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Abstract

Due to the increasing design complexity, time to market constraints and other cost

criteria, embedded systems designers use automated processor modeling tools for

rapid design and analysis of various system design trade-offs. Given a processor

description, these tools facilitate automated generation of processor specific tools.

Sim-nML [RM99] is a retargetable architecture description language used to

develop processor modeling tools. In our work, we have developed a parser which

takes a Sim-nML processor description as input and generates an easy and efficient to

use intermediate representation in a hierarchical tree form suitable for input to tool

generators. We have made a retargetable disassembler based on this intermediate

representation. This disassembler has been interfaced with GDB to provide a generic

debugging environment.

A traversal library [Vis06] is used to facilitate tool independent traversal of the

intermediate representation hierarchy. The intermediate representation together

with the traversal library provides a unique platform for development of various

retargetable processor modeling tools.
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Chapter 1

Introduction

An embedded system is a combination of hardware and software. Generally, soft-

ware is used for features and flexibility, while hardware is used for performance.

The traditional design methodology is to first make the hardware and then write

software for them. Due to the increasing design complexity and other constraints,

this approach is no longer feasible. Some of the major issues with this approach are

the following.

• The hardware design errors become increasingly costly to correct as the design

progresses. If the errors are detected at an earlier stage, it will result in

substantial cost savings.

• It requires the separation of functionality to implemented in hardware and

software at the beginning of the design itself. This leaves no scope for further

revisions. In addition to this inflexibility, this may lead to sub-optimal designs.

• The design of these systems can be subjected to many additional constraints,

including performance, cost, time-to-market, power, space and reliability re-

quirements.

These problems forced the system designers to follow new design approaches.

In these, the hardware and the software are designed concurrently. This allows

designers to look into various hardware software design trade-offs and chose the

1



ones most suited to the requirements as soon as possible in the development of the

system.

1.1 Hardware Software Co-design

Hardware software co-design can be defined as cooperative design of hardware and

software components. It allows the movement of fuctionality between hardware

and software at various stages during the system development life-cycle. The chief

goals of hardware software co-design are to shorten the time-to-market by reducing

the design effort and the cost of final system by optimizing the hardware software

partitioning. The hardware software co-design flow is shown in figure 1.1.

Partitioning

Hardware Software

Co−Synthesis

Specification
System

Co−Simulation

Implementation

Repartition

Figure 1.1: Hardware software co-design flow diagram
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First step in co-design is to get a refined system specificatin from the given re-

quirements. After this, the specification is analyzed based on various cost metrics

like performance, space and power requirements. At this point, the system function-

ality is divided into smaller set of modules. The partitioning step identifies which

functionlity module is best suited for implementation in hardware or software based

on the various cost criteria. After this step we get a division between the hardware

and software components from where the design and development on these go in

parallel.

Hardware is designed using hardware description languages (HDLs) such as Ver-

ilog, VHDL etc. HDLs are capable of describing the hardware at the lowest level

and the associated EDA tools facilitate the compilation, simulation and synthesis

of these hardware designs. The software is designed using some high level language

such as C, C++ etc. This process typically involves tools such as processor sim-

ulator, assembler, disassembler, debugger, compiler back-end, profiler etc. These

toolsets allow the development of software for the target environment. This phase

involving hardware synthesis and software compilation is known as Co-Synthesis.

The next step in co-design process is Co-Simulation. In Co-Simulation, these

hardware and software components are brought together and executed in real time.

To speed up the simulation time of overall system, generally emulation is used.

Emulation systems map the synthesized hardware onto real programmable hardware

such as FPGA (Field Programmable Gate Arrays) providing us a close prototype

of the final system. Co-Simulation allows the verification of original design and we

also come to know if the imposed constraints are met. If the design meets all the

performance constraints and the final cost is acceptable, the Co-Simulation process

stops and the hardware design is converted to real hardware and then the software

design is integrated with it to make the final system. However, if the constraints are

not met, a repartitioning step is performed to optimize the design and this process

is repeated till we satisfy the various cost criteria.
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1.2 Retargetable Processor Modelling Tools

Different embedded systems have their own unique requirements. We can either

make an entirely new processor core as per application requirements (Application

Specific Processors) or modify an already existing one. In the latter case we have

several alternatives to chose from such as Tensilica [xten] and Xilinx Virtex-5 [xil].

