaces.

The number of signals (or dimension Di) in each of these modalities vary, e.g. visual

data may involve O(108) photoreceptors, whereas motor output may involve thousands

of muscle spindle signals. However, if a limb is being moved whose pose can be specified

by fixing d joint angles (its degrees of freedom), then the subspace occupied by either

the images, actuator, or proprioception signals, all lie on a d-manifold embedded in the

high-dimensional sensorimotor space. Thus, the efferent muscle spindle feedback, afferent

corticospinal commands, visual images of the hand, as well as other contingent sensory

information like tactile perception, images of the full arm and body, or hand-only images,

all can be singly or jointly represented on suitable d-dimensional non-linear manifolds.

The parameters on any of these manifolds — even the visual manifold — constitute a set

of generalized coordinates, which can be used to uniquely specify a pose, and hence to

describe a motion. Thus, these manifolds constitute multiple “representations” for senso-

rimotor space (Grush, 2000), and may be considered part of the elusive “body schema”.
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For implementing such a system in a neural substrate, we consider a set of neurons

connected with its nearby nodes in the image space, motor space or some combination of

these spaces. Now, we know that a neuron can be used to compute the local principal

components (PCA) on this neighbourhood (Oja, 1982; Philipona, O’Regan, and Nadal,

2003), which is an approximation of the tangent space at this point on the manifold. This

local basis space then represents a “chart”; the set of all such charts constitute the “atlas”

for the manifold. Both forward and inverse mappings — i.e. from proprioception to what

the arm should look like and target hand images to motor commands — can now be read

off from the same manifold.

We show how such a system may arise in a developing infant, and how it may explain

aspects such as an early motor awareness of her own body, and the ability to reach for

objects in peripersonal space. Newborns less than a month old move the visible arm more

than the one not attended to, and in the dark, they exert themselves to keep it where it is

visible (Meer, 1997). Such actions have been taken to be indicative of the possibility that

the neonate may be learning a map between vision and proprioception, and discover new

possibilities for its motions (Von Hofsten, 2004). When in a darkened room with a beam

of light, the infant attempts to keep the arm in the light and slows down the motion of

the limb when it is about to reach the beam. The phenomenon of motor babbling is well-

documented, and (Thelen, 1979) has noted how new motor patterns arise just as the infant

was gaining postural control over a previous part of the workspace, and reflect “a degree

of functional maturity but as yet incomplete voluntary control.” In this work, we take this

to mean that the developing system has explored most parts of its reachable space. While

some have even argued that such movements may be intentional and prospective (Adolph

and Berger, 2006), we wish to seek the mapping to motor function without entering into

these larger debates.
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5.1.2 An Empiricist View of Body Schema

Foals, calves and other hoofed animal infants can start walking very soon after they are

born (within hours). A newborn monkey baby can hang on to its mother while the mother

jumps from one tree to another tree. These animals have much better innate motor skills

than human babies. In humans, most of the motor skills are learned. We take an empiricist

view to model the body schema of cognitive agents that do not have innate motor skills.

See Figure 5.1.

Empiricist View of Body Schema 

Body Schema 

Images 

Proprioception 

Efferent Copy 

Error Feedback 

Motor Decision 

Goal Configuration 
(Imagined as an image) 

Figure 5.1: An empiricist view of body schema. In the early stages, the agent does not
have good enough visuomotor models to execute a motor task such as reaching an object
in its peripersonal space. Its past visual experience is available in the form of images.
Also available are the proprioceptive signals. In order to reach an object, a goal state is
imagined as an image. When the agent tries to achieve the goal state, a motor decision is
made, of which an efferent copy is retained. The error in the proprioceptive signals of the
actually reached state from those of the desired goal state is fed back for a correction of
the body schema. As the agent gains more and more experience with its own body and
its world, its body schema gets better and better for making motor decisions for desired
actions accurately.

5.2 Image Manifolds

Figure 5.2 shows an agent with a red elliptical body and a single 3 jointed arm, having a

rigid U-shaped hand at the end. The range of angles for each joint is as follows: shoulder

(θ1) : -30 to 130◦; elbow (θ2) : 0 to 170◦; and wrist (θ3): -30 to 60 ◦, so that the motion
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of the arm can hypothetically range over a cube in the joint angle space.

Over the past two decades, abundant evidence has accumulated about the tight inte-

gration of motor and perceptual spaces. (Prinz, 1997; Jordan et al., 2002). However, the

exact mechanics of this integration has not been explicated. There is also a question as

to whether the mapping is a close association that does not participate in the function

directly, or whether the same cells that command the interneurons are also involved in

generating a visual expectation (Gallese and Lakoff, 2005).

Following an idea gathering strength in neuroscience (Ganguli and Sompolinsky, 2012),

we would like to suggest that the infant in the first few weeks of life is actually learning the

integration of these perceptual and motor cues by projecting these onto a low-dimensional

nonlinear manifold. See Figure 5.3. Such an approach is also neurally plausible in that

a neural architecture could be computing non-linear manifolds as combinations of local

tangent spaces computed via PCA using single neurons.

We assume that during babbling, the system has explored most of the area in its reach-

able space. One aspect of the infant repertoire that has not received sufficient attention

is how rapidly she learns to avoid motions that hit its own body. The motion that brings

the hand to the mouth is often well developed before parturition, but knowledge of its

body continues to mature. Anecdotal evidence suggests that many parents are mortified

when their newborn repeatedly pokes her own eyes. However, this behaviour disappears

within a couple of days.

Thus, in our little body+limb system, many of the possible motions self-intersect with

its body, so like the newborn, our system quickly learns to rule out this part of its motion

space, while paying particular attention to poses on the boundary, where it is touching

its own body, carrying food to the mouth or items in front of its eyes etc. This region of

self-intersection is indicated in Figure 5.2 with gray points.

