
TransCrypt : Design of a Secure and
Transparent Encrypting File System

Satyam Sharma

Department of Computer Science & Engineering

Indian Institute of Technology Kanpur

August 2006

TransCrypt : Design of a Secure and
Transparent Encrypting File System

A Thesis Submitted

In Partial Fulfillment of the Requirements

For the Degree of

Master of Technology

by

Satyam Sharma

to the

Department of Computer Science & Engineering

Indian Institute of Technology Kanpur

August 2006

Abstract

Increasing thefts of sensitive data owned by individuals and organizations call

for an integrated solution to the problem of storage security. Most existing systems

are designed for personal use and do not address the unique demands of enterprise en-

vironments. An enterprise-class encrypting file system must take a cohesive approach

towards solving the issues associated with data security in organizations. These in-

clude flexibility for multi-user scenarios, transparent remote access of shared file sys-

tems and defense against an array of threats including insider attacks while trusting

the fewest number of entities.

In this thesis, we formalize a general threat model for storage security and

discuss how existing systems that tackle a narrow threat model are thus susceptible to

attacks. We present the conceptualization, design and implementation of TransCrypt,

a kernel-space encrypting file system that incorporates an advanced key management

scheme to provide a high grade of security while remaining transparent and easily

usable. It examines difficult problems not considered by any existing system such as

avoiding trusting the superuser account or privileged user-space process and proposes

novel solutions for them. These enhancements enable TransCrypt to protect against

a wider threat model and address several lacunae in existing systems.

Acknowledgements

I wish to express my gratitude to my thesis supervisors, Prof. Dheeraj Sanghi

and Prof. Rajat Moona, whose guidance and support enabled this work. Discussions

with them helped me immensely throughout the conceptualization and implementa-

tion of this work. I am also grateful to Prof. Manindra Agrawal for his insightful

and valuable ideas. I also thank the Prabhu Goel Research Centre for Computer

and Internet Security for partially supporting my thesis and providing me with the

wonderful facilities and freedom that enabled me to undertake this project.

I would also like to thank Abhijit Bagri and Bhanu Chandra for their co-

operation and innovative suggestions. Thanks are also due to my colleagues, Palak

Agarwal, Chinmay Asarawala, Devendar Bureddy, Vinaya Natarajan and Dungara

Ram Choudhary, who created an enjoyable and pleasant work environment.

Finally, I am forever grateful to my parents, who have loved, supported and

encouraged me in all my endeavours.

i

Contents

1 Introduction 1

1.1 Motivation for Data Security . 1

1.2 Encrypting File Systems . 2

1.3 Scope of this Work . 3

1.4 Organization of the Thesis . 3

2 Related Work 4

2.1 System Design Approaches . 4

2.2 Popular Encrypting File Systems . 6

3 The TransCrypt Approach 8

3.1 Threat Model . 8

3.1.1 Offline attacks . 9

3.1.2 Online attacks . 9

3.2 TransCrypt Specifications . 11

3.2.1 File integrity . 11

3.2.2 Recovery agents . 11

3.2.3 Minimum trust model . 12

3.2.4 Smart cards . 12

3.2.5 Remote access . 13

3.2.6 Performance . 13

3.2.7 Other issues . 13

4 Cryptographic Design and Key Management 15

4.1 Key Management Scheme . 15

4.1.1 File encryption keys . 15

ii

4.1.2 User keypairs . 17

4.1.3 File system key . 17

4.2 Cryptographic Metadata Format . 18

5 TransCrypt Architecture 20

5.1 Authentication Domain-wide Certificate Repository 20

5.2 Cryptographic Metadata Storage . 21

5.3 Linux Kernel Hooks . 22

5.4 Public Key Cryptography Support 23

5.5 Key Acquisition for Token Decryption 24

5.6 ACL Manipulation Commands . 26

5.7 TransCrypt in Action . 26

5.7.1 Enterprise deployment . 27

5.7.2 Encrypted file system creation 27

5.7.3 Mounting an encrypted file system 28

5.7.4 File creation and access . 28

5.7.5 Reading and writing file data 30

5.7.6 Granting and revoking file access 31

5.8 Procedures . 32

5.8.1 Change of user keypair and smart card 32

5.8.2 Backups . 33

5.8.3 Data recovery . 33

6 Results and Conclusions 34

6.1 Performance Evaluation . 34

6.1.1 Experimental Setup . 35

6.1.2 Analysis of Results . 36

6.2 Conclusions . 36

6.2.1 Comparison with Related Work 37

6.2.2 Summary . 39

iii

List of Tables

6.1 Performance of TransCrypt against normal unencrypted file operations 36

6.2 Features of TransCrypt versus other encrypting file systems 37

iv

List of Figures

5.1 Overview of TransCrypt architecture 21

5.2 File operations: creation and access 29

5.3 Granting file access to other users . 32

v

Chapter 1

Introduction

The need for data security emerges from the widespread deployment of shared file

systems, greater mobility of computers and the rapid miniaturization of storage de-

vices. It is increasingly obvious that the value of data is much more than the value of

the underlying devices. The theft of a personal laptop or a USB thumbdrive leaves

the victim vulnerable to the risk of identify theft in addition to the loss of personal

or financial data and intellectual property. Several recent incidents of data theft em-

phasize the need for a cohesive solution to the problem of storage security. Hence,

it is fast becoming necessary to protect stored data from unauthorized access using

strong cryptographic methods.

1.1 Motivation for Data Security

An enterprise-ready data protection system is vital in military organizations where

classified and secret data need to be shared and secured simultaneously. Recent news

reports of security breaches and data thefts from India’s military and intelligence

agencies [2] accentuate the critical need for a cryptographic solution to this problem.

According to reports relating to one case, important information was leaked through

stolen USB thumbdrives. Another case purportedly involved a computer administra-

tor who was able to pass secret data illegitimately to a foreign country. The fact that

both these cases involved insiders motivates the need for a secure data protection

1

mechanism that thwarts theft attempts and ensures that undue power is not left in

the hands of individual employees or administrators.

Data protection systems are increasingly playing a crucial role in commercial

environments too. A recent study conducted by Symantec Corporation [18] surveyed

laptop users across Europe, the Middle East and Africa to estimate the value of the

commercially sensitive contents of their laptops. The study estimated the average

worth of a single laptop to be about a million dollars.

Clearly, there is a pressing need to design and develop secure and usable data

protection mechanisms that cater to the above application scenarios. Encrypting file

systems fill this void to enable individuals and organizations to keep their storage

systems highly available and protected from unauthorized access at the same time.

1.2 Encrypting File Systems

An encrypting file system employs secure and efficient mechanisms to encrypt or

decrypt data on-the-fly as it is being written to or read from the underlying disk, to

provide a level of data privacy that goes beyond simple access control. Also, issues

such as trust models, backups and data recovery must be resolved. An encrypting

file system must also be tightly integrated with the operating system for ease of use

and flexibility. Other challenges faced when designing a storage security framework

include immunity from attacks launched by privileged entities, enabling legitimate

remote access to shared encrypted volumes and providing a scalable and transparent

key management scheme suitable for enterprise deployment.

Although the design of such systems is a well-researched problem, existing

implementations still lack the security and usability features that must be present in

a truly scalable system that can be successfully deployed in enterprises.

2

1.3 Scope of this Work

Although the design of encrypting file systems is a well-researched problem, all exist-

ing solutions still lack the necessary security and usability features that are desired

from a truly enterprise-ready system. We illustrate how existing systems assume a

narrow threat model and leave various avenues of attack open, thus giving a false

sense of complete security.