But a new design requires a new set of software tools which takes a lot of time and

effort to develop. This problem can be solved by automation of software toolset

generation process.

Automated software toolset generators take the specification of processor model

as input and generate the desired tool based on that processor model. This greatly

reduces the effort required to make new tools. To accomplish this we only have to

write the processor specification. However, the language used to write the processor

specification must be powerful enough to model a variety of processor features. It

must also be easy to understand and program in.

1.3 Overview of Retargetable Languages and Frame-

works

HDLs such as Verilog [ver] and VHDL [vhd] are widely used to model processors.

However, processor models written in these languages contain highly detailed and

low level hardware implementation details. These details are not useful from a

simulation and software verification point of view. Also, it is not possible to obtain

instruction set details like assembler syntax from such low level descriptions.

SystemC [sys] is an example of high level system description language. SystemC

is a set of library routines and macros implemented in C++. It contains good feature

set to perform behavioral modeling of the system. However, SystemC is geared more

towards system level modeling rather than processor modeling.

Architecture description languages (ADLs) are high level languages designed

specifically to model processor architectures. They provide sufficient abstraction
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and are suitable for making retargetable tools. Some of the ADLs and frameworks

are described below.

nML [Fre93] language, developed at TU Berlin, is based on attribute grammar

and describes processors at the level of instruction set. nML lacks constructs to

support the resource usage and timing mechanisms. Sim-nML [RM99] language,

developed at IIT Kanpur, is an extension of nML which adds these features.

ISDL (Instruction Set Description Language) [HHD97], developed at MIT, is

a language mainly targeted towards VLIW architectures. It is similar to nML and

describes the instruction set of the processor. ISDL has been used to generate

compiler and simulator.

MDES [mde97] machine specification system is a part of Trimaran tool set [Tri].

It supports the instruction set level and structural level details including details

like resource usage and latency. It also provides novel features such as predication,

control and data speculation and compiler controlled management of the memory

hierarchy. However, MDES allows only allows a limited retargetability.

MIMOLA (Machine Independent Microprogramming Language) [LEL99], de-

veloped at University of Dortmund, Germany, describes a processor at a lower level

and is close to hardware description languages like Verilog and VHDL. The output

of MIMOLA based design process is a register-transfer level description of the com-

puter. MIMOLA has been used to make instruction set simulators and retargetable

code generation systems.

LISA processor specification language [PHM00] developed at Aachen University

of Tecnology, Germany, supports the description of different aspects of processor

architectures like behavior, instruction set, and syntax. It also facilitates pipeline

description and timing control. It has been used to to generate tools like assembler,

disassembler, linker, compiler, debugger front-end etc. The language RADL [Sis98]

is derived from LISA and extended to support multiple pipelines.

EXPRESSION [HGG+99] ADL, developed at UC Irvine, supports both behav-

ioral (instruction set) and timing model details of the processor. It uses a high level

of abstraction to specify pipeline path from which reservation tables are automati-

cally generated. It has been used to make retargetable compilers and simulators.
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1.4 Overview of this Work

In this work, we have made a parser to generate an intermediate representation

(IR) from a Sim-nML processor description. We have also developed a generic dis-

assembler using this IR. It can be used to disassemble a program written for a

new processor design. We have also interfaced this disassembler with GNU Debug-

ger(GDB) [gdb] to provide a generic debugging environment for target applications.

