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Abstract

Increasing complexity and time to market constraints in the domain of embedded

systems have inspired designers to use automated processor modeling tools for rapid

design and analysis of various design trade-offs. Given a processor description, these

tools facilitate automated generation of processor specific tools.

Sim-nML [Raj98] is a retargetable processor description language used to develop

processor modeling tools. In our work, we have developed a tool which takes a

Sim-nML processor description as input and generates a functional simulator for

that processor. This simulator has been interfaced with GDB to provide a generic

debugging environment. The functional simulator can be used to verify correctness

of new processor designs.

We have also designed a class hierarchy as an intermediate structure between the

Sim-nML description and modeling tools to facilitate easy and efficient processing

of the Sim-nML description by various tools. A traversal library has been developed

to facilitate tool independent traversal of the class hierarchy. The class hierarchy

together with the traversal library provide a unique platform for development of

various processor modeling tools.
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Chapter 1

Introduction

Complexity of embedded system design is increasing day by day. An embedded

system is a combination of hardware and software. In the traditional way of de-

sign, hardware design goes first. It includes custom hardware design as well as the

selection of off-the-self components. Once the hardware components are in place,

software development starts on top of them. In the end, hardware and software de-

signs are integrated together to form the final system. Owing to design complexity

of embedded systems and time to market constraints, this approach is no longer

feasible. Some of the major issues are the following.

• Hardware design errors become increasingly expensive to correct as design

progresses. If these errors can be detected in the early phases of design, there

will be a tremendous reduction in correction cost.

• This approach requires clean separation between functionality to be imple-

mented in hardware and software at the beginning of design itself with no

scope for further revisions. This type of design rigidness is not practical in

modern design practices.

• Correctness is no longer the only design issue for embedded systems. They

must also meet performance, time to market, power, space and flexibility re-

quirements.
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These problems forced system designers to follow new design paradigms. In these

design paradigms, the design of hardware and software takes place simultaneously.

This gives designers an opportunity to analyze various hardware software design

trade-offs and explore different design alternatives in the early phases of design.

1.1 Hardware Software Co-design

Hardware 
Design

Software 

Specification
System

Verification

Partitioning

Design

Implementation

Repartition

HDL

Synthesizer
Simulator
Compiler

SW Tool Set

Debugger
Disassembler

Assembler
Processor Simulator

Figure 1.1: Hardware software co-design flow diagram

Hardware software co-design flow diagram is shown in figure 1.1. First step in
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co-design is to generate a system specification from the given requirements. The

specification is analyzed for various cost criteria such as performance, design time,

power and space. After analysis, system functionality is divided into various mod-

ules. The next step in co-design is that of partitioning. In this step, decisions are

made as to whether a system functionality module is to be implemented in hard-

ware or in software. The key deciding factor in partitioning is optimal satisfaction

of various cost criteria. From this point onward, design of hardware and software

goes in parallel.

Hardware is designed using hardware description languages (HDLs). HDLs are

capable of describing hardware at the lowest level where, the HDL tools facilitate

compilation, simulation and synthesis of hardware designs. In co-design, software is

developed on programmable processor cores. Programmable cores are flexible and

support rapid development. These cores are associated with software tool-sets to

create simulation environment of target machine on any given host machine. They

typically include tools such as processor simulator, assembler, disassembler, compiler

back-end, debugger and profiler. These tools facilitate compilation, simulation and

debugging of software for target environment.

Hardware software co-design is followed by design verification using co-simulation.

In co-simulation, hardware and software designs are simulated together with help

of HDL tools and software tool sets respectively. However, during co-simulation if

it turns out that current design is not able to satisfy system cost criteria, design

flow loops back to partitioning to explore a new design alternative. If design works

well during co-simulation, hardware design is converted to real hardware and then

software design is integrated with it to form the final system.

1.2 Retargetable Processor Modeling Tools

Each and every embedded system has its own unique requirements. This forces us

to either design a new processor core according to application requirements (Appli-

cation Specific Processors) or modify an existing one for every new system design.

In the later case, there are lots of alternatives available to choose from such as Ten-
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silica [ten] and Xilinx Vertex-5 [xil]. However, a new design of a core requires a new

set of software tools. Due to continuous advancements in semiconductor technolo-

gies, programmable cores are moving toward unprecedented complexity. Software

tool-set design for such complex processor cores is a tedious job and requires lot of

efforts and time. This problem led to automation of software tool-set generation

process.

Automated software too-set generators take a processor model specification as

input and generate the desired tool-set based on that processor model. This greatly

reduces designers’ efforts to mere specification writing. However, this solution leads

to another problem of writing of the model specification. The language used to

write processor model specifications should be easy to learn and use. On the other

hand, it should be powerful enough to cover a large range of processor architectures.

A processor description language is used to write the processor model specifica-

tions. Target specification for a particular processor is written using the processor

description language and tool generators associated with that description language

generate the desired tool-set.

1.3 Overview of Retargetable Languages and Frame-

works

HDLs, such as Verilog and VHDL have been in use for a long time to write processor

designs. However, models in these languages are used to write design specifications

at highly detailed level and most of which is not relevant for software tool-sets.

Moreover, certain attributes like syntax of processor instructions can’t be obtained

directly from such descriptions. Failure of HDLs as architecture description lan-

guages motivated people to use higher level languages.

SystemC [sys] is an example of such a high level architecture specification lan-

guage. SystemC is a C++ class library for system level modeling. Not only it

supports development of software algorithms, it provides constructs to model hard-

ware and software-hardware interfaces. However, SystemC is targeted more toward
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system level modeling rather than processor modeling.

Retargetable languages or architecture description languages(ADLs) are high

level languages specifically designed to model processor architectures. Broadly, an

ADL covers one or more of the following three models of processor description.

• Instruction set model: This part includes syntax, binary representation

and semantic behavior of all instructions in instruction set.

• Storage model: This part includes memory, registers, register files with

ports, aliases and local variable declarations.

• Timing model: This part includes resources such as functional units, buffers

etc and their modeling such as pipeline flow, hazards, reservation table etc.

Some contemporary ADLs and ADL related research are described in this section.

nML [Fre93] is an ADL based on attribute grammar and describes processors at

instruction set level. nML lacks constructs to describe structural details and timing

model of processors. Sim-nML is an extended version of nML.

FlexWare [PS02] is an embedded system development environment. It covers all

the three parts of processor description model. However, software tool development

is not fully automated in FlexWare. It has been used to generate tools such as

compiler, assembler, debugger, instruction-set simulator and performance analyzer.

MDes [mde97] model is a part of TRIMARAN [Tri] system. It uses MD language

for writing processor descriptions. MDes processor descriptions has been used to

generate low level descriptions for tools such as compilers and simulators. However,

it provides very limited retargetability. It has constructs to specify resource model

i.e. the reservation tables explicitly.

MIMOLA [LEL99] ADL describes a processor at a lower level. These descrip-

tions contain RT (register transfer) type of constructs. Instruction set is extracted

from this lower level description. An instruction set simulator was generated using

MIMOLA description. MIMOLA descriptions are complex and laborious to write.

ISDL [HHD97] is an ADL with main focus on VLIW architectures. It also

provides explicit constraints to define valid operation groupings. However, it lacks
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constructs to describe detailed processor structure. ISDL has been mainly used for

compiler tools.

RADL [Sis98] is designed to support detailed modeling of processor structure.

It explicitly describes typical pipeline aspects. Processor structure is described in a

hierarchical form, similar to nML’s hierarchical description of processor instruction

set. RADL is mainly focused on cycle accurate simulators.

FACILE [SHL01] ADL targets detailed micro-architecture description of proces-

sor. It’s main focus is on cycle accurate simulators. It uses programming language

techniques like partial evaluation and memoization to develop fast-forwarding sim-

ulators.

LISA [PHM00] ADL facilitate description of all three processor models. Its

descriptions are flat without any sharing of descriptions. LISA descriptions have

been used to generate tools like simulator, debugger, assembler, linker and compilers.

EXPRESSION [HGG+99] ADL supports both timing and instruction set models.

It facilitates abstract structural description of processor, from which reservation

tables can be automatically derived. A unique feature of EXPRESSION ADL is its

support for novel memory organizations and hierarchies.

1.4 Overview of this Work

In this work, we have developed a functional simulator generator, which accepts

the description of a processor given in Sim-nML processor description language,

and generates a functional simulator for that processor. The functional simulator is

used to simulate processor behavior at instruction level granularity. It can be used

to verify the correctness of a program written for a new processor design. We have

also interfaced this simulator with GNU Project Debugger(GDB) [gdb] to provide

a generic debugging environment for target applications.

Sim-nML is a language for describing an arbitrary processor architecture. It

provides processor description at an abstraction level of the instruction set, thus

hiding all implementation specific details. Sim-nML is flexible, easy to use and is

based on attribute grammar. It can be used to describe processor architecture for
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various processor-centric tools, such as instruction-set simulator, assembler, dissem-

bler, compiler back-end etc, in a retargetable manner. Sim-nML has been used as

a specification language for generation of various processor modeling tools. A brief

description of these tools is given in section 1.5.

An important part of processor description is timing model. This model is re-

quired to capture cycle level details of processor’s pipeline execution behavior. Cycle

accurate simulators utilize this model to mimic processor’s behavior at cycle level.

Sim-nML captures timing model of processor using a resource usage model. This

model handles processor pipeline behavior by means of a reservation table specifi-

cation. In the resource usage model, the reservation table specification is not given

explicitly. Instead it is derived from the model itself. The resource usage model

includes the timing specification and the conditions for the use of entities such as

structural units like ALU, FP Unit etc., registers and buffers. However, current

model has certain shortcomings. We have modified the resource usage model to ad-

dress these shortcomings. Our resource usage model supports Sim-nML hierarchical

description style.

As a processor description language, Sim-nML has various features to make

description writing easy and relatively error-free. However, due to such features it

becomes harder for tool developers to directly use the processor description in tool

generators. We have designed a C++ class hierarchy as an intermediate structure

between Sim-nML processor description and tool generators. Sim-nML descriptions

are first converted to this hierarchy and then it is used by various tool generators for

easy and efficient processing of processor description. We have also built a traversal

library on top of the class hierarchy. Using this library, tool generators can traverse

the class hierarchy without bothering about its internal structure.

1.5 Previous Work with Sim-nML

Sim-nML was designed primarily as an extension to nML. As nML was not capable of

handling the execution behavior of processor pipeline properly, Sim-nML addressed

this issue using its resource usage model. At that time a very simple and primitive
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instruction set simulator [Raj98] was designed. Since then, Sim-nML has been used

as specification language for generation of various processor modeling tools. A listing

of major tools generated using Sim-nML is as follows.

• Disassembler: A processor independent symbolic disassembler [Jai99] was

designed. To avoid tedious processing of Sim-nML descriptions, an intermedi-

ate representation(IR) of processor description was also introduced. This IR

was in the form of fix size tables.

• Functional Simulator: A retargetable functional simulator(Fsimg) [Cha99]

was designed and limited instructions of PowerPC 603 and Motorola 68HC11

processors were tested on it.

• Compiler Back-end: A tool was [Bha01] designed that reads a Sim-nML

specification in intermediate form and generates a partially complete GCC

machine description. The tool was tested by retargeting the GCC to Sparc

processor.

• Cache Simulator: A cache simulating environment [A.R99] was developed

to provide a basis for benchmarking various caching policies of a given proces-

sor.

1.6 Organization of Report

Rest of the thesis is organized as follows. In chapter 2, Sim-nML language is de-

scribed in detail. In chapter 3, we describe design of the class hierarchy and that

of traversal library. In chapter 4, we discuss the design and implementation of our

functional simulator generator. In chapter 5, we look into the interface between

GDB and the simulator. Finally, in chapter 6, we conclude with results and future

work. In appendices A and B, we provide Sim-nML grammar and class hierarchy

structure respectively.
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Chapter 2

Sim-nML

2.1 Introduction

Sim-nML is a language for describing an arbitrary processor architecture. It provides

processor description at an abstraction level of the instruction set, thus hiding all

implementation specific details. Sim-nML is flexible, easy to use and is based on

attribute grammar. It can be used to describe processor architecture for various

processor-centric tools, such as instruction-set simulator, assembler, disassembler,

compiler back-end etc, in a retargetable manner.

Sim-nML description of a processor can be viewed as a programmer’s model of

the processor. This model consists of the following.

• Syntax and semantics of instruction

• Addressing modes

• Definition of registers and memory

• Resource usage model

• Methods for handling traps and other synchronized events
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2.1.1 Hierarchical tree structure for Instruction set

In Sim-nML, an instruction set is described by a hierarchical tree like structure. The

hierarchical structure facilitates sharing of description among related instructions in

the instruction set. In this tree structure, any path from the root node to a leaf

node constructs an individual instruction description. Each non-leaf node contains

certain attributes, which can be shared by its descendants.

Instruction set 1 Instruction set 2

Inst_type2inst_type1

inst_type1.2

inst_type1.2.1 inst_type1.2.2

instruction1

instruction2 instruction3

Figure 2.1: Hierarchical tree structure for Instruction set

Figure 2.1 explains description sharing by various instructions. This figure is

indeed a forest, consisting of multiple instruction sets. This facilitates description of

processors having more than one instruction set (e.g. ARM processor with Thumb

instruction set). Let us consider the first instruction set tree in the figure. The

root node provides an abstraction of the complete instruction set. Each node in

between the root and the leaf nodes represents a set of instructions having certain

common features, such as numeric instruction and load/store instruction. Each leaf

node represents an individual instruction. It shares all the attributes of its proper
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ancestors and describes only remainder of the attributes. Thus, traversal from the

root node to a leaf node gives complete description of an instruction. Similar tree

structures can be used for other constructs, like addressing modes in the processor

architecture.