In this thesis, we describe the conceptualization, design and implementation of

TransCrypt, an encrypting file system for Linux that takes a holistic approach towards

solving the issues faced by enterprise-ready data protection systems. Formally, the

problem is to develop a secure solution to store and access encrypted data, enable

sharing of protected data among multiple users, provide adequate key management

and implement the design in a transparent manner to avoid the need for change to

applications. Additionally, the system must trust the minimum possible number of

entities for its operation.

This thesis begins with a brief overview of the functionalities provided by ex-

isting related systems, their deficiencies and how they are addressed by our approach.

We then document the design and development of TransCrypt, an encrypting file

system that satisfies the specified requirements and provides the features that make

it suitable for enterprise deployment.

1.4 Organization of the Thesis

The next chapter discusses a representative cross-section of the popular encrypting file

systems in use today. Chapter 3 formalizes a generic attack model on file system secu-

rity and describes the salient features of our solution. In Chapter 4, the cryptographic

design and key management scheme are presented in an operating system agnostic

fashion. The architecture, configuration parameters, software components, implemen-

tation and working of TransCrypt are explained in Chapter 5. Chapter 6 provides an

informal performance analysis, compares the features of TransCrypt against related

work to clearly bring out the differentiating aspects and finally presents concluding

remarks.

3

Chapter 2

Related Work

While much effort has been directed at securing network communications, security

of stored data remains a largely neglected area both in the development and use

of such systems. Nonetheless, various implementations of encrypting file systems

exist. We first elaborate on some common design paradigms and then describe some

popular related systems. The choice of the basic design approach greatly influences

the security, performance and usability features provided by these systems.

2.1 System Design Approaches

Essentially, encryption for storage is about introducing an extra layer of indirec-

tion at an appropriate place in the system that provides the necessary cryptographic

functionality. Hence, the first decision to be taken when designing an encrypting

file system concerns the placement of this layer. On this basis, storage encryption

systems may be classified into the following types:

• Application level : In such a design, files and directories are individually encrypt-

ed at the discretion of the end user. A separate suite of applications may be

developed that encrypts and decrypts data as and when required by the user.

Although such software provide a high degree of flexibility in choosing the exact

files to be encrypted, the process is non-transparent and cumbersome. The

4

initiative and decision to encrypt data as well as the key management is left

with the end user.

• Device level : Such software, also known as volume encryptors, solve the trans-

parency issue by placing the solution at a lower layer that is conceptually closer

to the physical storage device. Volume encryption may occur at the hard-

ware device itself or in the appropriate device driver of the operating system.

Although these systems would naturally offer the best performance, they are

unmanageable and inflexible. Typically, such systems use only one key (or a

few pre-established keys) to encrypt the entire volume making them vulnerable

to the attacks discussed in the next chapter.

• File system level : Managing cryptography at the file subsystem layer of the

operating system brings several advantages such as transparency to users and

applications, flexibility of key management and access control, good perfor-

mance, and immunity from an array of attacks. Separate keys may be used to

protect different file system objects that may be shared with other users on an

individual basis. This method is chosen in the design of TransCrypt as it also

enables the incorporation of an advanced key management scheme to tackle a

wider threat model.

Another choice involves the placement of the cryptographic processes them-

selves. These tasks may be executed in the kernel or in user-space. A user-space

solution simplifies software maintenance but degrades the performance due to con-

text switch and memory copy overheads. Under certain assumptions that have been

elaborated in the next chapter, a user-space solution may reduce the security offered

by the system. On the other hand, a kernel-based solution is more efficient and secure

at the cost of a greater software development and maintenance challenge. In practice,

some existing systems choose to employ a hybrid design where time-critical opera-

tions such as on-the-fly data encryption and decryption are done in kernel-space and

key management tasks that are executed infrequently are delegated to a user-space

service daemon. In TransCrypt, however, we contend and show how any scheme that

depends upon user-space components for security is insecure with respect to a variety

of attacks. Hence, a goal of this work has been to develop a mechanism whose security

is completely contained in the kernel.

5

2.2 Popular Encrypting File Systems

The Cryptographic File System [3] was the first encrypting file system for Unix. It is

implemented as user-space NFS server to introduce a cryptographic layer between the

virtual file system and the disk, by employing a double-mount technique. This design

leads to data copy and context switch overheads. Also, it uses a common passphrase-

derived mount-wide key and a basic key management scheme that provides coarse

granularity of access control. Data can be shared only by sharing the passphrase

to the entire encrypted volume. This severely limits the security and usability of

this solution in organizations. Nonetheless, several other popular solutions such as

EncFS [7] use a similar design approach.

Microsoft Windows includes a native Encrypting File System [14] tightly in-

tegrated with the NTFS file system. It uses per-file encryption keys and per-user

public and private keypairs, thus enabling fine-grained access control. Although bulk

encryption is done in kernel-space, key management tasks are delegated to a user-

space service. This hybrid design makes it vulnerable to user-space attacks and the

superuser account must thus be a trusted entity. Also, it makes no provision for file

integrity.

Apple FileVault [1], the native file encryption mechanism in Mac OS, creates

and maintains encrypted sparse images to store home directory contents and provides

virtual memory encryption. However, it fails to provide any file sharing or integrity

and cannot be used outside the users’ home directories.

The most popular encrypting file system for Linux that is part of the standard

kernel is dm-crypt [6]. It uses the kernel’s device mapper infrastructure to implement

a cryptographic layer using functions provided by the native kernel CryptoAPI [4].

It is an efficient implementation, offers good performance and is suitable for most

personal usage scenarios. However, it lacks flexibility due to the use of a common

mount-wide key and tackles a narrow threat model. Hence, sharing specific files with

specific users in large multi-user organizations is an issue that is left unresolved by

dm-crypt.

eCryptfs [12] is the first attempt at designing an enterprise-class cryptographic

file system for Linux. It uses per-file keys and user-specific keys to enable fine-grained

6

sharing. A PGP-inspired file header format stores the cryptographic metadata asso-

ciated with each file. The kernel implementation uses stackable vnodes to introduce a

layer of encryption that can fit over any underlying file system, similar to Cryptfs [19].

eCryptfs is the only existing work with specifications similar to those of TransCrypt,

though vastly different in design. Its hybrid design employing a user-space key man-

agement daemon exposes the system to user-space attacks and fails to exclude the

superuser account from the trust model. Also, including metadata in file contents as

a header reduces transparency for end-use and requires separate tools for managing

file sharing.

TransCrypt trusts fewer entities, protects against a wider threat model, pro-

vides fine-grained file sharing and integrity protection, and utilizes a kernel-space

approach for greater security and better performance. TransCrypt makes a crucial

distinction between the kernel and user-space from a security perspective. It incorpo-

rates an advanced key management scheme that excludes the administrator account

and privileged user-space processes from the trust model and supports the use of

hardware authentication tokens. The additional demands of enterprise environments

such as secure remote sharing, data recovery and immunity from attacks launched

from the inside are also met. Encouragingly, initial performance evaluations indicate

that these security and usability benefits can be availed with small and tolerable

run-time overheads.

7

Chapter 3

The TransCrypt Approach

We now present a generic threat model for file systems and a formal categorizaton

of various attacks. A consistent understanding of the kind of attacks that must be

prevented and those that are beyond the threat model has been the deciding factor

in the design of TransCrypt’s key management scheme.

3.1 Threat Model

Threat models for network security assume that any message sent over the commu-

nication channel can be intercepted, read, deleted or modified by an attacker at will.

Similarly, TransCrypt’s storage security threat model assumes the attacker to be ca-

pable of reading, deleting or modifying any data on the disk at any point of time.

This assumption significantly widens our threat model to include attacks that are not

addressed by any related work, such as those discussed below.

Essentially, an attack on stored data is an unauthorized attempt to access it.

Attacks may thus be classified into offline and online attacks based on the mode of

access.