Sim-nML is a language for describing an arbitrary processor architecture. It pro-

vides processor description at an abstraction level of the instruction set and hides

all hardware level implementation specific details. Sim-nML is flexible, easy to use

and is based on attribute grammar. It can be used to describe processor architec-

ture for various processor-centric tools, such as instruction-set simulator, assembler,

dissembler, compiler back-end etc, in a retargetable manner. Sim-nML has been

used as a specification language for generation of various processor modeling tools.

A brief description of these tools is given in section 1.5.

As a processor description language, Sim-nML has various features to make

description writing easy to read and write. However, due to such features it becomes

harder for tool developers to directly use the processor description in tool generators.

We have made a parser to convert the Sim-nML processor description into a C++

class hierarchy as an intermediate structure between the processor description and

tool generators. Sim-nML descriptions are first converted to this hierarchy and then

it is used by various tool generators for easy and efficient processing of processor

information.

1.5 Previous Work with Sim-nML

Sim-nML was designed as an extension to nML. nML was not capable of handling

the execution behavior of processor pipeline properly. Sim-nML addressed this

issue by adding a resource usage model. A very simple and primitive instruction set

simulator [Raj98] was designed at that time. Since then, Sim-nML has been used as

specification language for generation of various processor modeling tools. A listing
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of major tools generated using Sim-nML is as follows.

• Disassembler: A processor independent symbolic disassembler [Jai99] was

designed. To avoid tedious processing of Sim-nML descriptions, an intermedi-

ate representation(IR) of processor description in the form of fixed sized tables

was also introduced.

• Functional Simulator: A retargetable functional simulator(Fsimg) [Cha99]

was designed and limited instructions of PowerPC 603 and Motorola 68HC11

processors were tested on it.

• Compiler Back-end: This tool [Bha01] read a Sim-nML description in in-

termediate form and generated a partially complete GCC machine description.

The tool was tested by retargeting the GCC to Sparc processor.

• Cache Simulator: A cache simulating environment [A.R99] was developed

to provide a basis for benchmarking various caching policies of a given proces-

sor.

1.6 Organization of Report

Rest of the thesis is organized as follows. In chapter 2, we introduce Sim-nML

and describe in detail the intermediate representation and mechanism to translate

Sim-nML to its IR. In chapter 3, we discuss the design and implementation of

our disassembler. In chapter 4, we look into the interface between GDB and the

disassembler. In chapter 5, we conclude with results and future work. In Appendix A

we provide the complete details of Sim-nML language. In appendices B and C, we

provide the Sim-nML grammar and list of operators used in IR respectively. Finally,

in appendix D we give the class hierarchy structure for the IR.
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Chapter 2

Intermediate Representation

2.1 Introduction to Sim-nML

Sim-nML is a language for describing an arbitary processor architecture at the level

of instruction set. It is flexible, easy to use and based on attribute grammar. The

processor models in Sim-nML contain details of registers/memory, instructions, ad-

dresing modes and resource usage model. Instruction set in Sim-nML are described

in a hierarchial, tree like structure, with sharing of common information among

related instructions. These details are specified by the constructs rules and declara-

tions. Sim-nML provides two types of rules - mode-rules and op-rules. mode-rules

are used to descibe the addressing modes while op-rules describe the instructions.

declarations provide the specifications of registers, memory and local variables. Sim-

nML can be used to generate retargetable tools according to the given processor

specification. Complete details about Sim-nML is given in the Appendix A.

2.2 Intermediate Representation

A processor specification in Sim-nML language is a human readable text file. Sev-

eral constructs are provided in Sim-nML to aid the readability and clarity of the

processor description. The tools based on Sim-nML need to parse the description
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to remove redundant information, perform variable substitution, etc. It is not con-

venient for every tool to retrieve the desired information from description itself. In

addition to a lot of duplicate work, inconsistency and errors could develop due to

independent interpretations. Thus, it is desirable to have an interface between pro-

cessor description and the input to the tool generator. We provide this interface

in form of an intermediate representation (IR) obtained by parsing the processor

description. This IR would be a collection of all the information present in the

description in an efficient and easy to use format.