2.1.2 Example processor description

Figure 2.2 describes a simple processor architecture. This processor supports 64

bytes of external memory and has 16 registers. It supports three instructions, i.e.

Add, Sub and Mov. All of these instructions operate on two operands. There are

three addressing modes for operands, i.e. MEM, REG and IREG. Register PC is

used to denote the value of program counter. Fetch unit, execute unit and commit

unit are the available resources (or abstraction of resources) in the processor. All

instructions are of 16 bit length. This example description is used as a reference to

explain various features of Sim-nML language in this chapter.

\\************ Type declarations start ************\\

[1] let MSIZE = 2**6

[2] let REGS = 16

[3] type index = card(6)

[4] type nibble = card(4)

[5] type byte = int(8)

[6] mem M[MSIZE, byte]

[7] reg R[REGS, byte]

[8] reg PC[1, byte]

[9] var SRC1[1, byte], SRC2[1, byte], DEST[1, byte]

[10] resource Fetch_unit, Exec_unit[3], Commit_unit

\\************ Type declarations end ************\\
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\\************ Addressing modes start ************\\

[11] mode OPRND = MEM | REG | IREG

[12] mode MEM(i: index)=M[i]

[13] syntax = format("(%d)",i)

[14] image = format("%6b",i)

[15] mode IREG(i: nibble)=M[R[i]]

[16] syntax = format("(R%d)",i)

[17] image = format("00%4b",i)

[18] mode REG(i: nibble)=R[i]

[19] syntax = format("R%d",i)

[20] image = format("01%4b",i)

\\************ Addressing modes end ************\\

\\************ Instruction set starts ************\\

[21] op Instruction(x: arith_mem_inst)

[22] uses = Fetch_unit #{2}, x.uses, Commit_unit #{2}

[23] syntax = x.syntax

[24] image = x.image

[25] action = x.action
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[26] op arith_mem_inst(y: Add_sub_mov, op1: OPRND, op2: OPRND)

[27] uses = y.uses

[28] syntax = format("%s %s %s", y.syntax, op1.syntax, op2.syntax)

[29] image = format("%s %s 00%s", y.image, op1.image, op2.image)

[30] action = {

[31] SRC1 = op1;

[32] SRC2 = op2;

[33] y.action;

[34] op1 = DEST;

[35] PC = PC + 2;

[36] }

[37] Add_sub_mov = Add | Sub | Mov

[38] op Add()

[39] uses = Exec_unit #{2}

[40] syntax = "add"

[41] image = "00"

[42] action = {

[43] DEST = SRC1 + SRC2;

[44] }

[45] op Sub()

[46] uses = Exec_unit #{2}

[47] syntax = "sub"

[48] image = "01"

[49] action = {
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[50] DEST = SRC1 - SRC2;

[51] }

[52] op Mov()

[53] uses = #0

[54] syntax = "mov"

[55] image = "10"

[56] action = {

[57] DEST = SRC2;

[58] }

\\************ Instruction set ends ************\\

Figure 2.2: Sim-nML description for a Simple hypothetical processor

2.2 Syntax and semantics of Sim-nML language

Sim-nML description is based on the attribute grammar. This grammar is acyclic

and each non-terminal has at least one production. Thus, any symbol in the gram-

mar having no production rule associated with it is a terminal symbol.

2.2.1 Instructions

There are two orthogonal components in an instruction set. The addressing modes,

which define the mechanisms to obtain operands for instructions and the operations

performed by the instructions. In Sim-nML, addressing modes are described using

mode-rules.

Instructions are described using operations and operands. The operations are

specified as op-rules whereas the operands are specified as parameters to op-rules.
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The types of parameters that define the operands are the addressing modes specified

using mode-rules.

Mode and Op-rules are arranged hierarchically using production rules. There are

two kinds of production rules, OR rule and AND rule.

Operations

Both the production rules for op-rules are as follows.

• OR rule

op n0 = n1 | n2 | n3 . . .

• AND rule

op n0( p1: t1, p2: t2, p3: t3 . . . )

a1 = e1 a2 = e2 a3 = e3 . . .

For example, line 37 in figure 2.2 defines an OR rule, while line 38 defines an AND

rule.

For each instruction set of the processor, there is one start symbol (e.g. “In-

struction” in line 21). Any terminal string derived from start symbol corresponds

to an instruction in the instruction set. This string however does not provide any

information regarding syntax and semantics of the instruction. This information in-

ference can be made using attributes attached with the terminals of the string. An

example instruction derivation and corresponding attributes are shown in figure 2.3.

Here root node corresponds to the start symbol “Instruction” and leaf nodes consti-

tute derived terminal string “Add REG REG”. Attributes are shown in rectangular

boxes attached with each node in the derivation tree. Dashed nodes and arrows

show other possible derivation paths.

In the AND rules, ti is a token (either non terminal or terminal) and is interpreted

as type of parameter pi, where pi is the corresponding parameter name. Each (ai,

ei) pair denotes attribute and corresponding definition, respectively for the terminal

symbol n0. For example in the AND rule at line 21, “arith mem inst” is a token,

while “x” is the corresponding parameter name. There are four attributes, uses,
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Uses
Syntax
Image
Action

Uses
Syntax
Image
Action

Uses
Syntax
Image
Action

Arith_mem_inst

Add_sub_mov

AddSub Mov

OPRND

Instruction

x

y

op1

op2

OPRND MEM

REG

IREG

Image
Syntax

MEM

REG

IREG

Syntax
Image

_val

_val

Figure 2.3: Derivation of Add instruction from description given in figure 2.2

syntax, image and action with appropriate definitions. More details about attributes

are given in section 2.2.2.

The attributes of a descending node in the specification tree can be used while

defining an attribute. This can be done using expression such as pi.attr where pi

defines the descending node. For example, definition of “Instruction” node in line 23

uses x.syntax where x is the descending node “arith mem inst” in the specification

tree.

OR rules do not have any attribute definitions.
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Addressing modes

Sim-nML facilitates easy description of various addressing modes using mode rules.

Mode rules are nearly analogous to above described op rules. Keyword “mode” is

used to define mode rules.

• OR rule

mode n0 = n1 | n2 | n3 . . .

• AND rule

mode n0(p1: t1, p2: t2, p3: t3 . . . ) [= value assign]

a1 = e1 a2 = e2 a3 = e3 . . .

The mechanism to obtain the value of the operand defined by an addressing mode

is specified as an optional value assignment at the end of AND rule. This value can

be thought of as an extra attribute for terminal symbol n0. Moreover, this value is

used as an operand in the op-rule whenever a parameter of corresponding addressing

mode type is used. In figure 2.2, the mode rule at line 11 is an OR rule, while mode

rules at lines 12, 15 and 18 are the AND rules. All the AND rules are followed by

value assignments ( M[i], M[R[i]] and R[i] at lines 12, 15 and 18 respectively).

2.2.2 The attribute sets

In Sim-nML, attributes are used to describe properties of instructions and address-

ing modes. Sim-nML facilitates use of arbitrary number of attributes. There are

some important predefined attributes. It is the responsibility of description writer

to provide appropriate definitions for both self-defined and predefined attributes.

All predefined attributes except the uses-attribute (described later in details) are

explained below.

Syntax-attribute

It describes textual(assembly) syntax of the instruction and evaluates to a string

value. The definition part would consists of one of the following.
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• Strings: Defined simply by putting value in double quotes, as shown in line

40 of figure 2.2.

• Parameter attribute: Defined using notation “Parameter.attr”, where “attr”

is of syntax type. For example, x.syntax at line 23 in figure 2.2.

• Format expression: Defined using expression “format” (such as in line 28 of

figure 2.2), having similar interpretation as of C function “printf”. “Format”

expression is described later in details.

Image-attribute

It describes binary coding of the instruction and evaluates to a string of 0s and 1s.

White spaces are allowed in resulting binary string for improved readability. The

definition part would consists of one of the following.

• Strings: Defined Simply by putting value in double quotes, as shown in line

41 of figure 2.2.

• Parameter attribute: Defined using notation “Parameter.attr”, where “attr”

is of image type. For example, x.image at line 24 in figure 2.2.

• Format expression: Defined using expression “format”(such as in line 29 of

figure 2.2), having same interpretation as of C function “printf”. “Format”

expression is described later in details.

Action-attribute

It describes semantics of the instruction in terms of sequence of register trans-

fer statements. The definition part consists of either register transfer statements

or“Parameter.attr”, where “attr” is also of type action. In figure 2, lines 25, 30, 42,

49 and 56 show various definitions for action attribute.
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2.2.3 Type declarations

Sim-nML facilitates declaration of constants and macros, data types, memory, reg-

isters, temporary variables and resources.

Constants and Macros

In Sim-nML constants are declared by using the following statement.

let C=100

Here let is a reserved word, C is the name of the constant and 100 is its value.

After this declaration, C is a global constant and can be used in any context.

Global constants are defined only once. Some of these constants may be used to

define the behavior of processor tools. For example, a processor simulator may use

a constant ”ENDIANITY” to implement endianity of the processor. This constant

need to be defined in the Sim-nML description of that processor.

Macros are used to define a short hand for arbitrary expressions. They may

have parameters embedded in their definition. Macros terminate with a new line.

However, they can span multiple lines by adding “\” character at the end of each

line except the last one, which obviously terminates with a new line. The nMP

preprocessor tool can translate Sim-nML macro definitions to standard m4 macros.

A Simple macro definition with two parameters is as shown below.

macro comp(A, B) if (A)==(B) then 0 else -1 endif

Data types

A data type specifies a range of values for the declared object. A Simple type dec-

laration in Sim-nML is as follows.
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type addr = card(32)

Here type is a reserved word, addr is an object name and card(32) is its data

type. Sim-nML supports the following primitive data types. (For more examples

see line numbers 3 to 5 in figure 2.2)

• int(n): This is signed integer data type. Negative numbers are stored in 2’s

complement form. Here n is number of bits and the possible range of values

is [−2n−1 . . . 2n−1 − 1].

• card(n): This is unsigned integer data type. Here n is number of bits and

possible value range is [0 . . . 2n − 1].

• float: This is IEEE 754 floating point number.

• fix(n,m): This is signed fix format number, having n and m bits before and

after the binary point, respectively. The value of a real number r represents

br ∗ 2mc as int(n+m).

• [n..m]: This specifies integer or cardinal number in range (n,m) (where n≤m).

• enum(id1, id2, . . . idi): Defines an enumeration type, where constants id1=0,

id2=1, . . . idi=i-1. Type of enum will be card(dlog2(i)e).

• bool: This is Boolean data type with two predefined constant values: false

and true. If one coerces these constants to int or card type, true is coerced

to 1 and false is coerced to 0. In the reverse direction, integer 0 is treated as

false and every other value is treated as true.

Memory, Registers and variables

In Sim-nML, memory is modeled as an external entity while registers are internal

to the processor. Both represent the user visible state of the processor and across

the execution of two instructions only this state is carried. Variables represent

temporary storage for facilitating the compact processor description. They do not

represent the externally visible state of the processor.
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• Memory

A typical memory declaration statement is as given below.

mem M[N, type] [optional-properties]

In this declaration, M is the name of the memory , N is the number of memory

locations and type is the data type of each location. If no data type is specified,

card(8) is default type. Successive memory locations can be accessed using

expressions like M[0], M[1] . . . M[n-1]. Memory declarations can have certain

optional properties, which are explained below.

– Alias: Describes declared memory as an alias of some other memory as

well. Thus, both memories will refer to the same address but with differ-

ent type interpretations.

mem A[6, int(32)]

mem M[3, card(32)] alias = A[3]

In this example, memory locations A[3], A[4] and A[5] can also be refer-

enced as M[0], M[1] and M[2] respectively. However, memory locations of

A are interpreted as 32 bit signed integers while that of M are interpreted

as unsigned 32 bit numbers.

• Register

In Sim-nML registers can be declared in the following manner.

reg R[N, type] [optional-properties]

In this declaration, R is a register file name, N is an optional parameter rep-

resenting the number of registers in the register file and type is the data type

of each register. If only type is specified, number of registers is taken as 1.
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Successive registers are accessed using expressions like R[0], R[1] . . . R[n-1].

Register declaration can also have optional attributes, as explained below.

– Ports: Describes number of read and write ports for register file.

reg R[16, int(8)] port = 3, 2

In above example, register file R has 3 write ports and 2 read ports.

Moreover, each register in R consists of 2 read ports, equal to the read

ports declared for R itself and one write port. These ports are treated as

resources and are used to define the instruction dependencies.

– Initial: Describes the initial value for declared register.

reg R[1, card(32)] initial = 100

• Variables

Temporary variables are typically declared as shown below.

var TEMP[N, type]

In this declaration, TEMP is a variable array name, N is the number of vari-

ables in the array and type is the data type of each variable. If only type is

specified, number of variables is taken as 1. Successive variables are accessed

using expressions like TEMP[0], TEMP[1] . . . TEMP[n-1]. Unlike memory

and register declarations, variable declarations do not have any optional at-

tributes. Also, the values of variables are not carried across two instructions.

2.3 Resource-usage Model

In Sim-nML, an instruction is described by associating it with the following two

views (of which the timing model view is optional).
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• Instruction semantics

In this view, an instruction is described in terms of the operations it will

perform, operands of these operations and the resulting value. For this, Sim-

nML provides syntax, image and action attributes as described earlier.

• Timing model

This view describes an instruction by its execution sequence and timing spec-

ifications. For this purpose a resource-usage model is used.

The resource-usage model is described using the following constructs.

2.3.1 Resource declaration

A resource is an abstraction of hardware units within a processor, through which

an instruction flows during execution. It is not necessarily the hardware implemen-

tation, but may be an approximation used to define the timing of execution.