8

3.1.1 Offline attacks

In the most common offline attack, an attacker gets physical access to the storage

device and connects it to another system to circumvent the access control on the

victim’s file system and read the plaintext data. Encrypting file systems generally

deal with this attack by encrypting the disk contents with a key that may be randomly

generated or derived from a passphrase.

We also believe that file keys must only be known to the kernel of the operating

system. Such a view is necessary for sharing files securely among multiple users. This

prevents an attack in which a user whose access to a file has been revoked continues

to use the old key to read it. Changing the file key and re-encrypting the entire

file with the new key at every revocation may not be acceptable from a performance

point of view. Systems that provide for user-specific keys encrypt copies of the file

encryption key itself with the keys of various users who can access that file. These

encrypted per-user tokens are then stored along with the file. However, such systems

are easily broken in our wide threat model that assumes any data or metadata can

be read and modified on the disk at any instant. For example, a malicious user can

read his token, decrypt it using his private key and store the file key for future use.

He may even share it with other unauthorized users, thus granting them access to the

file illegally. This attack is easy to execute but not addressed by any existing system.

We call it the key leak attack and propose a solution to it.

3.1.2 Online attacks

Online attacks exploit the fact that sensitive data or encryption keys may be present

in the system memory in plaintext when an encrypted volume is mounted. Although

superuser privileges may be required for launching such attacks, we choose not to trust

the administrator account. Some examples of online attacks are explained below.

• A general key scavenging attack attempts to intelligently run through the sys-

tem memory (the kernel’s address space in case of kernel-based encrypting file

systems) trying to locate and read encryption keys.

9

• Any system that requires the communication of key material between kernel-

space and user-space components is vulnerable to a general user-space attack,

wherein the attacker tries to capture the key when it is present in the address

space of an exploitable user-space process.

• Daemon masquerading is another online attack on schemes that employ a trust-

ed user-space process for key management. An attacker can replace the trusted

daemon with a malicious program or launch a man-in-the-middle attack on the

kernel-space user-space channel to gain access to encryption keys.

• In the page cache attack, an attacker may insert and load a malicious kernel

module from the user-space (using the insmod command, for example) at run-

time to traverse the page cache and access file contents.

Attacks that require superuser privileges may be classified as hard or easy

depending on the level of sophistication and effort required to execute them. Although

accessing or modifying specific kernel-space data structures of a running system is

difficult even for the administrator, exploiting user-space vulnerabilities is clearly easy.

In a typical compromise, an attacker may gain superuser privileges for a short duration

and trivially undertake the above attacks. A distinction between the kernel and

user-space from a security perspective is becoming crucial as temporary root attacks

become common. Such a distinction is sound, given that it is easier to trust the kernel,

a smaller entity that can be conveniently secured, than user-space processes that can

be compromised in several and simpler ways. Newer Linux kernels, moreover, include

several advancements such as disabling potential points of attack (like /dev/kmem

and /proc/core) and enforcing verification of digitally signed kernel modules before

loading them [5] through compile-time options, thus making it possible to secure the

few entry points into a running kernel even from a privileged attacker. The design

decisions of TransCrypt have been taken to prevent practically viable attacks that are

not addressed by existing systems, while ignoring attacks that require substantially

greater sophistication. No existing system attempts to exclude the superuser account

from the trust model and tackle the above attacks.

10

3.2 TransCrypt Specifications

TransCrypt’s basic feature is the privacy and integrity of a user’s data and the ability

to share file system objects among multiple users without having to share passphrases

or use common mount-wide keys. Avoiding the use of a common key also leads to less

ciphertext encrypted with the same key, making cryptanalysis more difficult. Thus,

the key management scheme proposes per-file encryption keys and per-user public

and private keypairs. Also, TransCrypt uses only randomly generated keys instead

of passphrase derived ones, thus preventing dictionary-based attacks.

3.2.1 File integrity

It must be ensured that a file or its metadata can only be modified by an entity that

knows its file encryption key. This is accomplished by utilizing message authentication

codes or keyed hashes that combine the plaintext with the secret key to generate a

hash that is used to detect when a file has been tampered by an attacker. This

scheme is secure because the only entity that ever has access to plaintext file keys

in TransCrypt is the kernel itself that recovers it after an authenticated user has

decrypted his file token.

3.2.2 Recovery agents

A critical demand in enterprise environments is a recovery mechanism to deal with

the loss of a user’s private key. An administrator cannot read the contents of files that

do not grant access to him explicitly. Hence, we support a data recovery agent with

the privilege to read any file system object on the encrypted file system. The policies

of the organization may ensure that the private key of the data recovery agent is split

and entrusted with multiple persons to ensure that a successful subversion of this

facility can only be undertaken with the collusion of all the concerned administrators,

which may be difficult to achieve in practice.

11

3.2.3 Minimum trust model

TransCrypt employs a minimum trust model, trusting the fewest number of entities

for correct operation. The kernel implements all the cryptographic processes and is

hence completely trusted. A malicious kernel may trivially leak encryption keys or

sensitive plaintext data present in its address space. Therefore, the superuser account

is only partially trusted. Although it would be easy for a malicious administrator to

substitute the kernel image with a malicious version over a system reboot, our design

protects against a more common scenario in which an attacker temporarily gains

root privileges. TransCrypt is thus immune to the key leak attack and other threats

by avoiding the centralization of power and responsibility with the administrator.

User-space processes, even those running with superuser privileges, are untrusted.

The division of functionality between the kernel and the user-space components of

TransCrypt has been done suitably to ensure consistency with our threat and trust

models so that all security rests with the kernel and untrusted user-space processes

merely perform non-cryptographic jobs. Thus, even if those user-space components

are compromised or replaced with malicious versions, the system’s security is not

compromised.

Future versions of TransCrypt may opt for deeper integration with Trusted

Platform Module (TPM) hardware. This would enable us to keep all software compo-

nents (even the kernel, to be specific) outside the trust model. Plaintext secret keys

would be available and used only inside the tamper-proof TPM hardware whenever

they are required by the system. Naturally, such a scheme would trust the fewest

possible number of entities and hence provide the highest grade of security at the

cost of higher monetary expense.

3.2.4 Smart cards

TransCrypt supports the use of smart cards as a trusted tamper-proof hardware au-

thentication mechanism for users. This provides the highest grade of security wherein

a file encryption key can be recovered only after being decrypted on a user’s smart

card to ensure that the private key is never sent out of the smart card. This fea-

ture, however, comes at a small run-time overhead when opening any encrypted file.

12

Also, issuing and deploying smart card infrastructure may not be feasible for some

organizations. TransCrypt leaves this choice with the end-user who must evaluate

his security threshold and may configure TransCrypt to use alternative less secure

mechanisms such as storing the users’ encrypted private keys on the disk or on USB

thumbdrives.

3.2.5 Remote access

Encrypted volumes may be shared over the network in most organizations. Trans-

Crypt’s design enables secure remote access to such shared file systems and integrates

a protocol for communication between a client system and a server component such

that a user’s file metadata token is appropriately routed to the client system to be

decrypted whenever opening an encrypted file. The encryption of file system data

over the network itself is not considered by TransCrypt, as it is the job of network

encryption systems like IPsec to secure such traffic.

3.2.6 Performance

The system’s design must be least intrusive in the normal working of the protected

file system. Often, the demands of performance are orthogonal to those of security.

The system needs to balance the two. For example, we may choose to keep plaintext

file data in the page cache. Clearly, this provides performance benefits by avoiding

repeated decryption of file contents that have been read and decrypted once already.

But an attacker with superuser privileges can launch the page cache attack to read

this plaintext. TransCrypt’s flexible design leaves this choice with the end-user who

can specify whether to maintain plaintext or ciphertext file data in the page cache as

a configuration parameter at the time of creating new encrypted volumes.