One question that arises in any visuomotor task is what part of the arm to attend

to. For most tasks, the hand is the part that will be interacting with the object; however
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(a) (b)

(c) (d)

Figure 5.2: Overview example. (a) A simulated agent with a red elliptical body and an
arm with 3 joints moving in the horizontal plane. Also shown is a white ball that the
agent intends to reach. (b) The 3D manifold of the actuator parameters (joint angles),
obtained by a random projection of the three joint angles into a 1000 dimensional space
and then applying Isomap on the result. Colour coding is as follows: (increasing values)
Red: θ1, Green: θ2, and Blue: θ3. (c) Same manifold after learning the contours of its
own body; grey points are self-intersecting poses of the arm, which are removed from the
model. (d) Trajectory followed by the agent to swat the white ball.

in certain tasks, (e.g. in Figure 5.9 narrow gap), the whole body can be important. We

suggest that the system maintains multiple representations so that it can adapt to different

types of reasoning.

In this work, we focus on the following manifolds:
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Joint Manifold 

Proprioception 
(dim: 5000) 

Σ 

Tangent 
Space 
Atlas 

 (dim: 3) 

Body Schema as a 
Joint Manifold 

Hand images (dim: 106)  Random  
Projections (RP) 
(dim:103) 

RPa 

RPθ 

(dim: 3) 

Local PCA:  
Sensorimotor 

Charts 

Arm + body images  
(dim: 106) 

Motor efferent copy 
(dim=5000) 

RPm 

RPh 

Figure 5.3: Body schema as a joint manifold : Multiple inputs — two visual feedbacks
attending to only the hand and the whole arm, proprioception, and motor efferent copy,
each signal with differing dimensions Di — are all projected onto the same number of
neurons, (say Drp) by a set of random synaptic weights (each RP matrix is Di × Drp,
with Drp << Di). The joint manifold on which each of these data lies has the intrinsic
dimension equalling the degrees of freedom d of the system (for the right arm up to
the wrist, d = 3; other values of Di are suggestive only). Though this joint manifold
is non-linear, local tangent spaces are computed all over the manifold, using neuronal
computation for PCA. This joint manifold serves to integrate the different sensory and
motor modalities for moving the arm. To plan an action, the model is queried with the
desired pose (image) of the hand (or arm). Interpolating on the relevant tangent space
chart of the manifold (e.g. k-nearest neighbours), then returns the motor signals. It also
generates a set of expectations for proprioception, and visual feedback, without which
rapid task feedback would not be possible. Several such d-dimensional manifolds, with
differing emphases (weights) for each of the modalities, may be maintained in motor and
sensory areas.

• Hand only : Here the manifold is constructed from images that have only the hand,

and ignore the rest of the arm.

• Full arm : Images show the full arm and the body.

• Actuator parameters : Based on the joint angle data.

• Combined maps - joint manifolds: Combines these input data, by computing the

local neighbourhood based on either (a) random projections of the different datasets
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to the same uniform lower dimension (Ganguli and Sompolinsky, 2012), or (b) by

combining the metrics used in the three spaces into a single metric. We can give

different weightings to reflect different emphasis on the three types of input.

Figures 5.4 and 5.5 illustrate these different manifolds.

Figure 5.4: Image space for just the hand, and its manifold : a) Four hand images along
with a ball. b) Resulting manifold with a target dimension d=2. We observe that each
image is very high-dimensional (e.g. D = 108 in the retina, and D = 106 in the optic
nerve), but randomly assigning colours to the D pixels will almost never create an image
of a hand - so the hand-images subspace is a vanishingly small subspace. If the hand is
attached to an arm with d joint angles, then it needs only d parameters to fully specify its
pose in space (in these images, d = 3, corresponding to the angles shown in each image).
Thus, the hand image subspace has an intrinsic dimensionality of d, which represents
the number of ways in which the image can be altered while remaining an image of this
hand. In this particular manifold, almost the entire variability is explained by the first
two dimensions (roughly, x and y), so the manifold shown here is for target dimension
d = 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Manifolds from full-arm and hand images, and joint manifold. The first column
shows 3-manifolds (target dimension d = 3) and the second column shows corresponding
2-manifolds (target dimension d=2) of images: (a, b) full-arm, (c, d) just the hand and (e,
f) joint manifold. Joint manifold in (e, f) combines full arm + hand + actuator parameters.
The 3-manifold for just the angle space was shown earlier in Figure 5.2. The grey regions
correspond to the poses of self-intersection.
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The manifolds shown here have been computed using the Isomap algorithm (Tenen-

baum, De Silva, and Langford, 2000). The system uses the Hausdorff distance (Hut-

tenlocher, Klanderman, and Rucklidge, 1993) to compute the distance between any two

images. Given two sets of points A and B, Hausdorff distance dH(A,B) is defined as

dH(A,B) = max

{
sup
a∈A

inf
b∈B

dE(a, b), sup
b∈B

inf
a∈A

dE(a, b)

}
,

where dE(a, b) is the Euclidean distance between a and b.

Since iterating over all the points in the images is expensive, here we approximate this

distance over a set of high-contrast points (Shi and Tomasi, 1994). For the angles, we use

the L2 (Euclidean) metric. The Isomap algorithm then computes the nearest neighbour for

every point using this metric and constructs a graph by joining these neighbourhoods. It

then finds an approximate geodesic distance between any two points and maps the entire

set of distances to a lower dimension using Multi-Dimensional Scaling (MDS). Though

other manifold learning approaches also work and generate similar maps, we find Isomap

less deforming at the corners, possibly owing to its preserving the geodesic distances. As

mentioned earlier, neural structures may be simulating this construct via a series of PCA

computations (Oja, 1982). The results in Figure 5.2 and 5.5 are based on 20,000 samples,

of which a little more than a fourth are rejected since they self-intersect with the body.

Even with fewer points (say 2,000), the manifold is well-defined, but it looks more patchy.

We note that as the infant is throwing its arms about, the efferent motor commands,

the afferent proprioception, and the resulting image of hand or arm, are each of them

extremely high dimensional. Let us consider a system based on just the hand so that each

input image shows just the hand, and nothing else. A set of such images are shown in

Figure 5.4. Each image is 500×470 pixels = 235,000 dimensions. However, if we randomly

assign colours to each pixel, the resulting image will almost never be an image of this

agent’s hand. At the same time, the image space is continuous, since arbitrarily small

actuations result in arbitrarily small changes in the image. Also, to change the image
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so that it remains within the subspace of robot images, at any point, we can do it only

along d basis directions – the tangent space at this point. Thus, these high-dimensional

inputs lie along a subspace whose local dimensionality everywhere is d. However, these

local spaces would typically not be parallel to each other, so that the overall manifold is

curved (non-linear).