Sim-nML facilitates the declaration of various resource units. A typical example of

a declaration is given below.

resource Exec unit[2]

In this declaration, resource is a reserved word and Exec unit is the name of a

resource unit in the processor. Using an optional number after the resource unit

name, more than one instances of that particular unit can be declared. The default

value is one.

2.3.2 Registers

In Sim-nML, registers and associated ports are also considered as resources. In

addition, registers are grouped in a single register file which is also considered a

resource. To read a register, one register read port and one register file read port

should be available. As stated previously, each register in a register file has number

of read ports equal to the total number of read ports for that register file and write
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ports equal to one. Thus, number of parallel read operations on a single register is

equal to total number of read ports for the corresponding register file. To write a

register, all the read ports and write port of that register and one write port of the

corresponding register file should be available. Thus, a register should be written

exclusively. To capture the behavior of registers as resources, following 5 operations

are defined on them.

• itR: This declares intention for reading a register value and implicitly demands

one read port of the register and one read port of the corresponding register file.

Actual read operation can take place only after acquisition of these resources.

• itW: This declares intention for writing a register value and implicitly de-

mands one write port and all the read ports of the register and one write port

of the corresponding register file. Actual write operation can take place only

after acquisition of these resources.

• Rdone: This declares actual read operation.

• Forward: This declares forwarding of register value to certain other resource

unit.

• Wdone: This declares actual write operation.

Actual implementation of these operations is dependent on the tool-generator. For

example, itW operation can be blocking or non-blocking. In former case, instruction

is made to wait if resources required for actual write operation are not available at

that time. While in latter case, instruction will proceed independent of the avail-

ability of required resources. However, actual read and write operations could not

progress without the availability of demanded resources. These operations together

with declared resources describe the complete resource-usage model.

2.3.3 Uses-attribute

This describes the resource-usage model of instructions in a hierarchical manner. An

instruction specification includes all the resources required by the instruction in a
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timing sequence. As explained in section 2.1, in Sim-nML, instructions are described

in a tree-like hierarchical structure. Individual instructions, which are present at leaf

nodes, share the attributes of their ancestor nodes. This sharing applies to usage-

attribute as well. While describing the instruction set for a processor, the resource

requirements for every node are specified directly at that node or as a reference to the

resource requirements of its children nodes. This description is continued recursively,

until it reaches leaf nodes. For example, consider the usage attribute definition in

line 22 of figure 2.2. It says that an instruction will require the fetch unit for two units

of time, followed by the resources required by parameter “x” (determined by token

arith mem inst) and in the end, the commit unit for 2 units of time. Parameter “x”

acquires resources from parameter “y” (determined by token Add sub mov), which

corresponds to an OR rule and forks into three operations(Add, Sub and Mov). The

uses-attribute definitions for these three operations are given at line number 39, 46

and 53 respectively. Both Add and Sub require the execution unit for 2 units of

time, while Mov uses no resources.

2.3.4 Semantics of resource-usage model

Semantics of resource-usage model can be explained with the help of following con-

structs.

• Clauses

Resource requirements of an instruction can be modeled by a sequence of

resource-use-clauses, separated by “,”. An individual clause in the sequence

corresponds to one or more resources with different semantics attached to it.

An example Sim-nML description for the resource requirements of three in-

structions is shown in figure 2.4. Instructions acquire and release the resources

specified in the clauses in a sequence during execution. In figure 2.4, the re-

source acquisition sequence for instruction1 is as follows. It will first acquire

either of the two fetch unit (clause1), followed by execution unit (clause2) and

in the end, it requires store buffer and one of the commit unit (clause3). Thus,

a clause may correspond to a single resource or a Boolean combination of
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multiple resources.

• Timing modeling

Resources are acquired for fixed units of time, which typically corresponds

to the multiple of clock cycles of the processor. However, time unit is an

abstract quantity and any other mapping to machine cycles may be assumed.

For example, instruction1 requires all the resource units except store buffer

for 2 units of time. Multiple resources in a single clause can be acquired for

different units of time. For example, in the clause3 of instruction1, store buffer

is required for 1 unit of time while commit unit is required for 2 units of time.

• Conflict resolution

All the resources specified in a single clause are either acquired simultaneously

or none. However, until an instruction acquires all the resources in the current

clause, it will hold the resources of the previous clause. If more than one

instruction contends for the same resource, then the conflict is resolved in

FIFO order. All instructions except the one which acquires the resource, wait

for the release of that resource. Moreover, if waiting instructions already have

some resources of the current clause, these resources are released.

The resource reservation table for the example description is shown in fig-

ure 2.5 (for simplicity instruction3 is ignored). As shown in the table, both

instruction1 and instruction2 contend for the execution unit at time unit 3.

The conflict is resolved in favor of instruction1 according to FIFO order and

instruction2 is stalled for 2 units of time.

• Acquisition from multiple choices

An instruction can request for more than one resource alternative in a single

clause. If at least one resource out of all the specified alternatives is free,

then the instruction will not stall. In case more than one of the alternatives

is available, allocation is done arbitrarily. In figure 2.4, instruction1 specifies

each of the two fetch units as alternatives in the clause1. An alternative syn-

tax for the same is to use “|” operator, as shown in the clause1 and clause3
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of instruction2. Similarly, instructions can request for more than one resource

simultaneously. In this case, either all these resources are allocated simulta-

neously or none are allocated at all. For example, instruction2 requires both

commit unit as well as store buffer in the clause3.

• Conditional acquisition

Resource acquisition can be conditional. In this case, an instruction will ac-

quire the resources in a clause if and only if certain conditions specified in the

clause hold. In figure 2.4, instruction2 will acquire the resources in the clause1

if and only if the condition (pipeline == 1) holds. In order to specify such

a condition, both conditional expressions and the if-then-else construct can

be used. However, only constant values are allowed for specifying conditions.

Conditional resource acquisition is useful to model certain optional resources in

the target processor. For example, instruction2 can model both the pipelined

and unpipelined processor depending on the outcome of the condition specified

in the clause1.

• Book-keeping actions

Uses-definition also facilitates the description of an optional action after each

resource request in a clause. The specified action takes place either after

resource acquisition or after resource release, depending on where it is declared.

In the example description, an action branch handler is specified with execution

unit (clause2) of both instruction1 and instruction2. However, in the case of

instruction1 the action will take place just after the acquisition of execution

unit, whereas for instruction2 it will take place after the release of execution

unit. Actions in the uses-definition do not have any semantic meaning attached

to them in the context of execution of instructions. They are mainly used

for book keeping purpose. Typically such actions can be used for branch

prediction and management of cache replacement policy.

• Instruction sequencing

To specify advanced pipeline features like out of order execution, uses-definition

provides ‘[’ and ‘]’ operators. [ operator marks the arrival order of incoming
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instructions. ] operator regulates the departure order of outgoing instructions

according to the marking done by matching [ operator. All out of order in-

structions are made to wait until they become aligned with the marked order

of arrival. In between a single [. . . ] operator pair any order of execution is

allowed. For example, instruction3 has 4 clauses with a unique resource in

each clause. Clause2 and Clause3 are enclosed in a [. . . ] operator pair. Thus,

in the pipeline, [ operator will note the arrival order of incoming instructions

from fetch unit to decode unit, while ] will enforce the same order on outgoing

instructions from execution unit to commit unit. Transition of instructions

from decode unit to execution unit can be out of order.

    
    Instruction1: 

   
    Instruction2: 
        uses = { pipeline ==1} (Fetch_unit[1] #{1} | Fetch_unit[2] #{1}), 

  

        uses = (Fetch_unit #{2}), Exec_unit : branch_handle #{2}, 

        Exec_unit #{1} : branch_handle, 

        (Store_buffer #{1} & Commit_unit  #{2})

 Resource Fetch_unit[2], Decode_unit,  Exec_unit, Commit_unit[2] 

       (Commit_unit[1] #{2} | Commit_unit[2] #{2})

    Instruction3:
        uses = Fetch_unit[1]#{1}, [Decode_unit#{1}, Exec_unit#{1}], 
        Commit_unit[1]#{2}

Figure 2.4: Example Sim-nML description

2.4 Syntax and Semantics of attributes

In Sim-nML, attribute definitions can contain expressions and statement sequences.

There are certain assumptions in the language, which one should keep in mind
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Time
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Commit_unit

Fetch_unit

Fetch_unit

Commit_unit

1

2

Exec_unit

1

2

isnt1 isnt1

isnt1 isnt1

isnt1 inst1

inst2

inst2

6 7

inst2 inst2

isnt1Store_buffer

Figure 2.5: Reservation table for example shown in figure 2.4

when writing the attribute definitions. In the subsequent sections these issues are

explored.

2.4.1 Expressions

An expressions can be one of the following.

• Constant: one of the following type.

– string (e.g. “al”)

– binary (e.g. 0b101010)

– decimal (e.g. 4 or 65.4)

– hexadecimal (e.g. 0x34FA3D)

• Identifier: any possible combination of alphabets, numbers and . For exam-

ple byte, M etc.

• Attribute reference: an attribute of an identifier, expressed as “ID.attr”.

For example x.action, y.image etc.

• Parametrized expressions: one of the following types.
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– operators and operands like a + b

– identifier and parameters like format(“%s”, “mov”)

– canonical function like “sin”(30)

• Indexed expression: one of the following.

– Memory location (e.g. M[2] or M)

– Register (e.g. R[3] or PC)

– Variable (e.g. V[1] or V)

– Any of the above with bit select (e.g. R[3]< . . >)

• Conditional: a conditional statement with if-then-else construct.

If A<B then . . . else . . .

• Switch case:

switch choice {

case 0: “Zero byte instruction”

case 1: “One byte instruction”

case 3: “Three byte instruction”

default: “Invalid instruction”

}

• Macro: a macro call corresponding to macro definition given in description.

Macro call: DIV(6,3)

Macro definition: macro DIV(a,b) = a/b

2.4.2 Operators

Sim-nML provides variety of operators for easy, flexible and speedy description of

the processor. Following is the list of operators with syntax and semantics explained.

• Binary +, –

These are the usual addition and subtraction operators which operate on two
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operands. For FLOAT and FIX data types, both operands must be of the same

type. In the case of operand mismatch for INT and CARD types, following

rules apply.

– If operands are of different bit width, result will have bit width at most

2 more than the larger bit width.

– If one operand is INT type and other one is CARD type, result will be

of INT type.

• Unary +, –

These operators are used only for INT, FLOAT and FIX data types.

• *, /, %

These are usual multiplication, division and remainder operators, which op-

erate on two operands. If operands are of INT or CARD types, rules Similar

to that for binary +,- are applied. However, maximum bit width of result can

be equal to twice of the larger bit width. In the case of FLOAT and FIX type

operands, mixing with INT or CARD data types is allowed, result type being

of that FLOAT or FIX type numbers.

• **

This is a double star operator for exponentiation operation. Out of two

operands, first can be of any type but second must be a constant. Bit width of

result can be determined by assuming this operation to be equal to multiple

* operations.

• <, >, <=, >=, ==, ! =

These are usual comparison operators and return a Boolean type of result.

For true value 1 is returned and 0 is returned for false value.

• <<, >>, &, |, ∧, ∼

These are usual bit level operators. To perform left shift and right shift, <<

and >> are used, while &, |, ∧ and ∼ are used for bit-wise and, or, xor and

complement respectively.
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• <<<, >>>

These are left and right rotate operators.

• &&, ||, !

These are logical and, or and not operators respectively. Non-zero operand is

treated as having true value while zero is treated as having false value. After

application of these logical operators, result is always of Boolean type.

• ::

This is a binary concatenation operator. Operands can be arbitrary expres-

sions. Operands on right side are concatenated and resulting value is assigned

to left side. In case, bit width of expression on left side is greater than that

of on right side, right side result is sign extended or zero extended before it

is assigned to left side. On the other hand, if bit width of left side expression

is less than that of on right side, it is assigned the required bits from the

second operator in :: operation. However, if bit width of left side expression

is greater than the second operand, the first operand is used for remaining bits.

M[1] = R[0] :: R[1]

• Bit-field operator

The general signature for bit-field operations is: location<left expr . . right expr>

Here location can be a memory location, register or temporary variable. Left expr

and right expr evaluate to non-negative values, which specify range for bit se-

lection. An example for copying the lower 16 bits of a word to the upper 16

bits is shown below.

R[0]<16 . . 31> = R[0]<0 . . 15>

32



2.4.3 Special parametrized expressions

• coerce(type, value)

This expression takes two arguments, value to be coerced and resulting type

of the value after coercion. Coercion may not be precise, in that case the value

is coerced to the best approximation in coerced type. For example if a floating

point number is coerced to an integer type, then fractional part of the floating

point number is discarded. Similarly if a signed number is coerced to unsigned

one, then 2’s complement representation of former is as such copied to latter

type. An example to coerce a register of card type to int type is shown below.

reg R[1, card(32)]

coerce(int(32), R)

• format(format-string, args. . . )

This expression takes as parameters a format-string and the corresponding list

of arguments. It returns a string value. A format specifier is written as %nC,

where n is the optional field-width and C can be one of the following.

– d: is used for decimal values to describe the syntax of instruction.

– b: is used for binary values to describe instruction image.

– x: is used for hexadecimal values to describe instruction syntax.

– s: is used for string values to describe both the syntax and image of

instruction. However, in the case of instruction image, only binary string

is allowed.

A simple example is shown below.

format(“%s %s %d”, “Add”, “R[1]”, 30)

• canonical(string, args. . . )

or

“string”(args. . . )
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They are known as canonical functions. These type of functions are not pre-

defined in Sim-nML language. It is assumed that description processing tools

know their semantics and can handle them. Canonical functions are only used

in the definitions of action type of attributes. They, by themselves can’t define

any attributes directly. In above two styles of writing canonical functions, the

first one is obsolete. A simple example of a canonical function to calculate

log-base-2 is given below.