3.2.7 Other issues

Incremental differential backup software copy only the changes detected in a file sys-

tem since the last backup. A typical solution may traverse the file system to detect

13

files whose last modified time falls after the last backup, thus requiring access to

metadata such as filenames stored in directory entries and timestamps in the corre-

sponding inode. However, an encrypting file system must not leave metadata exposed

to avoid leaking information. TransCrypt chooses to encrypt directories, thus ruling

out backup software operating in such file-by-file incremental mode.

We choose not to support file access control based on user groups. The owner

of a file must explicitly share it with other users on an individual basis. Although

groups can be easily supported using methods such as group keys (keypairs associated

with groups) or reference counts, their introduction leads to messy administrative

overheads making them unusable in practice.

The swap partition on a disk may contain fragments of sensitive data. Trans-

Crypt does not encrypt swap, but other solutions for the same exist [16] that may be

used alongside TransCrypt for this functionality.

14

Chapter 4

Cryptographic Design and Key

Management

This chapter describes TransCrypt’s key management scheme independent of oper-

ating system details. First, the entities and keys that lie at the heart of TransCrypt

are introduced. We then explain the cryptographic metadata format and related

mechanisms.

4.1 Key Management Scheme

The main entities in TransCrypt are the individual files, the file system and users.

The superuser account and data recovery agent are like any other users. The kernel is

the primary active agent of the system, implementing all the cryptographic processes

and key management.

4.1.1 File encryption keys

Files are automatically encrypted using random secret per-file encryption keys gen-

erated at the time of their creation. We denote a file encryption key (FEK) as k.

For bulk encryption of file contents, any block cipher in an appropriate mode such

15

as Cipher Block Chaining (CBC) may be used, where the ciphertext is chained only

within one block of the underlying file system to support random access within the

file. This avoids re-encryption overheads due to minor changes at the start of a file or

decrypting the entire file to read the last few bytes. A new Initialization Vector (IV)

must be used for every file system block, which may be derived from the physical

block number itself, using a secure method such as Encrypted Salt-Sector IV [8]:

IV (block) = Esalt(block) where salt = H(k)

Here, block is the file system block number and Esalt represents symmetric en-

cryption using salt as the key. The salt is derived from the FEK k using a hash func-

tion H whose blocksize equals the keysize of the encryption algorithm E. Encrypting

files on a block-by-block basis also enables TransCrypt to transparently support sparse

files containing holes.

TransCrypt incorporates a scheme utilizing keyed hashes similar to the one

proposed by eCryptfs [11] to provide file integrity and prevent undetectable modifi-

cation of file contents without the knowledge of its secret encryption key. A separate

message authentication code is computed for every file system block used by a file’s

contents and metadata such as access control lists. Finally, a top hash is also com-

puted over all the other hashes. Such a scheme employing a hash list and a top hash

enables random write access to any part of the file without requiring the recalcula-

tion of any single hash over the entire file. The top hash prevents an attack where

the contents of a file as a whole may be modified by swapping (but not altering)

two complete underlying blocks so that their individual block-level hashes remain the

same.

TransCrypt supports several block cipher algorithms, encryption modes, key

sizes, IV generation methods and message authentication code algorithms. The exact

choice of these parameters is left with the end user. This makes the design flexible and

open so that future advancements in block cipher design can be seamlessly integrated

with TransCrypt.

16

4.1.2 User keypairs

At least one public and private keypair is associated with every user of the authentica-

tion domain. A single user is allowed to possess more than one keypair, which would

be useful when transitioning from an old keypair to a new one. This keypair enables

the design of a hybrid cryptosystem in which separate copies of a file encryption key

may be encrypted with the public keys of all users who have access to the file. When

a file is created, such metadata entries are created and stored only for the owner

and those users with default access to the file. Later, such metadata entries are also

created for other users when they are granted access to a file. We denote the public

key of a user with ID uid as KUuid and the corresponding private key as KRuid.

The public keys of all users are encapsulated in X.509 certificates signed by a

certification authority trusted by the organization. An authentication domain-wide

certificate repository containing these user certificates is established at a publicly

known network location. This enables the owner of a file system object to grant access

to another user transparently, without the need for any communication between them.

A successful attack and subversion of the repository clearly does not compromise the

security of TransCrypt, because certificates are always verified before using their

public keys. A corresponding trusted certificates store is maintained by all computer

systems that contain an encrypted file system. This store contains the certificates

of trusted certification authorities used to verify user certificates. The private key

parameters of users may either be stored on smart cards or on a separate disk or USB

thumbdrive after encryption.

4.1.3 File system key

The file system key is a secret key specific to a particular encrypted file system. It is

used and managed solely by the kernel. An encrypted copy of the file system key is

stored in the superblock of the encrypted volume. The file system key is denoted as

FSK. FEKs are first encrypted using the FSK before being encrypted using a user’s

public key.

17

4.2 Cryptographic Metadata Format

A cryptographic context must be associated with every file, containing its FEK in the

form of separate per-user tokens, similar to the scheme used by Pretty Good Privacy [9]

when encrypting mail intended for multiple recipients. The per-user records have the

following 3-tuple schema:

uid : certid : token

where, token = EKUuid
(EFSK(k))

therefore, k = f(token, KRuid, FSK)

Here, uid is the user’s UID (for that authentication domain) and certid is a

string that uniquely identifies the user’s certificate. A single user may have multiple

keypairs and thus the pair <uid, certid> uniquely identifies a particular keypair. EFSK

represents symmetric encryption using a block cipher with FSK as the key and EKUuid

represents public key encryption using the appropriate algorithm corresponding to

KUuid. Thus, decrypting the FEK from a token is a function requiring three inputs:

the token, the user’s private key and the file system key. This combines the security

of multiple entities. Clearly, a malicious user is unable to launch an offline key leak

attack on the token without first compromising and gaining access to FSK.

The token format has been constructed to incorporate a form of blinding.

TransCrypt does not trust the user-space and hence a file encryption key must only

be known to the kernel of a running system. However, it may still be necessary to

send cryptographic metadata outside the kernel for various purposes. In such cases,

the security of the FEK must be maintained by blinding it using a factor known only

to the kernel. Here, symmetric key encryption is the blinding operation and FSK is

the blinding factor.

The file system key FSK is a novel feature of TransCrypt that is not provided

by other solutions. It may be recalled that any scheme that encrypts FEKs using

only public keys is vulnerable to the key leak attack. Also, employing daemons

without blinding makes the system susceptible to user-space exploits. The file system

key provides blinding and prevents the key leak attack. However, it makes a file’s

18

cryptographic context dependent on the particular encrypted file system on which

it is stored. This is not an issue when the file is copied from one encrypted volume

to another, in which case a new FEK would be generated for the target file and the

target volume’s FSK would be used for blinding. But the file and its metadata cannot

be simply plucked out of an encrypted file system and sent by mail to a recipient while

remaining encrypted. We believe that the security benefits of the file system key far

outweigh this feature. Moreover, email security is clearly not the job of an encrypting

file system. Software such as PGP may be used for the same.

19

Chapter 5

TransCrypt Architecture

Figure 5.1 illustrates the architecture of TransCrypt. The platform chosen for the first

reference implementation is Linux kernel version 2.6.11. In this chapter, we describe

the software modules that need to be implemented in the Linux kernel and allied

user-space support utilities. Finally, we explain the installation and operation of the

entire system.