Furthermore, we observe that if each of these inputs projects separately to different d-

manifolds, then there would exist a one-to-one correspondence between the corresponding

points on each of these manifolds and their neighbourhoods. This is, in fact, the defi-

nition of homeomorphism, the key requirement for data to constitute a manifold. Thus,

these separate inputs are homeomorphic to each other, and they can also be mapped

onto a single “joint” manifold (Davenport et al., 2009). Also, the coordinates along each

manifold specify a unique pose of the arm, so these coordinates constitute generalized co-

ordinates (Mussa-Ivaldi, 1995), which can be used not only in kinematics as demonstrated

here but also in dynamics.

5.2.1 Joint Manifold via Metric Combination

If our manifold discovery process can work with local distances, it is possible to obtain

a projection for multiple datasets by combining their metrics. Thus, a metric combining

our three datasets, as shown in fig: 5.5c can be obtained as djoint = αdfull−arm+βdhand+

γdangle. Results for α = β = γ = 1 are shown in Figure 5.5(c). Another approach

to constructing a joint manifold would be to use random projections to map the data

directly to the same intermediate dimension.

5.2.2 Using the Joint Manifold as Body Schema

Through the formulation of this joint manifold, the infant learns a combined map for visual

poses and actuator/proprioception parameters. Since the graph underlying the manifold

already connects any two nodes via local neighbours, it can also plan paths on the graph
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that would reach a desired object. Over time, it can also learn to overlay the location of

objects in this space with the arm poses and try to allow it to reach around obstacles.

Eventually, some salient parts of this sensorimotor space (e.g. the nose) can begin to

acquire symbolic connotations as shown in Figure 5.6.
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(a) (b)

(c)

Figure 5.6: Mapping of body parts on the manifold. (a, b) Two images of an agent with
a 2-DOF arm and an elliptical body with its nose and cheeks marked with small white
regions on the body. (c) The 2-D manifold of this agent’s images. Here, we show that the
points on the manifold correspond to the different poses of the agent. The light blue region
corresponds to poses where the arm does not intersect with the body and the grey region
corresponds to poses where the arm intersects with the body. The boundary between
these two regions makes up the boundary of the agent’s body. Points corresponding to
poses with joint angle θ1 ≈ 0 are marked in blue, poses with θ2 ≈ 0 are marked in orange
and the points corresponding to the poses where the hand touches the nose are marked in
magenta.
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5.3 Learning to Reach

Having constructed the manifold as described above, we now illustrate how one may learn

to reach using this map. Here we assume that the body dimensions are changing relatively

slowly compared to the learning period, so the body is considered fixed. We shall later

elaborate on the question of transferring this knowledge to a growing body.

Reaching objects involves planning motions from the current pose to a target pose

in which the hand can touch or hold the object. For purposes of motion planning, we

consider a neighbourhood graph embedded on the body schema manifold. This graph is

the visual roadmap (VRM) discussed in the earlier chapters.

Let us say the agent’s arm is in a given pose, and the agent wishes to move it to a

new pose, which may be known as a desired hand image (it could also be a full arm or

a set of angles). We now find its nearest neighbours on the entire set of hand images

and interpolate in the local tangent space to construct a neighbourhood for this desired

reach position. Then we can solve for a geodesic (shortest curve along the manifold) on

any of the representations to obtain a path. The geodesic is approximated as the shortest

path on the graph for that particular manifold. Interestingly, the paths are different for

differing encodings (Figure 5.7), thus the hand-only manifold results in a motion that is

more rectilinear in the task space, whereas the angle-based manifold results in a more

convoluted path (Danziger and Mussa-Ivaldi, 2012).

For an infant learning to reach, the paths will initially result in a swatting motion

because her velocity control is poor, and also because the sampling of the motion space is

not very good. Swatting gets better as the agent gains more and more visual experience

with its own body. This is illustrated in Figure 5.8.

When obstacles are introduced as in Figure 5.9, we identify the full arm poses that

overlap the obstacle in the image space, and remove them from the graph. The remaining

nodes in the free-space are used to compute the path.
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(a) (b)

(c) (d)

(e)

Figure 5.7: Paths computed on different manifolds: Paths between same source and des-
tination, computed on different manifolds: (a) blue - actuator parameter manifold (b)
magenta - manifold of corners of just the hand; (c) cyan - manifold of corners of the full
arm; (d) yellow - joint manifold of angles + hand corners + full arm corners. (e) Paths
superposed on a 2-manifold of actuator parameters.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Swatting getting better with experience. Column 1: Graphs used for motion
planning. Number of nodes = 100, 1000, 10000 in the graphs of (a, c, e) respectively. Each
node in the graph represents a random pose of the agent that it has visually observed; so,
more nodes implies more visual experience. Column 2: Trajectories followed by the agent
in the workspace to swat the object. Figures (b, d, f) are the paths computed using the
graphs of (a, c, e) respectively. It can be seen that the motion gets smoother with more
experience (i.e., more nodes in the graph).
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(a) (b)

Figure 5.9: Obstacle avoidance and object reaching : (a) Path followed to reach an object
thorough a small gap. (b) Path followed to reach an object inside a box. These paths
were computed on the graphs embedded on the full-arm image manifold.

5.4 Growing Body

So far we have considered the body dimensions to be fixed. But how does the knowledge

learned with a smaller body size translate to the situation where the body has grown

larger? We now consider such changes in the body schema that was learned earlier. We

note that since the body growth is fairly gradual, it should be possible to incrementally

update the body schema at regular intervals, as the agent gains more and more experience

with its own body and with its environment.