“log”(100,2)

2.4.4 Sequences

All attributes in Sim-nML except syntax and image attributes are defined using

sequences. A sequence is composed of register-transfer like statements, enclosed in

braces ({,}) and separated by semi-colons (;).

Sequence = {

statement1;

statement2;

statement3;

. . .

}

For example

. . .

action = {

num = M[0];

denum = “log”(100, 2);

if(denum != 0)

result = num/denum;

. . .
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}

. . .

A statement is one of the following.

• An assignment statement like num = M[0].

• A reference to attribute, either direct like “action” or indirect like “ID.action”.

• A call to canonical or error function.

• A conditional statement which is similar to the conditional expression, except,

instead of expressions, sequences are used in if and else parts.

• A switch statement which is Similar to the switch expression, except, instead

of expressions, sequences are used in case parts.

2.5 Bit-true arithmetic

Bit-true arithmetic is used to resemble the target processor’s arithmetic operations

as closely as possible. Sim-nML facilitates the declaration of data objects having

arbitrary bit length. In arithmetic operations, any of the declared data objects can

be used as source and destination operands. This leads to the operands having

different bit length.

Consider the following example addition operation.

var Result[int(7)];

var Src1[card(3)];

var Src2[card(3)];

...

Result = Src1 + Src2;

...
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In the above example, two variables of card(3) type (Src1 and Src2) are added and

result is stored in Result of type int(7). Addition of two 3 bit numbers of card type

gives a result of same type having bit length of at most 4. Thus, before storing the

resultant value in the Result data object, it will be type casted to int(7). (Type

casting rules are explained in section 2.6).

Now consider the second example given below.

var Result[int(3)];

var Src1[card(6)];

var Src2[card(6)];

...

Result = Src1 + Src2;

...

In this operation, resultant value after the addition operation will be of type card(7).

Again, before storing the resultant value in the Result data object, it will be type

casted to int(3).

2.6 Type casting rules

In Sim-nML, whenever two incompatible data types (either in size or type or both)

are used in an assignment statement, the casting rules shown in table 2.1 apply. Each

table entry corresponds to a type casting rule between source and destination data

type. In all the rules, truncation and zero extension start from the most significant

bits.

2.7 Coercing rules

As explained in section 2.4.3, one data type can be explicitly converted to another

data type using expression coerce. Type coercion rules are shown in table 2.2. In
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all the rules except one, truncation and zero extension start from the most signif-

icant bits. In the exceptional rule, truncation and zero extension start from least

significant bits and it applies between card(m) and card(n) types.
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Source type

D
e
s
t
i
n
a
t
i
o
n

t
y
p
e

int(m) card(m) fix(m,k) float
int(n) Case(m=n):

Copy source
as such
Case(m>n):
Truncate source
to n bits
Case:(m<n):
Sign extend
source to n bits

Case(m=n):
Copy source
as such
Case(m>n):
Truncate source
to n bits
Case:(m<n):
Zero extend
source to n bits

Treat fix(m,k) as
int(m+k) and apply
the rule for int(n)
and int(m+k). For
example, value 1.25 is
001.01 in fix(3,2) for-
mat and after casting
to int(6) it becomes
000101 (=5). On the
other hand, if it is
casted to int(2), it
becomes 01 (=1).

Treat
float as
int(32)
and cast
to int(n)

card(n) Case(m=n):
Copy source
as such
Case(m>n):
Truncate source
to n bits
Case:(m<n):
Sign extend
source to n bits

Case(m=n):
Copy source
as such
Case(m>n):
Truncate source
to n bits
Case:(m<n):
Zero extend
source to n bits

Treat fix(m,k) as
int(m+k) and apply
the rule for card(n)
and int(m+k). For
example, value -1.25 is
111.01 in fix(3,2) for-
mat and after casting
to card(6) it becomes
111101 (=61). On the
other hand, if it is
casted to card(3), it
becomes 101 (=5).

Treat
float as
int(32)
and
cast to
card(n)

fix(n,l) Treat fix(n,l)
as int(n+l) and
apply the rule
for int(n+l) and
int(m)

Treat fix(n,l)
as int(n+l) and
apply the rule
for int(n+l) and
card(m)

Treat fix(n,l) as
int(n+l) and fix(m,k)
as int(m+k). Apply
rule for int(n+l) and
int(m+k). For ex-
ample, value 3.75 is
011.11 in fix(3,2) for-
mat and after casting
to fix(2,3) it becomes
01.111 (=1.8125).

Treat
float as
int(32)
and
cast to
fix(n,l)

float Treat float as
int(32) and cast
int(m) to it

Treat float as
int(32) and cast
card(m) to it

Treat float as int(32)
and cast fix(m,k) to it

No op-
eration

Table 2.1: Type casting rules
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Source type

D
e
s
t
i
n
a
t
i
o
n

t
y
p
e

int(m) card(m) fix(m,k) float
int(n) Case(m=n):

Copy source
as such
Case(m>n):
Truncate
source
to n bits
Case:(m<n):
Sign extend
source to n
bits

Case(m=n):
Copy source
as such
Case(m>n):
Truncate
source
to n bits
Case:(m<n):
Zero extend
source to n
bits

Discard the fraction
part and apply the
rule between int(n)
and int(m) for inte-
ger part

If the float value
is f then put bfc
into int(n)

card(n) Case(m=n):
Copy source
as such
Case(m>n):
Truncate
source
to n bits
Case:(m<n):
Sign extend
source to n
bits

Case(m=n):
Copy source
as such
Case(m>n):
Truncate
source
to n bits
Case:(m<n):
Zero extend
source to n
bits

Discard the fraction
part and apply the
rule between card(n)
and int(m) for inte-
ger part

If the float value
is f then put
bfc into int(n)
and then coerce
that value to
card(n). For ex-
ample, to coerce
float -3.75 to
card(4), first put
b−3.75c=-4 into
int(4)=1100 and
then coerce it
to card(4)=1100
(=12)

fix(n,l) Make fraction
part =0 and
apply the
rule between
int(n) and
int(m) for
integer part

Make fraction
part =0 and
apply the
rule between
int(n) and
card(m) for
integer part

Apply the rule be-
tween int(n) and
int(m) for integer
part and the excep-
tion rule between
card(l) and card(k)
for fraction part. For
example, value 1.75
is 001.11 in fix(3,2)
format and after
coercing to fix(2,3)
it becomes 01.110
(=1.75).

If the float value
is f then put bfc
into int(n) and
fractional part
into int(l)

float Convert to
float

Convert to
float

Convert to float No operation

Table 2.2: Type coercion rules
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Chapter 3

Intermediate Representation and

Traversal Library

As a processor description language, Sim-nML has various features to make de-

scription writing easy and relatively error-free. However, such features also make it

harder for tool developers to directly use the processor description as input to tool

generators. To avoid this problem, tool generators convert Sim-nML description to a

low level intermediate form, which would be relatively easy and efficient to process.

However, in that case the conversion is needlessly repeated by each tool generator.

This suggests that an interface is required between the processor description and

input to the tool generator. We provide this interface in form of an intermediate

representation (IR) obtained by parsing the processor description.

3.1 Tabular Structure vs Class Hierarchy

In previous work on Sim-nML [A.R99], the IR was organized as a collection of

tables that store the relevant information extracted from a processor description. It

was designed to keep the tables simple for easy handing of IR. Such simplifications

demanded that all entries in a given table be of the fix size. In such scheme, various

other tables were introduced to keep the information that would otherwise require a

table entry to be of variable size. These extra tables necessitate indirect indexing to

40



access the processor information. As an end result the process of tool development

became complicated and tool developers spent efforts in IR information access rather

than developing the features of the tool. Moreover, the table structure has no natural

resemblance to the structure of the processor description. In the new version of IR,

we have IR information in form of a class hierarchy. The detailed description of the

class hierarchy is given in appendix B. The new IR has the following advantages.

• It represents the processor description in a natural way and avoids the indirect

indexing of the table format.

• It supports object oriented design, which encourages hiding of internal details

of the IR from tool generators.

• It provides a generic structure to store tool specific information in the IR,

independent of tool generator.

The earlier IR was designed to keep the IR in the file, a feature that was thought

necessary at that time. However, parsing of the description is fast enough and hence

the requirement of eliminating parsing overhead by keeping the IR in a file is not

necessary. In this design, the IR is in-memory data structure and is used by the

tool generators by parsing Sim-nML description.

3.2 Conversion between Tabular Structure and

Class Hierarchy

To maintain compatibility with previous IR format, we have conversion routines to

convert the tabular structure to the class hierarchy. In the tabular structure, IR ta-

bles are dumped into a file after parsing Sim-nML description. This file is processed

by tool generators to read the tabular structure. We are using an intermediate

class structure to read tabular IR information in our approach. The structure of

intermediate classes is similar to that of IR tables. After reading the IR file into

the intermediate structure, the class hierarchy is created using tabular information.

The class hierarchy is designed in such a way that it can be created from processor
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description using a parser. Moreover, the same intermediate class structure is also

used to convert the class hierarchy back to the tabular structure.

3.3 Traversal Library

Tool generators need to traverse the class hierarchy for processing of the IR infor-

mation. In spite of having its specific information requirements, a tool generator

has to go through the complete class hierarchy as the required information may be

scattered throughout the hierarchy. In order to avoid traversal by all tool genera-

tors, we have designed a traversal library. Although, the traversal of class hierarchy

is a fairly straight-forward task, real challenge lies in making this library generic

enough to handle traversal request of all tool generators.

3.3.1 Traversal of Class Hierarchy

Sim-nML class hierarchy is an and-or tree structure. An and node’s parameters

are its children, while an or node has its children as possible alternatives to choose

from. The ultimate goal of traversal is to go from the root node to leaf nodes and

collect desired information during this process. This goal is achieved by collaboration

between the traversal library and the tool generator. The library provides the desired

path in the hierarchy tree while the tool generators retrieves the desired information.

A tool generator might require either of the following two types of traversals.

• Guided traversal: In guided traversal, path selection from root node to a

certain leaf node is guided by the tool generator. For example, an disassembler

generator will guide traversal according to image of current instruction while

collecting the corresponding syntax information. Thus, in this case the library

provides a path of the choice of the tool generator and then the tool generator

retrieves the desired information from this path.

• Complete traversal: In complete traversal, the library enumerates all pos-

sible paths in the hierarchy tree to the tool generators and the tool generator
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retrieves the desired information from them. For example, to generate all pos-

sible instruction images in a processor description, complete traversal is the

right choice.

During the traversal process, or nodes act as decision making points. Their children

provide possible alternatives for the traversal process to continue on. In case of

guided traversal, tool generator helps library to choose one of many such alternatives.

However, in complete traversal, all possible alternatives are explored.

Class Hierarchy

Target Data
Generic Class for

Traversal
Library

Tool 
Generator

storeretrieve

S

S

S

S

traverse

match

traverse

match

S
Generic Tool Class

for Source Data

Figure 3.1: Interaction between traversal library and tool generator

3.3.2 Information Passing between Library and Tool Gen-

erators

Tool generators rely on two types of data - source data and target data. During

traversal, both of these data items change dynamically. In guided traversal, source
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data is used to guide the traversal while target data is collected during this process.

However, in complete traversal, source data has no significance and traversal is used

to collect target data. Source data is an axis around which traversal is carried out

while the target data is the information collected during this traversal. Both source

and target data are specific to tool generators. The traversal library is independent

of these data. However, traversal is a recursive process and it supports backtracking

in the case of guided traversal. This necessitates passing of both source and target

data through the traversal library.

Data passing between the traversal library and a tool generator is shown in

figure 3.1. To handle source data, we pass a generic tool class pointer between

library routines and tool routines as a parameter. This class contains source data

and other tool specific data and functions. All tool generators derive their specific

derivations from this generic class. On the other hand, to handle target data, we

provide a generic class in the class hierarchy itself. This class works as a space holder

for target data. Tool generators derive their specific derivations from this generic

class. The Rule class in the class hierarchy holds a list of pointers to this class.
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Chapter 4

Functional Simulator Generator

We have implemented a functional simulator generator based on Sim-nML descrip-

tions.

4.1 Functional Simulation

In functional simulation, the behavior of a processor is simulated at the granularity

of instruction level for a given input program. Simulator mimics the processor state

after execution of each instruction in the program. A processor’s state is defined

in terms of values contained in its registers, flags and memory. Micro-architecture

details of the processor are ignored, e.g. pipeline behavior of the processor is not

simulated at all. Functional simulation is useful for verifying the correctness of

programs written for new processor designs. It can also be used to generate execution

trace of a program for the target processor which can be later utilized by various

tools like profiler, cycle accurate simulator, cache simulator etc.

Two most widely used simulation techniques are explained below.

• Interpretive Simulation

An interpretive simulator mimics standard processor execution sequence. This

is the traditional technique of simulation. In this technique, the simulator

iterates over the following three steps until simulation ends.
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– Fetch: In this step, next instruction is fetched from program memory

for execution.

– Decode: In this step, instruction is decoded to find out operation to be

performed and involved operators.

– Execute: In this step, the designated operation is performed and proces-

sor state is updated. Results are stored in appropriate memory locations

or registers.

Interpretive simulators are inherently slow, as the overhead of fetch and decode

steps is of the order of total number of instructions executed in the program.

• Compiled Simulation

A compiled simulator breaks a program simulation in the following two phases.

– Decoding: In this phase, all the instructions in the program are decoded

and corresponding operations and operands are stored in a table.

– Execution: In this phase, all the instructions are executed using the

table created during the decoding phase. The fetch step is modeled as

selection of the index of next execution entry in the table.