5.1 Authentication Domain-wide Certificate Rep-

ository

Unlike the distributed web-of-trust model used by PGP [9], TransCrypt employs a

certificates-based model that is more usable in enterprise environments. The public

certificate repository is maintained at a single network location and made available

throughout the authentication domain using an appropriate service such as NIS, NFS

or LDAP. In the case of NFS, the certificate repository server exports a directory that

is mounted by systems containing encrypted volumes as /etc/efscertificates/. It has

a single file called certtab containing user records of the format:

uid : cert

20

 VFS and

File Systems

Super
Block

User
Certs

CA
Certs

Smart
Card
Service

Process
User

ACL
Command

Card
Smart

User−space Kernel−space

TransCrypt Core

Data ACL

File

Encrypted File System

PKI Support

CryptoAPI

Netlink Socket

EA Syscall

VFS Syscall

Figure 5.1: Overview of TransCrypt architecture

Here, uid is the user’s UID in the authentication domain and cert is his Base64-

encoded X.509 certificate in PEM format. Every user (including the data recovery

agent) has exactly one such record. When a user is transitioning from an old keypair

to a new one, only the latest certificate is maintained in the repository. Whenever a

user’s public key is needed, the corresponding certificate is retrieved from the reposi-

tory and verified using the local trusted certificates store. This avoids administrative

and performance overheads associated with certificate revocation lists and online cer-

tificate status protocols.

5.2 Cryptographic Metadata Storage

TransCrypt provides user-level access control and hence chooses to integrate the per-

user metadata tokens with an encrypted file’s access control list itself. In Linux,

POSIX ACLs are implemented using extended attributes [10]. It must be noted that

TransCrypt does not support groups and hence the ACL of an encrypted file must

only utilize named user entries [10]. We augment such entries with two more fields,

21

certid and token, introduced in the previous section. Hence, a typical named user

ACL entry in TransCrypt is:

user : username : rwx : certid : token

Here, rwx are the permissions of user username. The ACL entry for others of

all files in the encrypted volume is set to null permission. This ensures that a separate

ACL entry (and token) exists for every user who can access the file.

5.3 Linux Kernel Hooks

Kernel-based encrypting file systems introduce a layer of indirection between the

upper virtual file system layers and the low-level block device driver to implement

the encryption and decryption processes. We believe encryption is merely a property

of any underlying file system that can be turned on or off using a mount option.

When specified, the encrypt mount option enables kernel hooks that implement the

cryptographic processes and key management transparently. When not specified (the

default case for unencrypted volumes), these hooks are simply bypassed. Such an

approach maintains the same on-disk partition layout for encrypted and unencrypted

volumes. It gives the added benefit that encrypted backups may be taken simply by

remounting the encrypted file system and turning off the encryption functionality.

The choice of whether smart cards or alternative means are used for private key

storage is also specified as a mount option. The bulk of TransCrypt’s implementation

is independent of the underlying file system type. Only the on-disk superblock and

ACL data structures need to be altered for all supported underlying file systems.

These changes are fairly basic and easily duplicated for various file system types.

Also, all cryptographic processes and key management are performed in the kernel

and user-space utilities are only support applications. The kernel patches required

by TransCrypt are described later in this chapter.

22

5.4 Public Key Cryptography Support

Public key cryptography support has been incorporated into the kernel’s native

CryptoAPI [4] as a part of TransCrypt. A generic asymmetric key API has been

integrated that provides an interface to call public key encryption, decryption, sig-

nature generation and verification functions from within the kernel. Public key cryp-

tosystems such as RSA are implemented as kernel modules underlying the generic

asymmetric API. The Multi Precision Integer support patch recently ported to the

kernel [13] is used to provide the underlying math functions.

It must be noted that a scheme that calls on a user-space service for only

certificate verification is as insecure as one in which all public key management and

operations occur in user-space. Thus, a skeletal Public Key Infrastructure support

library must also be integrated into the kernel that provides functionality to decode

and parse Base64-encoded PEM format X.509 certificates, verify their validity and

extract the public key.

It may be argued that PKI support and public key cryptography should not

be implemented in the kernel due to their complexity, computational costs and space

costs. However, we choose to do so because our threat model does not trust user-space

key management daemons which can be easily masqueraded or attacked in practice.

Incorporating full PKI support in the kernel also simplifies the design and increases

performance by avoiding bouncing around from the kernel to user-space and back for

system calls such as open and creat.

The kernel also maintains the trusted certificates store that contains the cer-

tificates of trusted certification authorities. It may be implemented as a local unen-

crypted file called /etc/efstrustedcerts containing records of the format:

CAid : cert

Here, CAid is a string that uniquely identifies a particular CA and cert is its

Base64-encoded X.509 certificate in PEM format. In the simplest case, the organi-

zation runs its own special root CA to issue TransCrypt-specific user certificates. In

this case, the trusted certificates store contains only one record corresponding to the

23

organization’s CA. On the other hand, the organization may issue certificates signed

by a commercial CA (such as Verisign). It is also possible that user certificates are

not directly signed by a root CA. In case a hierarchy of intermediate CAs exists,

efstrustedcerts stores the certificates of the root CA as well as all the intermediate

CAs. An intermediate CA certificate is verified using the trusted root CA certificates

already present in this file before being added to the store. However, the security of

this system is contingent upon the integrity of the local file that contains the trusted

certificates. Clearly, this is not acceptable if the superuser account is kept out of the

trust model. Hard-coding the public keys of well known CAs in the kernel itself is a

possible solution, but it reduces the maintainability of the code. A better solution is

to maintain the trusted certificates (or public keys) in a separate local file whose in-

tegrity is protected with a message authentication code computed using a key known

and used only by the kernel.

An implementation issue here is the overhead due to accessing certtab and

efstrustedcerts whenever new encrypted files are created. A more fundamental issue

is accessing and reading configuration files from within the kernel itself. Although

possible, such a design is generally deprecated as it reduces the maintainability of the

kernel. A solution is to use an alternative mechanisms such as configfs. For example,

a special user-space program may be executed once whenever the system is booted

up that feeds the configuration data to the kernel. An optimization could be to run

this module periodically (or on-demand) to parse the configuration files and maintain

their information in appropriate kernel-space data structures to minimize run-time

overheads. Maintaining such a cache of certificates or verified public keys in the kernel

also ensures seamless operation when the system is disconnected from the network

apart from providing the obvious performance benefits.

5.5 Key Acquisition for Token Decryption

The use of a user’s private key by the kernel to decrypt the per-user tokens is trivial

when the private parameters are stored on the disk or a USB thumbdrive. However,

TransCrypt also supports the use of smart cards to store the private keys of users

and perform operations requiring them. The Linux kernel does not provide a smart

24

card interface library to enable kernel modules to directly interact with smart cards.

Ongoing projects such as SmartK [17] aim to integrate smart card support into the

kernel but TransCrypt utilizes a user-space daemon for this purpose. The architecture

of TransCrypt has been designed to partition responsibilities between the kernel and

the support service such that all cryptographic operations are performed by the kernel.

The kernel uses Netlink sockets to send per-user metadata tokens to the smart

card service when opening encrypted files. The service forwards the token to the

smart card that decrypts it using the user’s private key and sends back the response

that consists of the FEK still encrypted with the file system key FSK to the kernel.

Although this blinding prevents daemon masquerading, the blinded FEK is still vul-

nerable to replay attacks. A malicious daemon may log responses received from the

smart card and attempt to replay them in future. This attack may be thwarted by

establishing an authenticated and encrypted session between the kernel and the smart

card before any data exchange. This protects against eavesdropping and also prevents

replay attacks on the physical channel between the computer and the smart card. The

PKI-capable kernel acts as the trusted end point in the authentication and session key

establishment protocol with the smart card. The user-space daemon merely routes

tokens and their decrypted responses (blinded FEKs) on the secure channel between

the kernel and the smart card and may thus be an untrusted process.

An issue is acquiring the file key from a per-user token when remotely accessing

and opening encrypted files on a networked file system. The support daemon on the

file server also routes the token from the encrypted volume to the corresponding smart

card support daemon on the client system for decryption using the user’s smart card

(the decrypted blinded FEK is similarly routed back to the server) so that the file

encryption key decrypted from it can then be used to encrypt or decrypt file data on

the server. An authenticated and encrypted session must first be established between

the file server kernel and the remotely inserted smart card. This allows TransCrypt

to transparently serve multiple simultaneous remote requests, thus satisfying a basic

demand of enterprise environments.