We consider the task of finding a path such that the agent’s hand would reach the

mouth area from a random pose. We use the body schema learned at an earlier age, t1

(Figure 5.10, row 1), and consider using it to execute such a path with a grown body at

a later age t2 (Figure 5.10, row 2). Note that we do not reconstruct the body schema

(roadmap graph) for the dimensions of t2; we use the earlier roadmap and measure how
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 5.10: Growing robot : Row 1: Path between a pair of poses of a robot in its
infancy (time t1) using (a) joint angle distance (b) track distance on full arm images (c)
track distance on just the gripper images. Track distance between two configurations is
computed as the L2 distance between the vectors obtained by concatenating all the corner
point coordinates of each link. Here the arm is moving from a random pose to reach the
mouth area through a window (gap in the red bar) in its workspace. Row 2: Same paths
for the same robot after some growth (time t2). Row 3: (g, h) Obstacle region marked on
the manifold and in the angle space: yellow - common obstacle area at the two ages; red -
obstacle for just the infant robot; blue - obstacle for just the bigger robot. (i, j) Gripper
workspace at infancy (t1) and after some growth (t2).

effective it is by looking at the collisions it may cause. From t1 to t2, arm width, arm length,

and body size were grown non-uniformly, by factors of 1.1, 1.2, and 1.15 respectively, to

reflect the greater growth in limb lengths.
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We investigated the adaptation to larger changes in body dimensions as follows. We

considered the agent at three different ages: t1, t2 and t3. The same growth ratios were

used from t2 to t3, as from t1 to t2. Based on the body schema (roadmap graph) at

age t1, we obtain the roadmaps G′, G′′, and G′′′ for ages t1, t2 and t3 by removing nodes

where the images overlap with the obstacles shown (fig. 5.10 rows 1,2). In simulation we

looked at the number of bad edges (edges between safe nodes, but lead to collision with

obstacles when followed) in G′, G′′ and G′′′ and noticed that G′ and G′′ did not have any

bad edges while around 25% of the edges in G′′′ were bad. This suggests that the body

schema computed at age t1 could be used without much trouble at age t2 , but needs to

be updated before t3. Such updates involve updating the local neighbourhood graph to

account for collisions; this can be done based on the bad edges (unexpected, and therefore

informative) that lead to collisions.

5.5 Conclusion

In this chapter, we considered the problem of limb motion, and attempted to construct

a visuomotor map that constitutes an implicit model of the organism’s “personal space”.

The approach presented improves on earlier models by constructing a map directly from

the image space onto actuator parameters, but even more significantly, the manifold pro-

vides a mechanism for feed-forward (open loop) modelling of actuator parameters from

visual poses and also for imagining the arm pose for a putative actuator configuration.

Such a sensorimotor map then constitutes a tight coupling of the image, proprioception,

and motor actuation spaces.

Once such a manifold has been constructed, it is possible to imbue some parts of it

with other relations (e.g. the part of the body that is the “mouth”, “eyes”, “nose”, ‘right”,

“left” etc.). Another capability demonstrated is the ability to mark stable objects in the

workspace as occupying a given part of the manifold. For example, if the limb is being
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used to type, then letters on a keyboard that are constantly being pressed in the same

pose would map to those parts of each manifold, and would also be associated with the

appropriate tactile feedback. This clearly suggests how such a model can make a start

towards symbolic representations that are embedded on this personal space.

Such a map also generates a very compact representation in terms of a set of d param-

eters (equal to the number of degrees of freedom). Thus, this representation constitutes

a generalized coordinate — any assignment of values to it specifies a unique pose of the

arm. However, the process by which these coordinates are obtained is unstable, and hence

these may not be as useful. But, they could still be there perhaps as an implicit or

“subconscious” aspect of our computational infant.

Also, the model is constantly being updated — though this is computationally prob-

lematic with manifold learning approaches like Isomap — the tangent-space charts can

easily accommodate changes and new data. Thus, as the organism grows, or it picks up a

stick, the relations between the poses can change subtly.

One question that we have not addressed here, but one that is of interest, involves

redundancy in most biological limbs. Surprisingly, in general, this is not a problem for

this approach, since given a set of full-arm images and joint angles, it is still possible to

create the image manifold and also the joint manifold. If given a target pose in terms of

the full-arm image, everything above would still work. However, for a pose given only in

terms of the hand pose, there are clearly multiple solutions.

An important ramification of this process would be that such a representation, after

continued daily use, may lead to many kinds of generalization leading to an internal model

for space itself, as hinted at by many others, e.g. (Thelen, 2000). A measure of distance can

now be constructed in terms of the change required to reach other poses. By generalizing

over similar experiences, one may form notions of space such as direction, dimensionality,

curvature, a hierarchical scale structure, and many other aspects relevant to space based

on the action-perception pairings. By identifying the configurations that reach various
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parts of the workspace, the system is also constructing a model for space itself. This is

a powerful argument and a possibility that such a computational model can be used to

demonstrate.

What we have presented here is just an initial step. The basic idea of discovering

patterns from the lower-dimensional mapping of visual images is actually more general,

and can also be used for locomotion; as one moves, the images change in a certain co-

varying manner and can be learned in a similar manner. We hope that this initial work

will open up these and many other questions which can be addressed using these tools.





Chapter 6

Head Motion Animation on

Motion Manifolds

Animation plays a key role in adding realism to any graphical environment. In this chapter,

we present a technique for animating avatars in a virtual environment designed to support

remote collaboration between distributed work teams in which users are represented by

avatars. There will be long periods of time when the user is not actively controlling the

avatar and working on his official task. We need to animate his avatar with a ‘working-at-

desk’ animation that should be non-looping and sufficiently random for a single avatar as

well as between multiple avatars to appear realistic. We present a technique for generating

multiple head motions using the gaze space images to control the avatar motion. Our tech-

nique can automatically generate long sequences of motion without any user intervention.

We present results from synthetic data.

6.1 Introduction

Motion image sequences with m×m images and t frames may be thought of as points in

an m2t dimensional space. Animation is difficult, time-consuming and laborious because

95
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it involves a search in this extremely high-dimensional space.

However, only an infinitesimally small set of points in the high-dimensional animation

space are interesting motions that graphics systems need to care about. In recent years,

this insight has led to a number of approaches based on dimensionality reduction for

specifying animations of complex characters.

For example, (Treuille, Lee, and Popovic, 2007) decomposes the action space into a

set of bases which can then be used to compose the very high dimensional motions of a

stick figure changing gaits and avoiding obstacles. (Kovar and Gleicher, 2004) provides

a way to generate new motions by blending clips from a space of motions parameterized

by a continuous parameter. A survey touching on these approaches may be found in

(Moeslund, Hilton, and Kruger, 2006). We address this body of work in more detail in

section 6.2 below.