Compiled simulators improve simulation speed significantly [RMD03] in com-

parison to interpretative simulators as decoding overhead is of the order of

total number of instructions in the program rather than that of total num-

ber of instructions executed in the program. However, they do not support

self-modifying codes as decoding is done prior to the program execution. If

we modify an instruction later during the execution, that modification will be

ignored as decoded entry is still the old one.

We have implemented a compiled simulation approach in our functional simulator

generator. The simulator generation process is carried out in two steps. In the

first step, a processor model is generated using the target Sim-nML description. In

the following step, after processing of the target program, it is decoded using the

processor model and the functional simulator is generated. Detailed explanation of

these steps is given in the following sections.
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4.2 Processor Model

Functional simulator takes as input a binary file compiled for the target processor

and then simulates it instruction by instruction. To simulate an instruction, sim-

ulator must know its execution behavior and then according to that behavior it

should change processor state. We need to derive this information from Sim-nML

description of the target processor. From functional simulator generation point of

view, we are interested in the following models of Sim-nML description.

• Storage model

– Processor registers

– Processor flags

– Processor memory

– Variables local to description

The storage model of a processor defines its visible state. However, local

variables in the description are exception as they do not contribute to the

processor state.

• Instruction set model Instruction set model is created by collecting the

following entities for every instruction in the processor instruction set.

– Binary image: It represents instruction binary format. However, param-

eter fields are always set to 0s.

– Binary mask: It is obtained from instruction binary format by setting

opcode field to all 1s and parameter fields to all 0s. If we bit-wise and

the binary mask with instruction binary format, we get binary image.

– Binary masks of all parameters: It is obtained from instruction binary

format by setting everything except the target parameter field to 0s. The

target parameter field is set to all 1s.

– Execution behavior: It represents execution semantics of an instruction.

47



Instruction set model defines the complete instruction-set of a processor. The

first three entries of the instruction set model are relevant from instruction

decoding point of view whereas the last one is from instruction execution

point of view. Given the instruction set model, we can decode and execute

any instruction supported by Sim-nML processor description.

4.3 Processor Model Generation

The processor model generation process and involved modules are shown in fig-

ure 4.1. We have used C as host language to specify processor model.

  Description
    Sim−nML

Parser

Class Hierarchy

Traversal 
  Library      Generator

  Generator

Type 
Definitions

Variable
Declarations

Instruction
    Image Mask

  Functions

Instruction

Instruction Instruction
Parameter Masks

Instruction Set Model

Storage Model

Storage Model

Instruction set  Model

Figure 4.1: Processor model generation from Sim-nML description

The first step is to convert Sim-nML description into the class hierarchy. For

this purpose, either we can use a parser capable of generating the class hierarchy

directly from description or a parser which will generate the tabular structure from

description. In the later case, tabular structure will be converted to class hierarchy
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using the intermediate class structure. This conversion process need not be repeated

for other tool generators as long as they are using the same description. Thus, given a

Sim-nML description, the conversion step is carried out only once and the generated

class hierarchy can be used by other tool generators as well.

4.3.1 Storage Model Generation

Steps involved in the storage model generation are as follows.

• The storage model generator module accesses the class hierarchy to generate

type definitions and variable declarations. Type definitions are representation

of Sim-nML data types in equivalent host language types. If there is no equiv-

alent host language data type for a given Sim-nML data type, we map that

Sim-nML data type to next higher host language data type. For example, a 3

bit integer of Sim-nML is mapped to a signed char in the host language.

• Sim-nML variable declarations are converted to equivalent declarations in host

language. These declaration utilize type definitions generated in the previous

step.

4.3.2 Instruction Set Model Generation

The instruction set model components are derived from the attributes and the pa-

rameter of Sim-nML and rules. The mapping between the instruction set model

components and the corresponding Sim-nML attributes used to obtain these com-

ponents is shown in table 4.1.

As an example let us consider the hypothetical Sim-nML description shown in

figure 4.2.

The mapping for the ADD rule in this figure is the following.

• Binary image: The value of binary image is < 0000010000000000 >. It is

obtained by concatenating the opcode field < 000001 > with parameter fields

< 00000 > and < 00000 > of x and y respectively.
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Instruction set model Sim-nML attributes

instruction image image attribute

instruction mask image attribute

parameter masks image attribute

execution semantics action attribute

Table 4.1: Mapping between IS model components and Sim-nML attributes

• Binary mask: The value of binary mask is < 1111110000000000 >. It is

obtained by concatenating the opcode mask < 111111 > with parameter field

masks < 00000 > and < 00000 > of x and y respectively.

• Parameter mask: The value of the parameter mask for x is < 0000001111100000 >.

It is obtained by concatenating the opcode mask < 000000 > with parameter

field masks < 11111 > and < 00000 > of x and y respectively. Similarly, the

value of the parameter mask for y is < 0000000000011111 >. It is obtained

by concatenating the opcode mask < 000000 > with parameter field masks

< 00000 > and < 11111 > of x and y respectively.

• Execution semantics: The execution semantics is < R[x] = R[x] + R[y] >.

The goal of the instruction set model generator is to collect the above mentioned

Sim-nML constructs for all instructions in the target processor instruction-set. It

utilizes the class hierarchy and traversal library’s complete traversal utility for this

purpose. Steps involved in the instruction set model generation are as follows.

• Instruction set model generator starts traversal of Sim-nML instruction-set

tree from the root node. After reaching a leaf node, it starts building the

partial lists of parameters and image and action attributes toward the root

node. In case of an or node, the partial lists of its children are concatenated

together to form its partial list. On the other hand, in case of an and node,

its partial list is constructed through the partial lists of its parameters. This

process continues till we reach the root node. The root node contains the lists
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                   op ADD{x : int(5), y : int(5))
                   image = format("000001%5b%5b", x, y)
                   syntax = format("add R%d, R%d", x, y);
                   action = {
                          R[x] = R[x] + R[y];
                   }

                   op SUB{a : int(5), b : int(5))
                   image = format("000010%5b%5b", a, b)
                   syntax = format("sub R%d, R%d", a, b);
                   action = {
                          R[a] = R[a] − R[b];
                   }

op BIN_OP = ADD | SUB

Figure 4.2: Hypothetical Sim-nML description

of rule parameters and the image and action attributes in Sim-nML description

for all possible instructions in the target processor instruction set.

• Parameter lists together with image attribute lists are used to generate instruc-

tion image, instruction mask and parameter masks for all possible instructions

in the instruction set of target processor.

• Parameter lists together with action lists is used to generate a list of instruc-

tion functions for all possible instructions in the instruction set of the target

processor. Action attributes are stored as expression trees in the class hier-

archy. To generate instruction functions from action attribute, its expression

tree is traversed in in-order sequence. However, to handle certain sub expres-

sions, traversal might temporarily go out of in-order sequence. During this

traversal, the parameter list is used to generate parameter references in action

attribute. The instruction functions are generated in the host language.

The process of building of instruction-set list and generation of instruction-set model
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using the example Sim-nML description given in figure 4.2 is shown in figure 4.3

and figure 4.4 respectively.

                                  BIN_OP

                            ADD          SUB

                     x          y    a            b

       step1: Process leaf node x
              image−list = <>
              parameter−list = <>
              action−list = <>
       step3: Process and node ADD
              image−list = <000001, x, y>
              parameter−list = <x, y>
              action−list = < R[x]=R[x]+R[y] >
       step5: Process leaf node b
              image−list = <>
              parameter−list = <>
              action−list = <>

       step2: Process leaf node y
              image−list = <>
              parameter−list = <>
              action−list = <>
       step4: Process leaf node a
              image−list = <>
              parameter−list = <>
              action−list = <>
       step6: Process and node SUB
              image−list = <000010, a, b>
              parameter−list = <a, b>
              action−list = < R[a]=R[a]−R[b] >

       step7: Process root or node BIN_OP (concatenate lists of ADD and SUB)
              image−list = < <000001, x, y>, <000010, a, b> >
              parameter−list = < <x, y>, <a, b> >
              action−list = < < R[x]=R[x]+R[y] >, < R[a]=R[a]−R[b] > >

                             Instruction−set Tree

   Building of instruction set−lists  

Figure 4.3: Instruction set list building from description of figure 4.2

4.3.3 Implementation of Bit-True Arithmetic

Sim-nML supports bit-true description of a processor architecture. To support bit-

true evaluation of all expressions in our simulator, we generate C code that evaluates

the correct expression. The evaluation is carried out using the following operations.

• Type Pull: Given an operator and its operands along with their types and

bit widths, this operation calculates the type and bit width of the result of
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     parameter−list = < <x, y>, <a, b> >
     instruction−image =>  < <0000010000000000> <0000100000000000> >
     instruction−mask =>   < < 1111110000000000> <1111110000000000> >       

                           < <0000001111100000>, <0000000000011111> > >
     parameter−masks =>  < < <0000001111100000>, <0000000000011111> >, 

   Instruction−set model generation
     image−list = < <000001, x, y>, <000010, a, b> >

                           < R[p1]=R[p1]−R[p2] > >  (p1=a, p2=b)
     action−semantics =>    < < R[p1]=R[p1]+R[p2] >,   (p1=x, p2=y)

     action−list = < < R[x]=R[x]+R[y] >, < R[a]=R[a]−R[b] > >
     parameter−list = < <x, y>, <a, b> >

Figure 4.4: Instruction set model generation from description of figure 4.2

that operation. For example, if two 3 bit integers are added, result will be an

integer of 4 bit. In an expression tree, this operation is applied from bottom

to top. As data types for leaf nodes are known in advance, data types of

internal nodes are calculated bottom up from leaf nodes to the root node in

an incremental way.

• Type Correction: After application of a type pull operation and calculation

of resulting data type for an expression, if it is found that host language data

types are not capable of producing a result of that precision, operands of

that expression are type casted to new host language data types capable of

producing the desired result. For example, if two 32 bit integers are added,

type pulled result will be an integer of 33 bit. However, in C language, addition

of two 32 bit integers will always be a 32 bit integer on a 32 bit machine.

Thus, to avoid loss of one bit in result, both operands are sign extended to

64 bit data types. In an expression tree, this operation is applied from top

to bottom. Type correction of a node is applied to all its descendants in a

recursive manner.
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• Type Push: In an assignment operation, if bit width of l-value is smaller than

that of r-value, we can possibly save computation. In type push operations,

data types of operands are truncated to an extent that precision of resulting

data type is maintained. For example, if two 32 bit numbers are added and

assigned to a 8 bit number, both numbers can be truncated to 8 bits without

compromising the accuracy of result. In an expression tree, this operation

is applied from top to bottom. Type push of a node is applied to all its

descendants in a recursive manner.

• Type Coerce: This operation is used to implement type coerce operation of

Sim-nML language. In this operation, type and bit width specified in coerce

operation are forcefully applied to the target operand.

An example of above mentioned operations is shown in figure 4.5.

4.4 Processing of Executable Binary

Currently, our simulator supports ELF object files. It is targeted for statically linked

binaries.

4.4.1 ELF Format

ELF [TIS95] stands for “executable and linkable format”. It is a portable object file

format and extends across multiple operating environments. There are the following

three types of object files.

• Relocatable File: It holds code and data suitable for linking with other

object files to create an executable or a shared object file.

• Executable File: It holds code and data suitable for execution and provides

the information to create a program’s process image.

• Shared Object File: It holds code and data, which can be either linked with

other relocatable and shared object file to create a new relocatable file or with

other executable and shared file to create a new executable file.
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Expression :    x = a + b − coerce(int(8), c)

where a,b and c are of type int16 and x is of type int8

=

+

c(16)a(16) b(16) int(8)

Original expression tree

=

+

a(16) b(16) int(8)

=

+

int(8)

=

+

int(8)

=

+

a(16) b(16) int(8)
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push correct
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(18)(32)

(8)(32)

a(32) b(32)

(8)

(8)(8)

a(8) b(8)

c(8)

c(8)c(8)c(8)

− −

− −−

Figure 4.5: Application of bit-true arithmetic operations

ELF object file format is shown in in figure 4.61 for two different views.

First header in an ELF file is the ELF header. It is the only header with a

fixed position in the file. In a linking view, an ELF file is composed of sections

with one section header and one optional program header. On the other hand, in

an executable view, the file is composed of segments with one program header and

one optional section header. We are using a open source C++ library [Fin] to read

ELF files.

1Reproduced from [TIS95]
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Program Header Table (optional)

Section 1

ELF Header

. . . . . . .

Section n

. . . . . . . 

Section Header Table

ELF Header

. . . . . . .

. . . . . . . 

Program Header Table 

Segment 1

Segment n

Section Header Table  (optional)

EXECUTION VIEWLINKING VIEW

Figure 4.6: ELF object file format in two different views

4.4.2 Process Image Creation

Processing of an input file and involved modules are shown in figure 4.7. We are

extracting the following information from an input program.

• Start Address: It is address of the start-up routine in the program.

• Code Base: It is the lowest virtual start address among all code sections.

• Data Base: It is the lowest virtual start address among all sections, which are

going to hold space in process image.

• Stack Base: It is the start address of program stack.

• Heap Base: It is the start address of program heap.

• Program Code: Executable instructions in the program.

• Program Data: It includes initialized data, uninitialized data and zero initial-

ized space for .bss sections.
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Data Base
Stack Base
Heap Base

Image

Execution
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Code

Code + Data + Other Info
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Reader

Input Binary

Model
Generator

Instruction
Set

Model

Figure 4.7: Input file processing and decoding

4.4.3 Decoding of Program

We are using compiled simulation technique. Decoded entries of a program consti-

tutes its execution table. As shown in figure 4.1, we generate image, mask, parameter

masks and function code for all possible instructions in the described instruction set.