25

5.6 ACL Manipulation Commands

Storing a file’s cryptographic metadata in the ACL itself offers several transparency

benefits. The design becomes cleaner and the implementation effort reduces to merely

patching the ACL manipulation mechanisms to ensure consistency between user en-

tries and per-user tokens by creating and storing an additional per-user token every

time a user is granted access to a file system object by its owner. Whenever a user’s

access is revoked, the corresponding ACL entry (that includes the token) is simply

removed.

POSIX ACL manipulation in Linux [10] is implemented using library functions

provided by libacl. The kernel does not yet provide ACL system calls but uses the

extended attributes interface to copy ACLs between user-space and kernel-space.

The libacl library and the chacl and setfacl commands that modify the ACL of a

file must be patched to support the augmented ACL entry structure defined earlier.

Modifications must also be made to prevent the owner of a file system object from

removing the data recovery agent entry or specifying non-null permissions for the

others entry in the ACL.

Blinding protects the file encryption key from being leaked when tokens are

handled by untrusted user-space programs. Also, including a separate keyed hash to

protect the integrity of the ACL prevents an attack wherein a malicious user may

attempt to re-encrypt the blinded FEK (obtained after decrypting his token) using

another user’s public key and insert the resultant token with an illegal entry into

the file’s ACL. The keyed hash ensures that only the kernel of a running system can

modify an ACL after getting the owner’s token decrypted in response to an access

grant command. However, this requires the kernel to do ACL manipulation work.

Hence, TransCrypt proposes to shift ACL manipulation into the kernel and introduce

the necessary system calls.

5.7 TransCrypt in Action

We now describe the installation, usage and operation of TransCrypt and provide an

overview of its implementation.

26

5.7.1 Enterprise deployment

The following pre-requisite activities must first be carried out when TransCrypt is

being deployed in an enterprise environment:

• A public and private keypair must be generated for all users in the authentica-

tion domain who require access to encrypted file systems.

• The public keys must be signed by an appropriate CA and the certificates made

publicly accessible in the certificate repository. The trusted certificates store

must be established for all computer systems that mount encrypted volumes.

Smart cards, if used, must be issued to users.

• The data recovery agent account must be established in the authentication

domain and its certificate added to the repository. The corresponding private

key may be split into multiple smart cards and issued to different persons.

5.7.2 Encrypted file system creation

The on-disk superblock structure of the underlying file system and the corresponding

mkfs command are suitably modified to take the following actions when creating an

encrypted volume:

• The block cipher algorithm to be used for symmetric key encryption, chain-

ing mode, keysize (of FEKs and the file system key), IV generation method,

message authentication code algorithm and the user’s choice regarding page

cache encryption are specified on the mkfs command line. These parameters

are appropriately encoded and stored in the superblock.

• The file system key FSK is randomly generated and encrypted using key mate-

rial derived from a passphrase (or an external trusted hardware to avoid trusting

the administrator). The result is stored in the superblock.

• The DRA is added as a named user with read and execute permissions to the

default and access ACLs [10] of the root directory of the encrypted volume.

27

Additionally, the permissions for the others entry are set to null. This recur-

sively ensures that all further subdirectories and files created in the encrypted

file system would automatically inherit these two entries in their access control

lists.

It is possible to associate a separate cryptographic header with every encrypted

file to enable per-file choice of different ciphers, modes, keysizes, IV methods and

keyed hash algorithms. However, we believe this is an overkill of flexibility that

decreases usability and necessitates the use of complex policies and configuration

files, as required by eCryptfs [12]. Utilizing common algorithm parameters for the

entire volume provides the same level of security while making the system easy to

use.

5.7.3 Mounting an encrypted file system

An encrypted file system is mounted by specifying the encrypt option. TransCrypt is

integrated with POSIX ACLs and hence the acl mount option must also be specified.

Also, the mechanism that is used to store private keys (whether smart cards are being

used or not, for example) is specified as a mount option.

During mount, algorithm parameters are copied from the on-disk superblock of

the underlying file system to the kernel’s in-core superblock structure. The encrypted

FSK is also read from the on-disk superblock, decrypted using the same mechanism

used at the time of creation and copied into the in-core superblock.

5.7.4 File creation and access

The general architecture of TransCrypt for open and creat is shown in Figure 5.2.

The following actions are taken whenever a new file (or directory) is created in an

encrypted file system:

• A file encryption key k is randomly generated. It is put into the entry cor-

responding to this instance of open (or creat) in the VFS open file structure.

28

TransCrypt
and PKI

CryptoAPI

ACL

File

User
and CA
Certs

Encrypted
File System

User
Process

Kernel

User−space

VFS

file

super_block

(1) open, creat

(4) cert(5) token

(2) k

(3) FSK

(a) Creating a new file

TransCrypt
and PKI

CryptoAPI

ACL

File

Encrypted
File System

Smart Card
Service

User
Process

Kernel

User−space

VFS

(1) open

super_block

file

(3) netlink

(2) token

(5) k

(4) FSK

(b) Opening an existing file

Figure 5.2: File operations: creation and access

Also, the FSK is read from the kernel’s in-core super block structure associated

with the underlying volume. It is used to encrypt the FEK using the specified

algorithm parameters.

• The kernel determines the UID of the file’s owner from the current process

context. This is used to access the owner’s certificate from the repository. The

certificate is verified and then its public key is used to encrypt the result of the

previous step. The resulting token is copied into the corresponding field of the

owner’s ACL entry.

• The above step is repeated for all the users present in the default ACL inherited

by the file (or directory) from its parent directory.

The actions taken when opening an existing encrypted file are as follows:

• The kernel determines the UID of the current process context and checks the

user’s permissions to open the file using the appropriate ACL entry. If suc-

cessfully verified, the corresponding token is pulled out of the ACL entry and

29

decrypted using either the smart card or the user’s private key acquired from

the disk.

• The file system key is read from the in-core super block and used to decrypt the

result of the previous step.

• If the user is genuine, we now have the original FEK k used to encrypt the file.

It is copied into the file structure corresponding to this call of open.

5.7.5 Reading and writing file data

Other than read and write, file data may be accessed using the mmap system call. The

2.6 series kernels incorporate a unified page cache and bio infrastructure that provide

a common interface to the disk regardless of the system calls used. TransCrypt

takes advantage of these unified interface to hook in the encryption and decryption

processes.

A file’s contents are accessed after it has been opened. The FEK already

present in the corresponding file structure is used to do encryption or decryption

transparently. Implementation issues such as locking and synchronization determine

the exact placement of the encryption and decryption hooks in the kernel. The

implementation effort in TransCrypt has proceeded in an exploratory fashion and

evolved towards the best alternative. A preliminary version plugged encryption and

decryption at the page cache layer around the submit bh function. This approach leads

to individual bio requests being submitted for every file system block, thus causing

a significant performance degradation of about 40%, as determined experimentally.

This preliminary implementation approach is being discarded in favour of a design

that uses the workqueue interface, thus enabling the coalescing of multiple bio requests

to avoid the aforementioned overhead. Separate per-CPU kernel threads created in

advance are executed in user process context. After encrypted data is read from the

disk, the callback function executing in hard IRQ context merely enqueues the actual

decryption job in the corresponding kernel thread’s workqueue. The implementation

of dm-crypt [6] uses a similar design and integrating TransCrypt with it may be

explored in the future.

30

In case encrypted file data must be maintained in the page cache, the en-

cryption and decryption processes are implemented in the actor functions that copy

the data between the kernel’s page cache and the user-space buffers specified by the

application to the read or write system calls.