In this chapter, we present an approach motivated by mapping the motion in a low-

dimensional manifold. The two key innovations of this work are that (a) the motion is

specified in terms of the avatar’s gaze, defined in terms of objects in the environment

(e.g. “look from the screen to the mouse”), and (b) although the computation inherently

assumes the presence of a low-dimensional manifold for the motion, we are agnostic to the

actual low-dimensional parameters, which are never computed.

Consider the following problem. A number of users log in every day to a virtual

environment designed to support collaboration between distributed work teams. An avatar

at a virtual workstation represents a user who could be physically at an office, home or

other location. Avatars are animated depending on the activity the user is engaged in,

for example, text chat, navigation or a virtual meeting. However, there could be long

periods of time when a user is working alone. To depict this, the user’s avatar needs to

be animated with a non-repetitive and sufficiently random ‘working-at-desk’ animation.

Further, to appear realistic and natural, each avatar should be animated with a unique

motion. Thus we need to generate multiple long sequences of animation in which an avatar
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Figure 6.1: Some example images of an avatar (first row) and the corresponding images
in the gaze space (second row).

could be reading a document, typing, thinking and so on.

In order to create meaningful head motions for the required animation, we use the

gaze space of the avatar in the virtual environment. Gaze space images are created as

first-person camera views when the avatar moves only his head. Here we use the term

gaze to indicate the direction the head is looking at; we do not actively consider eyeball

motion. Figure 6.1 shows some example images of an avatar and the corresponding images

in the gaze space.

We identify clusters of images in the gaze space based on the object that can be seen

in them such as a screen, keyboard, coffee cup, etc. Each cluster is assigned a probability

of occurrence based on its size. For example, screen images are expected to be largest in

number as the user would be looking at his computer’s screen most of the time. Long head

animation sequences can then be generated automatically by choosing different source and

destination images from various clusters based on their assigned probabilities.

The rest of the chapter is organized as follows. We discuss previous work in section 6.2.

Our technique is described in section 6.3 followed by some results in section 6.4 and finally

we conclude in section 6.5.

6.2 Previous Work

Many techniques for blending motions have been proposed. Motion graphs (Kovar, Gle-

icher, and Pighin, 2002) provide a mechanism to blend multiple motion capture sequences
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in different ways to create new animations. However, motion capture is not only expensive

but also not suitable for the kind of motion sequences we need, as capturing motions with

props such as chairs, tables and computers is hard. Further, the same captured motion

will play for all avatars even if the order of blending is varied. (Kovar and Gleicher, 2004)

allows users to specify a motion parameterization function, such as the position of the

hand, speed or curvature of walk, and then searches and blends from a database of motion

capture clips. The manual effort required to create new motions makes it hard to use this

technique for our requirement of multiple long sequences.

Graph techniques for interactively controlling characters in video games and virtual

environments have been proposed in (Shin and Oh, 2006), (McCann and Pollard, 2007) and

(Lee and Lee, 2004). While these blend short motion fragments instead of long sequences,

the basic assumption is that the character is controlled by a user at runtime whereas we

need the animation to run when the user is not controlling the avatar.

The ‘working-at-desk’ animation is similar to an idle motion in the requirements of

non-repetitiveness and uniqueness. (Egges, Visser, and Magnenat-Thalmann, 2004) uses

motion capture data of humans standing in different postures. Principal component rep-

resentation of each key frame is extracted and variations in pose are created by Perlin

noise functions. Finally, key frames are blended together to create the animation. This

approach automatically generates animations which are non-repetitive but are personal-

ized for the person whose motion was captured. Also, as stated earlier, motion capture is

difficult with props.

6.3 Our Approach

In this section, we describe our approach towards generating realistic random head motions

of avatars. Starting from a set of images of the avatar in various head poses, we first

construct a k-nearest neighbours (k-NN) graph as described in section 6.3.1. Using this
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k-NN graph, we can animate the avatar from one head pose to another head pose as

described in section 6.3.2. In order to generate meaningful head motions, we identify

some semantic categories in the input images and tag some of the input images with

these categories as described in section 6.3.3. To make the animations look realistic, we

then learn a probability distribution over the set of semantic categories as described in

section 6.3.4.

6.3.1 Constructing k-Nearest Neighbours Graph

Here, we describe a method to build a representation that will be used later to generate

animations. The input to this method is a set of images of the avatar in various head

poses. Considering each image to be a grid of pixel intensities of say r rows, c columns

and 3 channels (RGB), we will treat each r × c image as a point in R3rc (i.e., a 3 ∗ r ∗ c

dimensional Euclidean space) by concatenating all 3rc pixel values into a vector. The

distance between two images is the Euclidean distance between the corresponding points

in R3rc. Algorithm 3 describes the steps to construct the k-nearest neighbours graph,

which will be used later to generate animations.

Algorithm 3 Constructing k-Nearest Neighbours Graph

Input: A set X = {x(1), x(2), . . . x(n)} of n points (flattened image vectors), and a neigh-
bourhood size parameter k.

Output: A k-NN graph G
1: Compute the distance matrix Dn×n where Di,j is the Euclidean distance between x(i)

and x(j).
2: Using D, compute the k nearest neighbours of each point.
3: Construct a graph G with n vertices {v(1), v(2), . . . , v(n)}, so that each vertex v(i)

corresponds to an input image x(i). Add an edge between two vertices v(i) and v(j) if
x(i) is one of the k-nearest neighbours of x(j) or vice versa. Label the edge (v(i), v(j))
with Di,j .

4: Output G.

Constructing the k-NN graph is a one-time process for a given set of images.
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6.3.2 Animating between Head Poses

In the nearest neighbours graph G, each vertex corresponds to an input image. Once such

a graph is constructed, in order to generate an animation from one head pose to another

head pose of the input image set, we compute the shortest path between the corresponding

vertices in G and animate the images corresponding to the vertices on the computed path.

Figure 6.2 shows the 2D embedding of the images of the avatar shown in Figure 6.1,

using the Isomap algorithm (Tenenbaum, De Silva, and Langford, 2000). The 2D embed-

ding is shown in the form of a k-NN graph computed using the distances between image

pairs in the avatar image set. Even though the actual 2D embedding is never computed

explicitly in our method, we show it here for the purposes of visualization. Also shown is

an example animation from a source pose to a destination pose in the form of a path in

the k-NN graph between the corresponding source and destination vertices.