This information is stored in a instruction-set table. However, instead of instruc-

tion functions, their names are stored in the table. Actual functions are dumped

into a C file, which is later used by the simulator. On the other hand, we extract

program code from input binary as shown in figure 4.7. First step in the decoding

process is to determine whether we are dealing with a RISC architecture or a CISC

architecture. For this purpose, minimum and maximum length of an instruction is

determined from all possible instruction images. If these two lengths turn out to

be equal, we are dealing with a RISC machine otherwise we have a CISC machine

as the target architecture. We are using different techniques to decode RISC and

CISC architectures.
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• RISC Architecture: RISC architectures have fixed length instructions.

This makes decoding process relatively easy. We start with extracting number

of bytes equal to an instruction’s length from the program code. To decode

this instruction, it is masked with an instruction mask and compared with the

corresponding instruction image in the instruction-set table. We iterate over

the instruction-set table till a match is found. The next step is to find instruc-

tion parameters using instruction parameter masks. This complete process is

repeated till all instructions in the program code are decoded. However, if an

instruction does not match with any of the instructions in the instruction-set

table, a dummy decoding entry is created for this instruction.

• CISC Architecture: CISC architectures have variable length instructions.

This makes decoding process complicated, as we do not know instruction

length in advance. To handle this problem, we extract number of bytes equal to

minimum instruction length in the instruction-set. These bytes are compared

against the instruction-set table. If no match is found in the instruction-set

table, we add one more byte from the program code to current byte stream.

This process is repeated till a match is found or byte stream length equals to

maximum instruction length in the instruction-set. If a match is found, we

extract instruction parameters using the corresponding parameter masks and

advance over those many bytes in the program code. However, in the case of

a failure, we create a dummy decoding entry and advance over only one byte

in the program code. This whole process is repeated till we reach to the end

of the program code.

4.5 Simulator Generation and Operation

Complete simulation generation process is shown in figure 4.8. The processor model

generator generates a storage model and an instruction-set model. The storage

model consists of processor state variable declarations and corresponding type def-

initions. On the other hand, the instruction-set model consists of C functions to

simulate semantics of all the instructions in the instruction-set. The binary file pro-
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cessor generates the program image and corresponding state variables. The decoder

incorporated inside it, generates an execution table. The execution table consists of

parameters and address of target function for all instructions in the input program.

Processor
Model

Generator

Model
Storage

Instruction  
Set

Model

Declarations
Variable

Definitions
Type

Functions
Instruction

Binary File
Processor

Execution
Table

Decoder

Start Address
Code Base
Data Base
Stack Base
Heap Base

Image
Program

Simulator

Figure 4.8: Generation of simulator

We require the following modules in addition to those mentioned above in order

to make our simulator work properly.

• Main Program

It is an infinite loop which calculates index of the next instruction to be ex-

ecuted from the execution table. Index calculation can be done using the

following simple formulas.

index = (NIA − CODE BASE)/INST LEN (RISC Architecture)

index = (NIA − CODE BASE) (CISC Architecture)

where NIA = Next Instruction Address.
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After index calculation, it retrieves instruction parameters from the indexed

execution table entry and assigns them to a global parameter structure. All

the C instruction functions use this global parameter table for their parameter

references. In the next step, it calls the instruction function corresponding to

the indexed table entry. Finally, it loops back to index calculation.

• Interface to Operating System

This interface is used to provide a limited application binary interface (ABI) for

target program. It includes initialization of certain processor state variables.

One such example is initialization of the stack pointer register. One important

function of this ABI is to provide a system call interface to host operating

system. As the simulator is not capable to handle system calls by itself, it

diverts these calls to host operating system using this interface. The simulator

provides a system call number and parameters for that system call as input

parameters to this interface. The interface returns the result of system call

back to the simulator.

• Canonical Functions

As discussed in section 2.4.3, Sim-nML facilitates specification of user defined

functions through canonical functions. It is the responsibility of description

writer to provide definitions of these functions to the simulator. In the current

implementation, system calls are also specified through canonical functions.

• Operator Library

There are certain Sim-nML operators having no corresponding operator in

the host language. We handle most of these operators by expressing them

as a combination of one or more host language operators. However, certain

operators can not be handled in this way, as their operation depends on the

information generated at the run time of simulation. To handle these oper-

ators, we need to provide operator library functions. An occurrence of such

an operator in Sim-nML description generates a operator library call in the

generated simulator. Currently, we need to provide operator library functions

for only < . . > operator.
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Chapter 5

Interfacing Simulator with GDB

A functional simulator is used to verify correctness of a program for the target

processor. However, it provides no insight about the program or the processor state.

A debugger is a tool to examine these states at the granularity of instruction level.

GNU Debugger (GDB) is a generic debugging environment provided as open source.

We have interfaced our simulator with GDB to utilize its debugging functionality.

5.1 Overview of GDB

The block diagram of structure GDB is shown in figure 5.1. GDB is a portable

debugger and supports a large number of target architectures. It can be viewed as

structured in two parts: front-end and back-end. The back-end is completely target

dependent and hence the porting of GDB to a new target requires reconfiguration

of back-end for that target. It provides functionality like execution control, stack

frame analysis and physical target manipulation. The GDB front-end provides all

the functionality which are target independent such as user interface and symbol

handling. It can be accessed by different targets using the same interface.

The modular structure of GDB significantly reduces the efforts required to port

it to a new target as the bulk of GDB’s functionality is in its front-end which is

common for all the targets. GDB uses Binary File Descriptor(BFD) [BFD] library

for handling of various types of object file formats. BFD front-end and back-end
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collaborate with GDB front-end and back-end respectively.

GDB provides a remote interface to connect with simulators and use them as

target execution platforms. In case of the stand-alone remote simulators, GDB

target support is not required. On the other hand, remote simulators can provide

limited functionality and use GDB target support for the rest of the operations.

   GDB

Simulator

Simulator Interface

BFD

Front−end Back−end

Disassembler
   opcode lib

Readline lib
Libiberty lib

   Target
Architecture

Figure 5.1: GDB Structure

5.2 Remote-Sim interface of GDB

It provides the following template functions to be implemented by the target simu-

lator.

• SIM OPEN: This is main entry point for simulator. It should create fully

initialized simulator instance. In our implementation, this function generates

the processor model and returns a success value back to GDB. From this point

onward, GDB is connected to simulator.
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• SIM CLOSE: This function should destroy the simulator instance. All the

resources allocated till that point are released and certain other book-keeping

functions are performed. From this point onward GDB is no longer connected

to simulator.

• SIM LOAD: This function loads binary program into simulator memory.

We decode input program and create its execution table. Finally, simulator is

created as a dynamically linked library (DLL).

• SIM CREATE INFERIOR: This function prepares to run simulated pro-

gram. It should initialize target processor registers and state variables and set

command line arguments.

• SIM FETCH REGISTERS: This function should return the contents of

requested registers.

• SIM STORE REGISTERS: This function should overwrite requested

register’s contents with the value provided in the function parameters.

• SIM READ MEM: This function should return the contents of requested

memory location.

• SIM WRITE MEM: This function should overwrite requested memory

location’s contents with the value provided in the function parameters.

• SIM RESUME: This function runs the program in simulator. If the step

parameter in this function has non-zero value, simulator simulates only one

instruction of the program. On the other hand, for zero value of step parame-

ter, it runs simulator continuously till a breakpoint instruction is encountered

or program ends.

• SIM STOP REASON: This function returns the reason why the program

stopped. List of valid reasons is given below.

– EXITED: The program has terminated. The exit status is returned

through a signal.
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– STOPPED: The program has stopped. A signal value is returned to

identify the particular reason such as a breakpoint instruction, an illegal

instruction, a sim stop request, completion of a single step, an inter-

nal error, an access to wrong memory location or a mis-aligned memory

access.

– SIGNALED: The program has been terminated by a signal.

– RUNNING: The program is still running.

– POLLING: The simulator is waiting for a new command.

• SIM STOP: This function stops simulation process.

We have used the above mentioned remote-sim interface routines of GDB to

create the functional simulator from the files generated by the simulator generator.

Once the simulator instance is created, it is driven by these interface routines.

In GDB, implementation of breakpoint is handled by the target specific back-end.

Most of the targets handle a breakpoint by writing a special instruction code at the

breakpoint memory location. During the program execution, if control reaches the

breakpoint memory location, a trap signal is generated by the special instruction.

However, certain target architectures does not allow run-time modification of the

program code. Such targets need to implement breakpoints in their own way.
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Chapter 6

Results and Conclusions

In this chapter we will discuss performance results for functional simulator and

conclude our thesis with insights into future work.

6.1 Experiments

We have tested our functional simulator generator by generating a functional simu-

lator for PowerPC 603 machine. We have implemented all PowerPC instructions

other than those related to caches and processor pipeline.

6.1.1 Setting for Experiments

We have tested the simulator on the two different machines. The configuration of

these machines is as follows.

• Machine1: Intel P-4 2.40 GHz, a little-endian 32 bit processor with 512 MB

RAM running Linux-2.6.15-1

• Machine2: AMD Opteron 150 2.40 GHz, a little-endian 64 bit processor with

1 GB RAM running Linux-2.6.9-1

We have chosen a diverse set of applications to test our simulator. These applications

are listed below.
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• IntMatMul.c: Program to multiply two integer matrices. In this program,

we initialize two 500x500 integer matrices randomly and then multiply them.

• FloatMatMult.c: Program to multiply two floating point matrices. In this

program, we initialize two 500x500 floating point matrices randomly and then

multiply them.

• QuickSort.c: Program to sort integer array using quick sort algorithm. In

this program, we sort a randomly initialized integer array of size 5,000,000.

• HeapSort.c: Program to sort integer array using heap sort algorithm. In this

program, we sort a randomly initialized integer array of size 5,000,000.

• Fibonacci.c: The Fibonacci numbers form a sequence in which each number

is the sum of the two numbers before it. In our program, we calculate 40th

Fibonacci number.

• TowerHanoi.c: In this problem, we have three pegs and N discs are stacked

in order of size on peg 1, smallest at the top. The goal is to reposition the

stack of disks from peg 1 to peg 3 by moving one disk at a time, and, never

placing a larger disk on top of a smaller disk. In our program size of N is 27.

• NQueen.c: In this problem, we have to find all possible ways to put N chess

queens on an NxN chessboard so that none of them is able to capture any

other using the standard chess queen’s moves. In our program, N is 15.

6.1.2 Results

We have compiled these programs using GCC cross compiler for PowerPC machine

without any optimizations. We used statically linked binaries for testing as we do not

provide support for handling dynamic link library calls in our simulator. Number of

instructions simulated for each program is shown in table 6.1. Performance results

for Machine1 and Machine2 are shown in table 6.2 and table 6.3 respectively.
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Program name Number of instructions executed dynamically

IntMatMul.c 13308993481

FloatMatMult.c 13314493435

QuickSort.c 7888705002

HeapSort.c 6391378391

Fibonacci.c 8941339490

TowerHanoi.c 6710896691

NQueen.c 3224021024

Table 6.1: Number of instructions simulated for each test program

Program name Time (in seconds) Instructions per second

IntMatMul.c 790 16846827

FloatMatMult.c 798 16684828

QuickSort.c 735 10732931

HeapSort.c 673 9496847

Fibonacci.c 870 10277401

TowerHanoi.c 716 9372760

NQueen.c 317 10170413

Table 6.2: Performance results on Machine1
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Program name Time (in seconds) Instructions per second

IntMatMul.c 520 25594218

FloatMatMult.c 545 24430263

QuickSort.c 458 17224246

HeapSort.c 402 15898951

Fibonacci.c 560 15966677

TowerHanoi.c 440 15252037

NQueen.c 191 16879691

Table 6.3: Performance results on Machine2

Program name Ratio

IntMatMul.c 0.645805

FloatMatMult.c 0.646439

QuickSort.c 2.020546

HeapSort.c 2.382557

Fibonacci.c 2.666666

TowerHanoi.c 3.119999

NQueen.c 2.369668

Table 6.4: Operator library calls to number of simulated instructions ratio
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6.1.3 Analysis of Results

We are getting simulation speed in the range of 9-17 MIPS (million instructions

per second) for the Machine1 and 16-26 MIPS for Machine2. It is clear that

the Machine2 performs much better in comparison to the Machine1. The reason

behind this huge performance gap is superior configuration of Machine2. As the

relative performance of target applications is more or less same on both machines,

application level analysis of one machine holds true for other also. We will analyze

relative performance of the test applications on Machine1.

Among the seven chosen test applications, for five benchmarks we are getting

simulation speed in the range of 9.3-10.7 MIPS. Given the diversity of application

programs, this variation is expected. However, for first two applications, simulation

speed is in the range of 16.5-17 MIPS. Between these two group of applications,

there is a significant simulation speed gap of around 6-7 MIPS. This difference can

be understood by examining the operator library call patterns of the applications.

Table 6.4 shows the ratio of the number of operator library calls made by an ap-

plication to the number of instructions simulated for the application for all the test

applications. For first two applications the above mentioned ratio is less than 1,

while for others it is in the range of 2-3.2. This explains the better performance

results for the first two applications, as they are making relatively fewer operator

library calls which happens to be quite expensive. These results suggest that the

simulator performance can be improved significantly by optimizing the operator li-

brary functions. Similar effect can be achieved by writing the processor description

containing fewer Sim-nML constructs which generate operator library calls.

6.2 Conclusions

In this thesis, we have described retargetable processor description language Sim-

nML and its application in automatic generation of processor modeling software

tool-sets for embedded systems. We have enhanced Sim-nML’s resource usage model

so that it can handle the processor timing model more effectively. We have also de-

signed a C++ class hierarchy as an intermediate structure between Sim-nML pro-
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cessor description and tool generators for easy and efficient processing of processor

description. We have also built a traversal library for tool independent traversal of

the class hierarchy.