As discussed earlier, TransCrypt also utilizes keyed hashes to enforce file in-

tegrity. The hash list for a file consists of a separate message authentication code

computed for every file system block used by that file’s contents (including the block

containing its ACL) that are verified for every read and updated on every write op-

eration on the corresponding block. The top hash, computed over the hash list itself,

must be verified or updated for every read or write call respectively.

The present architecture of TransCrypt does not use the in-kernel key man-

agement service [15] recently introduced in Linux and stores encryption keys directly

in VFS objects. Future versions of TransCrypt may integrate with kernel keyrings.

Another implementation tweak could be to store the secret keys used by TransCrypt

in kernel structures in a key schedule form. This avoids the repeated overhead of

converting the plaintext key into a key schedule at every read or write and speeds

up encryption or decryption at the cost of greater space. However, this is not yet

supported by the present architecture of the kernel CryptoAPI and hence left out of

our design.

5.7.6 Granting and revoking file access

TransCrypt utilizes a keyed hash to protect the integrity of a file’s ACL. Hence, ACL

manipulation system calls must be provided by the kernel to make the mechanism of

file access granting and revoking similar to the handling of open and creat. Presently,

however, ACL manipulation in Linux is through the libacl library that exports ACL

interface functions to the chacl and setfacl commands and in turn communicates

with the kernel using extended attribute system calls. Figure 5.3 illustrates the flow

of control and data whenever the owner of an encrypted file grants access to another

user.

• The owner’s token is read from his ACL entry and decrypted using his smart

card or private key to produce the blinded FEK.

31

Owner’s
token user’s

token

Target

Blinded
FEK

libacl

ACL

Owner’s
Smart
Card

Certificate
Repository

(5) Target
cert

File

chacl, setfacl

User−space

Kernel (1) getxattr (8) setxattr

(7) acl_set_file(2) acl_get_file

(3)

(4)

(6)

Figure 5.3: Granting file access to other users

• The target user’s certificate is fetched from the repository and verified. The

public key is extracted from it.

• The blinded FEK (the FEK encrypted with the file system key) is directly

re-encrypted using the target user’s public key to get his per-user token.

• The certid and token fields of the target user’s newly created ACL entry are

updated and stored.

When revoking access, the target user’s ACL entry, including the token, is

simply deleted. Re-encrypting the file with a new key is not necessary.

5.8 Procedures

We now discuss various administrative and maintenance procedures that must be

followed by the organization.

5.8.1 Change of user keypair and smart card

This case is handled using a special utility implemented in user-space. When a user

changes his keypair, the old certificate in the public repository is immediately replaced

32

with the new one to ensure that his token for any newly created files would be

generated using the new public key for encryption. Then, the special tool must be

run through the entire encrypted file system to find all files that are accessible by the

user. The user’s token for such files is extracted from the corresponding ACL entry

and decrypted using the old smart card. The resultant blinded FEK is re-encrypted

using the new public key. This new token is then stored back into the ACL. This

tool runs with special privileges so that the ACLs of files that are not owned by

the user may also be modified. Because this operation may potentially take a lot of

time, TransCrypt allows it to be run in the background and provides for a period of

transition during which the user may possess both the keypairs. The public certificate

repository, however, always only contains the latest public key certificate for every

user.

5.8.2 Backups

Encrypted backups of the full image of a file system are taken by remounting the

encrypted volume without the encrypt option in read-only mode. Any backup software

may be used for this purpose after turning off the incremental mode of operation.

Because the cryptographic context of a file is dependent on the file system blocks

containing it, the restore process must be applied using the full source image to the

same target file system. Thus, TransCrypt disables the recovery of individual files

to other file systems, preventing the leak of data from stolen backups. Also, it must

be noted that FEKs are stored as tokens after encrypting them with the FSK, thus

making them dependent on the file system. The FSK is itself stored encrypted in the

superblock of the volume and must also be backed up along with the other parameters

that are present in the superblock.

5.8.3 Data recovery

The recovery process employs a special user-space solution. A separate tool must be

implemented that may require multiple administrators to insert multiple smart cards

simultaneously to reconstruct the private key of the data recovery agent. It is then

used to decrypt the files to be recovered.

33

Chapter 6

Results and Conclusions

This chapter presents a brief analysis of the performance achieved by the first reference

implementation of TransCrypt. Then, TransCrypt is compared with the related work

to clearly emphasize its various security and usability features.

6.1 Performance Evaluation

We first describe the experiments conducted to measure TransCrypt’s performance

in terms of the time overhead to read and write file contents on an encrypted file

system with respect to the normal unencrypted case. TransCrypt is still under active

development and further enhancements to the current implementation have been

planned as explained in the previous chapters. Moreover, other existing encrypting

file systems do not provide the same grade of features as provided by TransCrypt.

Hence, a detailed comparison of performance with existing related systems is omitted

in favour of a comparison with normal unencrypted file read and write access. A more

formal analysis and performance comparison may be undertaken in the future when

the implementation evolves and stabilizes as planned.

34

6.1.1 Experimental Setup

Two sets of tests were conducted for different file sizes as shown in the table. All

individual tests were conducted on a freshly booted system to avoid caching effects

and force all disk I/O to compulsorily involve encryption and decryption. The test

system used an Intel Pentium 4 CPU running at 3 GHz with Hyper-Threading and

2 GB physical RAM. Both the encrypted and unencrypted test volumes were ext3

formatted partitions that used a file system block size of 4 KB. The AES block cipher

with 128-bit keys was used. Also, the results obtained do not consider the overheads

due to file integrity checks or smart card access as the user’s public and private key

parameters were directly made available with the kernel for these tests.

Simple scripts were written to conduct the actual experiments. The dd com-

mand was used by all scripts to read the contents from the appropriate input file and

write them out to the appropriate output file. The sync command was executed at

the end of the scripts to ensure that all buffers are flushed to the disk and all disk I/O

waiting for writeback is actually finished (and hence the encryption and decryption

processes have actually taken place). Finally, the time command was used to collect

statistics of the time elapsed in executing these scripts.

• Read test : In the read test, an existing file created beforehand from random

data of appropriate size (4 MB for the first run and 512 MB for the second run)

was specified as the input file. This file resided on an encrypted volume in the

case of the TransCrypt test and on an unencrypted volume for the normal test.

The read test specified /dev/null as the output file to dd, effectively ensuring

that the only overhead being measured is that of reading the input file.

• Write test : In the write test, /dev/zero was specified as the input file to the

dd command. An output file (of appropriate size depending on the test run)

was created on the target file system to measure the overhead of writing data

to encrypted or unencrypted volumes.

• Copy test : The copy test specified both the input and output files on the target

file system being tested.

35

Test File size Parameter (in seconds) Read Write Copy
Elapsed Real Time 30.193 47.651 99.802

512 MB User CPU Time 0.061 0.074 0.085
TransCrypt System CPU Time 14.273 2.499 13.323

Elapsed Real Time 0.312 0.454 0.719
4 MB User CPU Time 0.002 0.001 0.001

System CPU Time 0.095 0.022 0.114
Elapsed Real Time 9.687 13.104 26.346

512 MB User CPU Time 0.065 0.071 0.104
Normal System CPU Time 0.754 2.458 2.763

Elapsed Real Time 0.119 0.169 0.368
4 MB User CPU Time 0.002 0.001 0.002

System CPU Time 0.011 0.021 0.027

Table 6.1: Performance of TransCrypt against normal unencrypted file operations

6.1.2 Analysis of Results

Table 6.1 shows the performance achieved by TransCrypt for read, write and copy

(read and write) operations on files stored on an encrypted volume. Corresponding

numbers for these operations on files stored on a normal unencrypted file system are

also shown.