Figure 6.2: Head animation sequence shown as a path on a part of the 2-dimensional
embedding of the avatar image manifold computed by Isomap.

Figure 6.3 shows two animations of the avatar between two different pairs of poses.

It can be seen that near the intersection of paths images on the two paths look similar

because the Isomap embedding preserves distances.
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Figure 6.3: Head animation sequences between two different pairs of source and destination
poses, shown as intersecting paths on a part of the 2-dimensional embedding of the avatar
image manifold computed by Isomap. We can observe similar faces near the intersection
of paths, indicating that near-by points on the manifold correspond to similar poses.

6.3.3 Adding Semantics to Images

In order to be able to associate some meaning with motions, we wish to specify the source

and destination poses of an animation in terms of what the avatar/person in the image

is looking at. For example, in the case of an avatar sitting in front of a computer desk

in a virtual office, we could identify some objects like keyboard, screen, mouse, etc. These

objects act as semantic categories to indicate what the avatar is looking at in a given

image. We use these objects to specify the source and destination poses for an animation.

Table 6.1 shows an example list of semantic categories along with some exemplars for each

category for an avatar in a virtual office. Here exemplars are given in terms of the image

file names from the input data set.

Once such a list of semantic categories along with some exemplars is available, we

can specify the source and destination of an animation in terms of these categories. For
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Table 6.1: An example list of semantic categories along with some exemplars for each
category

Semantic
Category

Exemplars (Image file names in the input data set)

Mouse 0082.jpg, 0095.jpg, 0098.jpg, 0111.jpg, 0117.jpg, 0131.jpg, 0138.jpg

Keyboard 0006.jpg, 0011.jpg, 0016.jpg, 0025.jpg, 0059.jpg, 0075.jpg, 0076.jpg

Screen 0012.jpg, 0018.jpg, 0021.jpg, 0027.jpg, 0039.jpg, 0054.jpg, 0058.jpg

Pen 0206.jpg, 0215.jpg, 0192.jpg, 0220.jpg, 0221.jpg, 0244.jpg, 0251.jpg

Wall 0189.jpg, 0208.jpg, 0214.jpg, 0246.jpg, 0306.jpg, 0316.jpg, 0319.jpg

Floor 0197.jpg, 0485.jpg, 0490.jpg, 0331.jpg, 0332.jpg, 0333.jpg, 0574.jpg

Space 0009.jpg, 0557.jpg, 0562.jpg, 0565.jpg, 1255.jpg, 1303.jpg, 1320.jpg

example, we can have the avatar animate from a pose in which it is looking at the screen

to a pose in which it is looking at the keyboard. Given a pair of source and destination

objects, we can randomly choose one of the images from the exemplars of the source object

and one from the exemplars of the destination object and generate an animation between

these two images. We can extend this ability to generate animations for an arbitrarily

long sequence of objects. For example, we can have the avatar animated according to the

following sequence: screen-screen-keyboard-screen-mouse-screen-screen-keyboard-screen.

6.3.4 Generating Realistic Head Motions

In this section, we address the problem of generating head motions of avatars which

are close to the movements of a real person. Towards this end, we learn a probability

distribution, over the set of semantic categories, that tells how often a person/avatar

looks at each of the objects in the environment. Algorithm 4 describes the steps involved

in learning such a probability distribution.

6.4 Results

We applied the algorithms described in section 6.3 on a set of images of an avatar sit-

ting near a computer desk in a virtual environment. We have used a set of around 4500
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Algorithm 4 Learning Probabilities of Semantic Categories

Input: A set X of n images, a set S of semantic categories along with some exemplars
under each category. Let the set of all exemplars under all semantic categories be E.

Output: A probability distribution P over S.
1: for each image x ∈ X do
2: if x /∈ E then
3: Assign to x the category which is most frequent among its k nearest neighbours

in E.
4: end if
5: end for
6: for each semantic category s ∈ S do
7: P (s) = (Number of images categorized as s) / n
8: end for
9: Output P .

images of the avatar and the same number of images in the gaze space. The semantic

categories listed in Table 6.1 along with the avatar images were used to learn the proba-

bility distribution shown in Table 6.2 using Algorithm 4. This probability distribution was

used to generate random sequences of objects using which animations can be generated

as described in section 6.3.4.

Table 6.2: A probability distribution over the semantic categories.

Semantic Category Probability of the Category

Mouse 0.033011

Keyboard 0.204710

Screen 0.454308

Pen 0.076288

Wall 0.189815

Floor 0.038245

Space 0.003623

Figure 6.4 shows the result of animating the avatar from a pose in which it is looking

at the screen to a pose in which it is looking at the keyboard and then back to looking

at the screen. As the head of the avatar moves from one pose to another, what it would

look at also changes. The corresponding changes in gaze space are shown in the figure

immediately below each avatar head pose in the motion sequence.
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Figure 6.4: Sequence of images in a screen-keyboard-screen animation of the avatar along
with the changes in the gaze space. Animation frames proceed from left-to-right and top-
to-bottom. There are 24 frames in this motion. Each pair of consecutive rows, starting
from the first row, shows 8 frames from avatar’s head animation and the corresponding 8
frames from the gaze space, respectively.

Similarly, we can generate arbitrarily long sequences of objects of gaze and generate

animations through these object sequences using the methods described before.

6.5 Conclusion

We have described a method towards generating realistic random motion based on a set

of images of the agent to be animated, and applied it on a set of images of an avatar

sitting near a computer desk in a virtual environment. With a fairly simple algorithm, we

were able to see some good results. These results can be further improved by using better

models for motion probabilities. For example, in this work, we have only considered state

probabilities of gaze; we could extend it to consider transition probabilities, in which case

along with the probabilities of looking at an object, we will also have the probabilities of
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visually reaching a particular object (next state), given the current object of gaze (current

state). Also in our work, we have taken constant velocity between all pairs of objects.

Having different velocities between different pairs of objects, based on the importance

of objects in the environment, will be preferable. We believe that these extensions will

significantly improve the results.





Chapter 7

Discussion and Conclusion

In this work, we have introduced a new approach towards the longstanding perceptual

robotics problem, which subsumes the problem of body schema learning (Poincaré, 1895;

Philipona et al., 2003; Hoffmann et al., 2010). We consider the problem of a robot infant,

and attempt to discover its sensorimotor map in a manner that draws upon some aspects

of human infant cognition.