We have also built a functional simulator generator based on Sim-nML processor

descriptions. We have tested the simulator generated by our simulator generator for

PowerPC 603 architecture. Our simulator takes the PowerPC description and an

ELF program binary as input and generates the simulator as a C language program.

We are using compiled simulation technique for simulator generation and our target

binaries are statically linked. We have also interfaced our simulator with GDB using

its remote-sim interface for providing a generic debugging environment.

6.3 Future Work

We propose the following future extensions to our work.

• Although, Sim-nML can be used to describe data types of arbitrary bit-length,

our implementation does not support data types having bit-length more than

that of supported by the host language primitive data types. It can be ex-

tended to provide support for arbitrary bit-length data types.

• In the process of simulator generation, we are not doing any optimizations.

Compiler optimization techniques used to generate optimized code can be

utilized in the above process. Similarly, the simulator operator library imposes

significant overhead on the performance of the simulator. It can be replaced

with a more optimized operator library.

• The Sim-nML class hierarchy together with the traversal library provides a

unique platform for development of retargetable tools. Processor modeling

tools such as performance simulators, compiler back-end and disassemblers

can be developed using this platform.

• Currently, our debugging environment only supports the processor models

already supported by GDB. This debugger can me made generic enough to
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support Sim-nML generated processor models. It requires porting of GDB as

well as of BFD library to Sim-nML generated processor models.

• Currently, we are using an ELF reader library for reading the object file. Sim-

nML development environment can be interfaced with BFD library for easy

and efficient reading as well as writing of object file formats.
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Appendix A

Grammar for Sim-nML language

MachineSpec :

| MachineSpec LetDef

| MachineSpec TypeSpec

| MachineSpec MemorySpec

| MachineSpec RegisterSpec

| MachineSpec VarSpec

| MachineSpec ModeRuleSpec

| MachineSpec OpRuleSpec

| MachineSpec ResourceSpec

LetDef : LET ID ’=’ LetExpr

LetExpr : ConstNumExpr

| STRING_CONST

| IF ConstNumExpr THEN LetExpr OptionalElseLetExpr ENDIF

| SWITCH ’(’ ConstNumExpr ’)’ ’{’ CaseLetExprList ’}’

OptionalElseLetExpr :

| ELSE LetExpr
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CaseLetExprList : CaseLetExprList1

| CaseLetExprList1 DEFAULT ’:’ LetExpr

CaseLetExprList1 : CaseLetExprStat

| CaseLetExprList1 CaseLetExprStat

CaseLetExprStat : CASE ConstNumExpr ’:’ LetExpr

ResourceSpec : RESOURCE ResourceList

ResourceList : ID

| ID ’[’ ConstNumExpr ’]’

| ResourceList ’,’ ID

| ResourceList ’,’ ID ’[’ ConstNumExpr ’]’

TypeSpec : TYPE ID ’=’ TypeExpr

TypeExpr : BOOL

| INT ’(’ ConstNumExpr ’)’

| CARD ’(’ ConstNumExpr ’)’

| FIX ’(’ ConstNumExpr ’,’ ConstNumExpr ’)’

| FLOAT ’(’ ConstNumExpr ’,’ ConstNumExpr’)’

| ’[’ ConstNumExpr DOUBLE_DOT ConstNumExpr ’]’

| ENUM ’(’ IdentifierList ’)’

IdentifierList : ID

| ID ’=’ CARD_CONST

| IdentifierList ’,’ ID

| IdentifierList ’,’ ID ’=’ CARD_CONST

MemorySpec : MEM ID ’[’ SizeType ’]’ OptionalMemVarAttr
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RegisterSpec : REG ID ’[’ SizeType ’]’ OptionalRegAttr

VarSpec : VAR ID ’[’ SizeType ’]’ OptionalMemVarAttr

SizeType : TypeExpr

| ConstNumExpr

| ConstNumExpr ’,’ TypeExpr

OptionalMemVarAttr :

| ALIAS ’=’ MemLocation

OptionalRegAttr :

| PortsDef

| InitialDef

| PortsDef InitialDef

| InitialDef PortsDef

PortsDef : PORTS ’=’ CARD_CONST ’,’ CARD_CONST

InitialDef : INITIALA ’=’ ConstNumExpr

MemLocation : ID Opt_Bit_Optr

| ID ’[’ NumExpr ’]’ Opt_Bit_Optr

ModeRuleSpec : MODE ID ModeSpecPart

ModeSpecPart : AndRule OptionalModeExpr AttrDefList

| OrRule

OptionalModeExpr :
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| ’=’ Expr

OpRuleSpec : OP ID OpRulePart

OpRulePart : AndRule AttrDefList

| OrRule

OrRule : ’=’ Identifier_Or_List

Identifier_Or_List : ID

| Identifier_Or_List ’|’ ID

AndRule : ’(’ ParamList ’)’

ParamList :

| ParamListPart

| ParamList ’,’ ParamListPart

ParamListPart : ID ’:’ TypeExpr

| ID ’:’ ID

AttrDefList :

| AttrDefList AttrDef

AttrDef : ID ’=’ AttrDefPart

| SYNTAX ’=’ ID ’.’ SYNTAX

| SYNTAX ’=’ AttrExpr

| IMAGE ’=’ ID ’.’ IMAGE

| IMAGE ’=’ AttrExpr

| ACTION ’=’ ID ’.’ ACTION

| ACTION ’=’ ’{’ Sequence ’}’
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| USES ’=’ UsesDef

AttrDefPart : Expr

| ’{’ Sequence ’}’

AttrExpr : STRING_CONST

| FORMAT ’(’ STRING_CONST ’,’ FormatIdlist ’)’

FormatIdlist : FormatId

| FormatIdlist ’,’ FormatId

FormatId : ID

| ID ’.’ IMAGE OptBitSelect

| ID ’.’ SYNTAX

| DOLLAR ’+’ ConstNumExpr

| DOLLAR ’-’ ConstNumExpr

| ConstNumExpr ’-’ DOLLAR

| ID BinOp ConstNumExpr

| ConstNumExpr BinOp ID

| ’+’ ID

| ’-’ ID

| ’~’ ID

OptBitSelect :

| BIT_LEFT CARD_CONST DOUBLE_DOT CARD_CONST BIT_RIGHT

Sequence :

| StatementList ’;’

StatementList : Statement

| StatementList ’;’ Statement
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Statement : ID

| ID ’.’ ACTION

| ID ’.’ ID

| Location ’=’ Expr

| ConditionalStatement

| STRING_CONST ’(’ ArgList ’)’

| ERROR ’(’ STRING_CONST ’)’

ArgList :

| Expr

| ArgList ’,’ Expr

Opt_Bit_Optr :

| Bit_Optr

Location : LocationVal

| Location DOUBLE_COLON LocationVal

LocationVal : ID Opt_Bit_Optr

| ID ’[’ Expr ’]’ Opt_Bit_Optr

ConditionalStatement : IF NumExpr THEN Sequence OptionalElse ENDIF

| IF ’(’ STRING_CONST ’(’ ArgList ’)’ ’)’

THEN Sequence OptionalElse ENDIF

| SWITCH ’(’ NumExpr ’)’ ’{’ CaseList ’}’

| SWITCH ’(’ STRING_CONST ’(’ ArgList ’)’ ’)’

’{’ CaseList ’}’

OptionalElse :

| ELSE Sequence
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CaseList : CaseList1

| CaseList1 DEFAULT ’:’ Sequence

CaseList1 : CaseStat

| CaseList1 CaseStat

CaseStat : CASE Expr ’:’ Sequence

Expr : NumExpr

| NonNumExpr

NonNumExpr : StringExpr

| SyntaxImageExpr

| DOLLAR

| IF NumExpr THEN Expr OptionalElseExpr ENDIF

| SWITCH ’(’ NumExpr ’)’ ’{’ CaseExprList ’}’

| STRING_CONST ’(’ ArgList ’)’

| ’(’ NonNumExpr ’)’

NumExpr : ConstNumExpr

| VarNumExpr

ConstNumExpr : ConstExprVal

| ConstNumExpr BinOp ConstExprVal

ConstExprVal : CARD_CONST

| FIXED_CONST

| BINARY_CONST

| HEX_CONST

| ’!’ ConstNumExpr
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| ’~’ ConstNumExpr

| ’+’ ConstNumExpr %prec ’~’

| ’-’ ConstNumExpr %prec ’~’

| ’(’ ConstNumExpr ’)’

VarNumExpr : VarExprVal

| VarNumExpr BinOp VarExprVal

| VarNumExpr BinOp ConstExprVal

| ConstNumExpr BinOp VarExprVal

VarExprVal : MemLocation

| COERCE ’(’ SizeType ’,’ Expr’)’

| ’!’ VarNumExpr

| ’~’ VarNumExpr

| ’+’ VarNumExpr %prec ’~’

| ’-’ VarNumExpr %prec ’~’

| ’(’ VarNumExpr ’)’

Bit_Optr : BIT_LEFT Bit_Expr DOUBLE_DOT Bit_Expr BIT_RIGHT

SyntaxImageExpr : ID ’.’ SYNTAX

| ID ’.’ IMAGE

| ID ’.’ ID

| STRING_CONST

StringExpr : STRING_CONST ’<’ STRING_CONST

| STRING_CONST ’>’ STRING_CONST

| STRING_CONST EQ STRING_CONST

BinOp : ’+’

| ’-’
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| ’*’

| ’/’

| ’%’

| DOUBLE_STAR

| LEFT_SHIFT

| RIGHT_SHIFT

| ROTATE_LEFT

| ROTATE_RIGHT

| ’<’

| ’>’

| LEQ

| GEQ

| EQ

| NEQ

| ’&’

| ’^’

| ’|’

| AND

| OR

Bit_Expr : ID

| Bit_Expr ’+’ Bit_Expr

| Bit_Expr ’-’ Bit_Expr

| Bit_Expr ’*’ Bit_Expr

| Bit_Expr ’/’ Bit_Expr

| Bit_Expr ’%’ Bit_Expr

| Bit_Expr DOUBLE_STAR Bit_Expr

| ’(’ Bit_Expr ’)’

| FIXED_CONST

| CARD_CONST

| STRING_CONST
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| BINARY_CONST

| HEX_CONST

CaseExprList : CaseExprList1

| CaseExprList1 DEFAULT ’:’ Expr

CaseExprList1 : CaseExprStat

| CaseExprList1 CaseExprStat

CaseExprStat : CASE Expr ’:’ Expr

OptionalElseExpr :

| ELSE Expr

UsesDef : NULLUSAGE

| Clause

| UsesDef ’,’ Clause

Clause : UsesSpec

| CondExpr ’(’ Clause OpAndOr UsesSpec ’)’ ActionTimeSpec

OpAndOr : ’&’

| ’|’

UsesSpec : CondExpr ResourceUsageSpec ActionTimeSpec

CondExpr :

| CondExpr ’{’ Expr ’}’

ActionTimeSpec :

| Action
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| Time

| Action Time

| Time Action

Time : ’#’ ’{’ Expr ’}’

Action : ’:’ ID

| ’:’ ACTION

ResourceUsageSpec : ResourceUsage

| IF Expr THEN Clause OptionalElseUses ENDIF

OptionalElseUses :

| ELSE Clause

ResourceUsage : ID ’.’ USES

| ID OptReqMark

| RegOpr

OptReqMark :

| ’<’

| ’>’

| ’[’ ’]’

| ’[’ Expr ’]’

RegOpr: ID ’[’ Expr ’]’ ’.’ ITR

| ID ’[’ Expr ’]’ ’.’ ITW

| ID ’[’ Expr ’]’ ’.’ FORWARD

| ID ’[’ Expr ’]’ ’.’ RDONE
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| ID ’[’ Expr ’]’ ’.’ WDONE

| ID ’.’ ITR

| ID ’.’ ITW

| ID ’.’ FORWARD

| ID ’.’ RDONE

| ID ’.’ WDONE
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Appendix B

Class Hierarchy Structure

In this appendix we are going to discuss the Class Hierarchy structure. All the base

classes in hierarchy hold a pointer to a context class for error reporting.

B.1 Instruction Set Class

Sim-nML supports description of processors with multiple instruction sets i.e. ARM

and ARM Thumb instruction sets of ARM architecture. This class holds all the

instruction-set descriptions for the target processor.

class IntructionSet{

list<IR*> ir_list;

Context* ctx;

}

• ir list: This field holds a list of pointers to all instruction-sets in the Sim-nML

description.

B.2 IR Class

This is the main class to represent an instruction-set description.
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class IR{

list<Declaration*> ir_declare_list;

list<Rule*> ir_rule_list;

Context* ctx;

}

• ir declare list: This field holds a list of pointers to all the declarations in the

description.

• ir rule list: This field holds a list of pointers to all the rules in the description.

B.3 Declaration Class

This is a base class to describe all the declarations in the Sim-nML description.

class Declaration{

protected:

string decl_name;

int decl_id;

ir_decl_type decl_type;

Context* ctx;

}

• decl name: This field holds name of the declaration variable.

• decl id: This field holds a unique id for each declaration in the description.

• decl type: This field holds the type of the declaration. It can take the following

values: CONST, RESOURCE, STORAGE.

B.4 Constant Class

This is a derived class from the Declaration class to represent constants in the

description.
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class Constant :public Declaration{

protected:

ir_const_type const_type;

}

• const type: This field holds type of the constant. It can take one of the fol-

lowing values: INT CONST, FLOT CONST, STR CONST.

B.5 Integer Constant Class

This is a derived class from the Constant class to represent integer constants in the

description.

class IntConst :public Constant{

int const_num_val;

}

• const num val: This field holds the value of the integer constant.