For each test, the numbers shown indicate the elapsed real time, user CPU

time and system CPU time outputs of the time command. Although a degradation of

more than 200% has been observed, the performance is likely to improve as the imple-

mentation is refined and optimized. Moreover, the existing performance overhead is

still better than most user-space cryptographic file systems that degrade performance

by several times [3]. TransCrypt’s performance may thus be acceptable in typical

end-use scenarios given the unique security benefits offered by it.

6.2 Conclusions

This section presents a detailed comparison of the features and design choices of

TransCrypt against the surveyed related work. Finally, we end by summarizing the

main aspects of TransCrypt.

36

Feature CFS Windows
EFS

dm-crypt eCryptfs TransCrypt

Design
Approach

user-space hybrid kernel hybrid kernel

Key
Management

common
mount-wide
key

per-file keys
and per-user
keypairs

common
mount-wide
key

per-file keys
and per-user
keypairs

per-file keys
and per-user
keypairs

Recovery
Agent

no yes no yes yes

Superuser
Account

trusted trusted trusted trusted untrusted

User-space trusted trusted trusted trusted untrusted
FEK
Blinding

no no no no yes

Integrity unsupported unsupported unsupported supported supported
Sparse Files supported supported supported unsupported supported
Smart Card
Support

no no no no yes

ACL
Integration

no no no no yes

Table 6.2: Features of TransCrypt versus other encrypting file systems

6.2.1 Comparison with Related Work

Table 6.2 provides a tabular comparison of the usability features and security benefits

offered by TransCrypt against Cryptographic File System (CFS), the native Microsoft

Windows Encrypting File System (Windows EFS), dm-crypt and eCryptfs.

• Design Approach: CFS is completely implemented in user-space whereas dm-

crypt is completely implemented in the kernel. Windows EFS and eCryptfs use a

hybrid kernel-space and user-space design to provide advanced key management.

TransCrypt provides advanced key management while managing to implement

all critical cryptographic functionality completely in the kernel, thus protecting

from a wide array of attacks.

• Key Management : CFS and dm-crypt use common passphrase-derived mount-

wide keys and hence provide simplistic key management schemes. Windows

EFS, eCryptfs and TransCrypt use different per-file encryption keys and asso-

37

ciate different keypairs with all users, thus enabling secure sharing of protected

data.

• Recovery Agent : A recovery or escrow agent is applicable only to systems that

use different randomly generated keys to encrypt individual files. TransCrypt

provides this feature, as do Windows EFS and eCryptfs.

• Superuser Account : The superuser account is implicitly trusted by all existing

encrypting file systems. TransCrypt’s design enables us to keep the superuser

account outside the trust model.

• User-space: TransCrypt does not trust user-space programs, even those running

with superuser privileges. This prevents several easy threats such as daemon

masquerading or man-in-the-middle attacks.

• FEK Blinding : TransCrypt is the only system that uses a file system key to

incorporate a form of blinding in the metadata token associated with every

user for every file. As explained in previous chapters, this blinding helps us to

prevent the key leak attack and avoid trusting user-space programs.

• Integrity : eCryptfs incorporates a cryptographic scheme to provide file integrity

and prevent undetectable modification of files without knowing the secret file

encryption key. A similar scheme is also supported by TransCrypt.

• Sparse Files : Sparse files are transparently supported by TransCrypt.

• Smart Card Support : TransCrypt proposes and enables the integration of smart

cards containing a user’s private key with the encrypting file system. A cor-

responding PKI to manage user certificates is also included in the TransCrypt

architecture.

• ACL Integration: The per-file per-user cryptographic metadata is integrated

into the ACL of a file in the design proposed by TransCrypt. This greatly

simplifies key management by the end-user which reduces to merely granting

and revoking file access using the standard ACL manipulation commands.

38

6.2.2 Summary

Data security has emerged as a critical need in both personal and multi-user scenarios.

The key challenge is to provide a solution that is easy to use for individuals as well as

scalable for organizational environments. Most existing encrypting file systems do not

meet the diverse requirements of security and usability, due to the lack of flexible key

management, fine-grained access control and security against a wide range of attacks.

TransCrypt provides a solution that is both secure and practically usable. We

assume an attacker has the capability to launch attacks that are beyond the threat

models of existing systems and propose solutions to such threats. We make a crucial

distinction between the kernel and user-space from a security perspective. Employing

a completely kernel-space implementation enables us to avoid trusting the superuser

account and protect against various user-space attacks. Integration of cryptographic

metadata with POSIX ACLs greatly simplifies key management. Enterprise-class

requirements such as data integrity, data recovery, backups and remote secure access

to shared file systems are also supported. Future versions of TransCrypt may explore

deeper integration with trusted platform module hardware, especially in the areas

identified in this thesis, to further minimize the number of trusted entities and provide

even greater security.

39

Bibliography

[1] Apple Mac OS X FileVault. Website. http://www.apple.com/macosx/

features/filevault/.

[2] Arms dealers got Navy plans and deployment details. Website. http://www.

indianexpress.com/story/8028.html.

[3] Matt Blaze. A Cryptographic File System for UNIX. In Proceedings of the ACM

Conference on Computer and Communications Security, pages 9–16, 1993.

[4] Jean-Luc Cooke and David Bryson. Strong Cryptography in the Linux Kernel.

In Proceedings of the Linux Symposium, pages 139–144, Ottawa, Canada, July

2003.

[5] Cryptographic signatures on kernel modules. Website. http://lwn.net/

Articles/92617/.

[6] dm-crypt: a device-mapper crypto target for Linux. Website. http://www.

saout.de/misc/dm-crypt/.

[7] EncFS: Virtual Encrypted Filesystem for Linux. Website. http://encfs.

sourceforge.net/.

[8] Clemens Fruhwirth. New Methods in Hard Disk Encryption. Website. http:

//clemens.endorphin.org/nmihde/nmihde-letter-os.pdf.

[9] Simon Garfinkel. PGP: Pretty Good Privacy. O’Reilly Media, 1995.

[10] Andreas Grunbacher. POSIX Access Control Lists on Linux. In Proceedings of

the USENIX Annual Technical Conference (FREENIX Track), pages 259–272,

June 2003.

40

[11] Michael Austin Halcrow. Demands, Solutions, and Improvements for Linux

Filesystem Security. In Proceedings of the Linux Symposium, pages 269–286,

Ottawa, Canada, July 2004.

[12] Michael Austin Halcrow. eCryptfs: An Enterprise-class Encrypted Filesystem for

Linux. In Proceedings of the Linux Symposium, pages 201–218, Ottawa, Canada,

July 2005.

[13] David Hardeman. [PATCH] add multi-precision-integer maths library. Linux

Kernel Mailing List, January 2006. http://lkml.org/lkml/2006/1/26/295.

[14] How Encrypting File System Works. Website. http://technet2.

microsoft.com/WindowsServer/en/Library/997fdd99-73ec-40%

41-9cf4-1370739a59201033.mspx.

[15] David Howells. [PATCH] implement in-kernel keys & keyring management. Linux

Kernel Mailing List, August 2004. http://lkml.org/lkml/2004/8/6/323.

[16] Niels Provos. Encrypting Virtual Memory. In Proceedings of the USENIX Secu-

rity Symposium, pages 35–44, August 2000.

[17] SmartK: a smart card framework for the Linux Kernel. Website. http:

//smartk.dia.unisa.it/.

[18] Symantec: Average Laptop Contents Are Worth Half A Million Quid. Web-

site. http://www.digital-lifestyles.info/display_page.asp?section=

cm&id=2960.

[19] Erez Zadok, Ion Badulescu, and Alex Shender. Cryptfs: A Stackable Vnode

Level Encryption File System. Technical Report CUCS-021-98, Department of

Computer Science, Columbia University, 1998.

41