Although it has been long known that there may be many kinds of generalized coordi-

nates (GC), so far there have been few attempts in robotics to build on this intuition. The

proposed paradigm attempts to develop such a non-traditional GC, and approximates the

C-space that results from it in terms of a neighbourhood graph on a set of images. We show

that under some assumptions, an implicit learning system may be able to learn a mapping

from the visuomotor space onto a joint manifold which encodes the degrees of freedom

available to the system as a set of visual generalized coordinates (VGC). This sensorimotor

map or i-representation is an alternative, consistent, symbolic space and is as compact as

the traditional e-representations. We established some simple theoretical results for why

such a system should work, and validated our approach with several demonstrations, in all

of which we are able to learn an i-representation and execute motions in the space without

invoking any kind of knowledge about the robot geometry, its kinematics, its dimensions,
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or the geometry of the obstacle.

Unlike in methods used in robotics today, the visual configuration space (VCS) ap-

proach eliminates several expensive aspects of robot modelling and planning. First, it

does not require a human expert to create models for robot geometry or kinematics. It

does not require precise obstacle shapes and poses, and does not require to calibrate the

cameras so that this can be done. There is no need for a precise simulator to test which

poses collide with obstacles and which do not. The main benefit of this approach is that it

discovers the motor self-structure and is able to construct obstacle maps on the VCS via

visual overlap alone. For the purposes of obstacle avoidance, one may construct a Visual

Roadmap from the local neighbourhoods on the manifold. Given an obstacle, putative

collision poses (the images where the robot overlaps the obstacle) can be removed, and

motion planning performed on the remaining free space. Even the local planner step,

based on tracking image points to nearby images, results in a more principled approach

than is available presently.

This representation now allows the identification of objects in the workspace via visual

overlap. If the object is to be reached by a given part of the robot, poses for this can be

identified by overlapping the obstacle image with a series of robot images.

Another advantage is for environments that are changing rapidly, e.g. in interaction

with humans or other robots. New obstacles are updated in O(n) time, but small motions

by another agent require O(m), where there are m nodes near the obstacle boundary.

Additional obstacles or moving obstacles can be handled with incremental computation.

The idea of generalized coordinates originated in Lagrangian dynamics, and here is

another direction that needs to be pursued. Differentiating the GC would result in gener-

alized velocities and accelerations and this may give rise to a visual dynamics, when the

same principles are applied on visual generalized coordinates. However, there are some

significant trade-offs. First, the approach is not complete because the obstacle approxi-

mation is conservative, and there may exist paths which it cannot find. We observe that
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humans also face similar constraints where vision is less informative. Secondly, it is ap-

plicable only to those situations where the entire C-Space is visible. Another constraint

is the visual distinguishability assumption, but this may not be very serious in practice.

As presented here, the algorithm requires that all robot pose images be stored, which can

be done more efficiently via standard image compression techniques such as run length

encoding.

The approach presented is only a beginning for discovering generalized coordinates

from sensorimotor data. One of the key future steps would be to fuse modalities other

than vision into a joint manifold. Thus, if we were to construct a fused visuomotor

manifold, then even if poses that are separated in motion space look similar, they would

remain distinguishable. Similarly, touch stimuli could be modelled to predict the result of

motions or in preparation for fine-motor tasks. Such a process would also make the model

more robust against noise arising in any single modality. On the whole, while the ideas

presented seem promising, and open up many possibilities, much work remains to deploy

VGC fully in theory and in practice.

An important ramification of this process would be that such a representation, after

repeated application in diverse situations, may lead to a generalization which may be

considered to be an internal representation of space itself. Such a role for sensorimotor

development has been suggested by many, for example, (Thelen, 2000). As an example,

given a base pose for the robot, distant parts of the space are to be reached with a greater

change in the manifold parameters (generalized coordinates). Two locations may be close

if they can be reached with similar configurations. By generalizing over a large set of such

experiences, one may acquire spatial concepts, such as its dimensionality, a hierarchical

scale structure, and many other aspects based on the action-perception pairings. By

identifying the configurations that reach various parts of the workspace, the system is also

constructing a model for space itself.

What we have presented here is just an initial step. The basic idea of discovering
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patterns from the lower-dimensional mapping of visual images is actually more general,

and can also be used for learning other regularities, as in learning the laws of Physics, or

for handling self-motions of the eyes, based on the image space alone. These and many

other matters related to this approach remain to be explored.



Appendix A

Metric Spaces and Topology

Recall that R is the real line and R2 is the Euclidean plane.

Definition A.1. A nonempty set A ⊆ R is an open set in R if ∀x ∈ A,∃r > 0 : (x− r, x+

r) ⊆ A.

Example A.1. Following are some examples of open sets in R.

1. The empty set φ is open in R, vacuously.

2. R is open in R. For every x ∈ R, we can take any r > 0 to have (x− r, x+ r) ⊆ R.

3. All open intervals are open sets in R.

Let A = (a, b), x ∈ A and let r1 = x− a, r2 = b− x. If we choose r = min(r1, r2)/2,

then (x−r, x+r) ⊆ (a, b). Such an r can be chosen for all x ∈ (a, b), hence A = (a, b)

is open in R. See figure A.1.

Open Intervals are Open Sets 

) 
b a 

ℝ: Real line r1 r2 
( 

x 
r r 

Figure A.1: Open interval (a, b) is an open set in R

4. Unions of open intervals are open sets in R.

Let {Ai, A2, . . . , An} be a collection of open intervals in R and A =
n⋃
i=1

Ai. Then for
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every x ∈ A,∃i : x ∈ Ai and an r > 0 can be found such that (x− r, x+ r) ⊆ Ai, as

was done in the previous example.

5. Arbitrary union of open sets is open in R.

6. Finite intersection of open sets is open in R.

Let A1, A2 be open sets in R. If x ∈ A1 ∩A2, then x ∈ A1 and x ∈ A2 and since A1,

A2 are open, ∃r > 0 : (x − r, x + r) ⊆ A1 ∧ (x − r, x + r) ⊆ A2, which implies that

(x− r, x+ r) ⊆ A1 ∩A2 and hence A1 ∩A2 is open.