B.6 String Constant Class

This is a derived class from the Constant class to represent string constants in the

description.

class StrConst :public Constant{

string const_str_val;

}

• const str val: This field holds the value of the string constant.

B.7 Real Constant Class

This is a derived class from the Constant class to represent real constants in the

description.
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class FloatConst :public Constant{

string const_num_val;

}

• const num val: This field holds the value of the real constant.

B.8 Resource Class

This is a derived class from the Declaration class to represent resources e.g. fetch

unit in the description.

class Resource :public Declaration{

int res_no_units;

}

• res no units: This field holds the total number of instances of the resource.

B.9 Storage Class

This is a derived class from the Declaration class to represent storage model of the

target processor.

class Storage :public Declaration{

protected:

int stor_size;

Type* stor_data_type;

ir_storage_type stor_type;

}

• stor size: This field holds total number of storage elements.

• stor data type: This field holds data type of the storage element. It is specified

through a pointer to the Type class.

• stor type: This field holds type of the storage element. It can take one of the

following values: IR REG, IR MEM, IR VAR.
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B.10 Register Class

This is a derived class from the Storage class to represent registers in the target

processor.

class Register :public Storage{

int reg_read_ports;

int reg_write_ports;

int reg_init_val;

}

• reg read ports: This field holds the number of read ports for a register file.

• reg write ports: This field holds the number of write ports for a register file.

• reg init val: This field holds the initial value of the registers.

B.11 Memory Class

This is a derived class from the Storage class to represent memory in the target

processor.

class Memory :public Storage{

AttrDef* mem_attr_def;

}

• mem attr def: This field holds a pointer to the AttrDef class, which will hold

various attributes, e.g. alias, of the memory.

B.12 Variable Class

This is a derived class from the Storage class to represent local variables in Sim-nML

description.
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class Variable :public Storage{

AttrDef* var_attr_def;

}

• var attr def: This field holds a pointer to the AttrDef class, which will hold

various attributes of the local variable.

B.13 Rule Class

This is a base class for all the rules in Sim-nML description.

class Rule{

protected:

string rule_name;

int rule_id;

ir_rule_type rule_type;

list<RetList*> ret_list;

Context* ctx;

}

• rule name: This field holds the name of the rule.

• rule id: This field holds a unique id for the rule.

• rule type: This field holds the type of the rule. It can take one of the following

values: OR RULE, AND RULE.

• ret list: This field holds a list of pointers to the RetList class. It is used by

various tool generators to store tool-centric information in the rule.

B.14 Or Rule Class

This is a derived class from the Rule class to represent or rules in the description.
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class OrRule :public Rule{

int or_no_child;

list<Rule*> or_and_list;

}

• or no child: This field holds the total number of children for the or rule.

• or and list: This field holds a list of pointers to child rules.

B.15 And Rule Class

This is a derived class from the Rule class to represent and rules in the description.

class AndRule :public Rule{

int and_total_params;

int and_total_attrs;

list<Param*> and_param_list;

list<IrAttr*> and_attr_list;

}

• and total params: This field holds the total number of parameters in the and

rule.

• and total attrs: This field holds the total number of attributes in the and rule.

• and param list: This field holds the list of pointers to the parameters in the

and rule.

• and attr list: This field holds the list of pointers to the attributes in the and

rule.

B.16 IrAttr Class

This is a base class for all the attributes of an and rule.

93



class IrAttr{

protected:

string attr_name;

int attr_id;

ir_attr_type attr_type;

Context* ctx;

}

• attr name: This field holds the name of the attribute.

• attr id: This field holds a unique id for the attribute.

• ir attr type: This field holds the type of the attribute. It can take one of the

following values: SYNTAX, IMAGE, ACTION, USES, OTHER.

B.17 ImageSyntax Class

This is a derived class from the IrAttr class to represent image and syntax attributes

in an and rule.

class ImageSyntax :public IrAttr{

int imgsyn_no_subpart;

list<AttrSubPart*> imgsyn_subpart_list;

}

• imgsyn no subparts: This field holds the total number of subparts in an image

or syntax pattern.

• imgsyn subpart list: This field holds the definitions of all the subparts in an

image or syntax pattern. It is specified through a list of pointers to the Attr-

SubPart class.
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B.18 AttrSubPart Class

This is a base class for defining various subparts of an image or syntax attribute.

class AttrSubPart{

protected:

ir_subpart_type subpart_type;

int subpart_width;

Context* ctx;

}

• subpart type: This field holds the type of AttrSubPart. It can take one of the

following values: STRING, PARAMETER, ATTR DEF.

• subpart width: This field holds the width of the subpart. It is more relevant

for an image attribute as width will indicate the number of bits in an image

pattern.

B.19 StrSubPart Class

This is a derived class from the AttrSubPart Class to represent strings in an image

or syntax attribute.

class StrSubPart :public AttrSubPart{

string subpart_str;

}

• subpart str: This field holds value of the string subpart of an image or syntax

attribute.

B.20 ParamSubPart Class

This is a derived class from the AttrSubPart Class to represent parameters in an

image or syntax attribute.
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class ParamSubPart :public AttrSubPart{

char specifier_type;

Param* subpart_param;

}

• specifier type: This field holds the specifier type of the parameter. It can take

one of the following values: %s , %d, %b, %o, %x.

• subpart param: This field holds the definition of a parameter. It is specified

through a pointer to the Param class.

B.21 ExprSubPart Class

This is a derived class from the AttrSubPart class to represent expressions in an

image or syntax attribute.

class ExprSubPart :public AttrSubPart{

char specifier_type;

AttrDef* subpart_attr_def;

}

• specifier type: This field holds the type of parameter specifier of an expression

type parameter. It can take one of the following values: %s, %d, %b, %o, %x.

• subpart attr def: This field holds the specification of an expression type pa-

rameter. It is specified through a pointer to the AttrDef class.

B.22 Action Class

This is a derived class from the IrAtrr class to represent the action attribute of an

and rule.

class Action :public IrAttr{

int action_no_def;
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AttrDef* action_attr_def;

}

• action no def: This field holds the total number of attribute definitions in an

action attribute.

• action attr def: This field holds a pointer to the AttrDef class and defines the

semantics of the action attribute.

B.23 Uses Class

This is a derived class from the IrAttr class to represent the uses attribute of an

and rule.

class Uses :public IrAttr{

list<Clause*> uses_clause_list;

}

• uses clause list: This field holds a list of pointers to the Clause class. The

uses attribute is composed of list of clauses.

B.24 Clause Class

This is a base class to represent a clause in a uses attribute. The uses attribute is

composed of list of pointers to these clauses.

class Clause{

protected:

ir_clause_type clause_type;

AttrDef* clause_cond;

AttrDef* clause_action;

AttrDef* clause_time;
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AttrDef* clause_if_expr;

Clause* clause1;

Clause* clause2;

Context* ctx;

}

• clause type: This field holds the type of the clause. It can take one of the fol-

lowing values: CLAUSE SIMPLE, CLAUSE AND, CLAUSE OR, CLAUSE IF.

• clause cond: This field holds a pointer to the AttrDef class and represents the

conditional expression of the clause.

• clause action: This field holds a pointer to the AttrDef class and represents

optional book-keeping actions of the clause.

• clause time: This field holds a pointer to the AttrDef class and represents

optional timing expression of the clause.

• clause1: This field holds a pointer to the Clause class and represents first

operand of an and or or type of clause.

• clause2: This field holds a pointer to the Clause class and represents second

operand of an and or or type of clause.

B.25 ResUnitSpec Class

This is a derived class from the Clause class to specify a resource unit in the uses

attribute.

class ResUnitSpec :public Clause{

ir_res_unit_type res_unit_type;

}

• res unit type: This field holds the type of a resource unit. It can take one of

the following values: RESOURCE USES, PARAM USES.
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B.26 ResUses Class

This is a derived class from the ResUnitSpec to directly specify the resource used.

class ResUses :public ResUnitSpec {

ir_res_uses_type res_uses_type;

ir_res_uses_opr res_uses_opr;

Declaration* res_uses_dec;

AttrDef* res_uses_index;

}

• res uses type: This field holds the type of resource, whether resource instance

or register operation. It can take one of the following values: RES INST,

REG ITR, REG ITW, REG READ, REG FORWARD, REG RDONE, REG WDONE.

• res uses opr: This field holds the operation to be applied on resource or

register. It can be one of the following: RES ACQ, RES REL, RES ALL,

RES REG INDEX, RES REG SIMPLE.

• res uses dec: This field holds the pointer to the declaration of resource or

register.

• res uses index: This field holds the value of index in case res uses opr is equal

to RES REG INDEX.

B.27 UsesAttr Class

This is a derived class from the ResUnitSpec to specify the rule referenced for the

resource.

class UsesAttr :public ResUnitSpec {

Rule* rule;

}

• rule: This field is a pointer to the rule referenced for resource.
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B.28 Param Class

This is a class to specify parameters in an and rule.

class Param{

protected:

int param_no;

string param_name;

Type* param_type;

Context* ctx;

}

• param no: This field holds a unique parameter number.

• param name: This field holds the name of the parameter.

• param type: This field holds a pointer to the Type class and specifies the type

of the parameter.

B.29 Type Class

This is a base class to specify both basic types and rule types.

class Type{

protected:

ir_arg_type arg_type;

Context* ctx;

}

• arg type: This field holds the type specification. It can take the following two

values: DATA TYPE, RULE TYPE.

100



B.30 BasicType Class

This is a derived class from the Type class to represent basic data types.

class BasicType :public Type{

ir_var_data_type var_data_type;

int var_val1;

int var_val2;

}

• var data type: This field holds the data type of a variable or parameter. All

supported data types can be found in section 2.2.3.

• var val1: This field holds the bit width of integer part of the data type.

• var val2: This field holds the bit width of fractional part of the data type.

B.31 RuleType Class

This is a derived class from the Type class to represent the parameters of type rule.

class RuleType :public Type{

Rule* param_rule;

}

• param rule: This field holds a pointer to the Rule class.

B.32 AttrDef Class

This is a base class to specify expressions in Sim-nML description. Expressions

are stored in a tree like structure and this class is used to create the tree nodes

recursively.
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class AttrDef{

protected:

ir_attr_def_type attr_def_type;

Context* ctx;

}

• attr def type: This field holds the type of an expression.

B.33 DeclDef Class

This is a derived class from the AttrDef class to represent declared variables used

in an expression.

class DeclDef :public AttrDef{

Declaration* decl_def;

}

• decl def: This field holds a pointer to the Declaration class to define declared

variables in an expression.

B.34 ParamUse Class

This is a derived class from the AttrDef class to represent parameters in an expres-

sion.

class ParamUse :public AttrDef{

Param* param;

}

• param: This field holds a pointer to the Param class to define parameters in

an expression.
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B.35 TypeUse Class

This is a derived class from the AttrDef class to represent data types in an expression.

class TypeUse :public AttrDef{

Type* type;

}

• param: This field holds a pointer to the Type class to define data types in an

expression.

B.36 AttrNameDef Class

This is a derived class from the AttrDef class to represent attribute names in an

expression.

class AttrNameDef :public AttrDef{

string attr_name;

}

• param: This field holds name of an attribute in an expression.

B.37 LiteralDef Class

This is a derived class from the AttrDef class to represent literal values in an ex-

pression.

class LiteralDef :public AttrDef{

protected:

ir_literal_type literal_type;

}

• literal type: This field holds the type of literal in an expression. It can take one

of the following values: INT LITERAL, REAL LITERAL, STR LITERAL.
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B.38 IntLiteral Class

This is a derived class from the Literal class to describe integer literals in an expres-

sion.

class IntLiteral :public LiteralDef{

protected:

int int_val;

}

• int val: This field holds the value of the integer literal in an expression.

B.39 RealLiteral Class

This is a derived class from the Literal class to describe real literals in an expression.

class RealLiteral :public LiteralDef{

float real_val;

}

• real val: This field holds the value of the real literal in an expression.

B.40 StrLiteral Class

This is a derived class from the Literal class to describe string literals in an expres-

sion.

class StrLiteral :public LiteralDef{

string str_val;

}

• str val: This field holds the value of the string literal in an expression.
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B.41 OprDef Class

This is a derived class from the AttrDef class to describe sub expressions within an

expression.

class OprDef :public AttrDef{

ir_attr_def_opr opr_type;

int opr_arity;

list<AttrDef*> oprnd_list;

}

• opr type: This field holds the type of operator in a sub expression. The com-

plete list of operators supported by Sim-nML is given in section 2.4.2.

• opr arity: This field holds the value of the number of operands in a sub ex-

pression.

• oprnd list: This field holds a list of pointers to the AttrDef class to describe

the operands in a sub expression.

B.42 Traversal Library Interface

To handle tool specific data, we are providing the following two classes.

• RetList Class

class RetList{

}

This class is not a part of class hierarchy. It is used by tool generators to

store tool-centric information in it. RetList is a base class with no fields. Tool

generators need to derive subclasses to hold their specific information.

• ToolSpec Class
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class ToolSpec{

public:

virtual list<RetList*> tool_processor(list<Type*> and_param_list,

list<IrAttr*> attr_list);

}

This class is used by tool generators to perform tool-specific operations. Tool-

Spec is a base class with one virtual function. This virtual function takes a

parameter list and an attribute list as parameters. It returns a list of pointers

to the RetList class. Tool generators need to derive subclasses to hold their

specific information and implement the tool processor function.

Traversal library interface is implemented using a virtual function and list of pointers

to the RetList class in the Rule class. This function is implemented by both the

And class and the Or class. Signature of the traversal function is given below.

virtual void traverse(ToolSpec* tool_spec);

It takes a pointer to the ToolSpec class as parameter to carry tool specific informa-

tion.
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