Definition A.2. Let X be a set. A collection T ⊆ P(X) is a topology on X, if

(i) φ ∈ T and X ∈ T ;

(ii) A1, A2, ...An ∈ T =⇒
n⋂
i=1

Ai ∈ T ;

(iii) {Aα}α∈I ⊆ T =⇒
⋃
α∈I

Aα ∈ T .

Elements of T are, by definition, called open sets of T , and (X, T ) is called a topological

space.

Example A.2. Following are some examples and non-examples of topologies.

1. For any set X, {φ,X} is a topology called the trivial topology and P(X) is a topology

called the discrete topology.

2. Let X be an infinite set. Define a collection T ⊆ P(X) as follows:

A ∈ T ⇐⇒ A = φ ∨ X \A is finite .

Such a T is a topology on X and is called the co-finite topology of X.

3. Unions of open intervals are the open sets defining a topology on R, called the usual

topology or the Euclidean topology.
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Now, we will see the concept of a basis of a topology T , which is a small subset of T

that can be used to generate all the open sets of T .

Example A.3. Consider the real line R along with the usual topology, TR. Let B =

{(a, b) : a, b ∈ R∧ a < b}, be the set of all open intervals (a, b) in R, with a < b. We make

the following observations about B:

(i) For every x ∈ R,∃r > 0 : (x − r, x + r) ∈ B (take r = 1, for example); i.e.,

∀x ∈ R,∃B ∈ B : x ∈ B.

(ii) If B1, B2 ∈ B and x ∈ B1 ∩B2, then ∃B3 ∈ B s.t. x ∈ B3 ⊆ B1 ∩B2. See figure A.2

for a proof.
Basis of a Topology 
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B3 B1 B2 
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b1 a1 

ℝ: Real line 
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b2 a2 
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If B1 = (a1, b1), B2 = (a2, b2), then ∀x ∈
(a1, b1)∩(a2, b2), by taking B3 = (a2, b1), we have
x ∈ B3 ⊆ B1 ∩B2.

Figure A.2: Open intervals as a basis for a topology on R.

Definition A.3. Let X be a set. A function d : X ×X → R is said to be a metric or a

distance function, if ∀x, y, z ∈ X

(i) d(x, y) ≥ 0

(ii) d(x, y) = d(y, x)

(iii) d(x, y) + d(y, z) ≥ d(x, z).

Then (X, d) is called a metric space.

Example A.4. Following are some examples of metric spaces.

1. For X = R, define d : R× R→ R as

d(x, y) = |x− y|.
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Then (R, d) is a metric space.

2. For X = Rn, define dp : Rn × Rn → R as

dp(x, y) =

(
n∑
i=1

(xi − yi)p
) 1

p

;

dp is called the Lp-norm metric. For p = 2, it’s called the Euclidean distance.

Definition A.4. Let (X, d) be a metric space.

1. For any x ∈ X, r > 0, the open ball or open neighbourhood of x of radius r under d,

is the set

Br(x) = {y ∈ X : d(x, y) < r}.

2. A set A ⊆ X is an open set in X, if ∀x ∈ A,∃r > 0 : Br(x) ⊆ A.

3. The topology Td induced by d is the set of all open sets in X.

Example A.5. Let (X, d) be a metric space. Let B = {Br(x) : x ∈ X, r > 0} be the set

of all open balls of X under d. Then,

(i) For every x ∈ X,∃r > 0 : Br(x) ∈ B (take r = 1, for example); i.e., ∀x ∈ X,∃B ∈

B : x ∈ B.

(ii) If B1, B2 ∈ B and x ∈ B1 ∩B2, then ∃B3 ∈ B s.t. x ∈ B3 ⊆ B1 ∩B2.

Proof. Let r be the distance to the closest point of x in B1∩B2 and take B3 = Br(x).

Then x ∈ B3 ⊆ B1 ∩B2.

Definition A.5. Let X be any set. A collection B ⊆ P(X) is said to be a basis for a

topology on X, if

(i) ∀x ∈ X,∃B ∈ B : x ∈ B;

(ii) If B1, B2 ∈ B and x ∈ B1 ∩B2, then ∃B3 ∈ B : x ∈ B3 ⊆ B1 ∩B2. See figure A.2 for

an illustration.
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Then the topology generated by B is:

TB = {A ⊆ X | ∀x ∈ A,∃B ∈ B : x ∈ B ⊆ A}.

Claim. TB is indeed a topology.

Proof. We will verify the three conditions required for TB to be a topology.

(i) The empty set φ vacuously satisfies the condition (∀x ∈ φ, ∃B ∈ B : x ∈ B) and

hence φ ∈ TB. Also, X ∈ TB trivially because of the first condition in the definition

of basis.

(ii) Suppose {Aα}α∈I ⊆ TB and let A =
⋃
α∈I

Aα. For every x ∈ A,∃α ∈ I,B ∈ B : x ∈

B ⊆ Aα ⊆ A and hence A ∈ TB.

(iii) Suppose A1, A2 ∈ TB and let A = A1 ∩ A2. For every x ∈ A, x ∈ A1 ∧ x ∈ A2 and

since A1, A2 ∈ TB,∃B1, B2 ∈ B : x ∈ B1 ⊆ A1 ∧ x ∈ B2 ⊆ A2, which implies, by the

second condition in the definition of basis, that ∃B3 ∈ B : x ∈ B3 ⊆ B1 ∩ B2 ⊆ A,

since B1 ⊆ A1 and B2 ⊆ A2. Hence A ∈ TB. See figure A.3.

Topology Generated by a Basis 

x 

B3 B1 

B2 

A1 
A2 

A 

X 

Figure A.3: Illustration of existence of B3 ⊆ A1 ∩A2.

Thus, TB is a topology.

Remark A.1. B ⊆ TB.

Example A.6. Following examples illustrate the notion of a basis of a topology.
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1. For a metric space (X, d), as discussed in examples A.3 and A.5, the set of all open

balls of X forms a basis for the topology on X whose open sets are arbitrary unions

of all open balls. So, every metric space is a topological space.

2. For any set X,B = {{x} : x ∈ X} is a basis for the discrete topology on X.

Proposition A.1. If T1, T2 are topologies generated by bases B1,B2 and B1 ⊆ B2, then

T1 ⊆ T2.
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