2.2.1 Tabular Structure vs Class Hierarchy

In the earlier work on Sim-nML [A.R99], IR was designed as a collection of tables

which would hold the relevant information extracted from the processor description.

These tables were designed to be simple for easy handling of the IR. Such simpli-

fications called for the table entries to be fixed sized. This demanded addition of

several other tables to prevent the table entry from being variable sized. These extra

tables required indirect indexing to access the required information. This method

of accessing data enhanced the complexity of tool development and a lot of effort

was spent in retrieving data from the IR rather than in developing tools themselves.

Additionally, this table structure had no natural resemblance to the structure of the

processor specification.

In this work, we have made a parser to parse the Sim-nML processor descriptions

and store the information in IR in the form of a class hierarchy. The detailed

description of this class hierarchy as defined in [Vis06] is reproduced in Appendix D.

This new IR has the following advantages

• It represents the processor description in a natural manner and avoids the

indirect addressing as in the tabular structure.

• It represents the data in an object oriented manner, thereby hiding the internal

details of IR implementation from the tool generators.

• It provides a generic structure to store the tool specific data in the IR, inde-
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pendent of the tool generators.

The earlier IR was designed to be stored in a file. The tool generators would

then read this file to get the required processor information. However, the parsing

of description is fast enough and the requirement of eliminating parsing overheads

by keeping the IR in a file is not necessary.

To maintain compatibility with the old tabular IR format, we have routines for

conversion between these two formats.

The parser is available as a library which can be linked by the tools to achieve

parsing and get the IR for the Sim-nML description.

2.3 Generating the IR

2.3.1 Simplification by Substitution

Sim-nML language allows definition of constants by using let specification (eg: let

REGS = 5). During the parsing of the Sim-nML specification file, whereever

a constant is referenced, its value is substituted in the IR. For example, value of

the constant REGS i.e. 5, is substituted whererever REGS is used in the example

figure 2.3. The definition of the symbolic names after substitution become redundant

and may be removed from the IR. However, certain constants definitions might be

used by the tools, for example, constants like byte order may be used by tools to

define the byte ordering of a processor. Therefore, a choice was made to carry out

the substitution s and to additionally retain all such definitions in the IR.

Sim-nML also defines new data type definitions using basic data types and pre-

viously defined user data types. Since all user defined data types can be built using

only the basic data types, all variables are redefined with only basic data types in

the IR. Thus all user defined data type declarations can be eliminated from the IR.

For example in figure 2.3, byte is used to refer to data type card(8). All occurances

of byte are replaced by card(8) during the IR generation. In the generated IR, no

definition of byte will be available.
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The third type of substitution that is used is in the case of enumerated data

types. While the previous two substitutions are done lexically, in a way similar

to the macro expansions in C, substitution of enumerated data types is done at

the parser level. It also includes checks for proper compatibility. This kind of

substitution is explained by an example given below.

type e1 = enum(low = 0, high)

type e2 = enum(zero = 0, one, two, three, four)

reg R[1, e1]

R = high;

R = two;

Figure 2.1: Example to show use of enumerated data types

Here, in the first statement, high will be replaced by 1. Second statement will

result in parser error since R is bound to enumerated type e1 and can only take

values low and high.

2.3.2 Structure of tihe Intermediate Representation

The intermediate representation is capable of storing information about constants,

declarations, or-rules, and-rules and information about attributes such as syntax,

image, action etc. These informations are represented using a hierarchy of classes.

The common attributes of a particular entity are present in a base class while the

differentiating attributes are stored in the derived classes. This achieves an orthog-

onal storage structure and avoids carrying duplicate and redundant information.

The topmost class in this hierarchy is known as IR which encapsulates the complete

intermediate representation of the processor description.

IR is specified by the tuple <declare list, rule list, ctx> (Here we show

only the variables of the class. The complete details of all the classes including the

data types is given in the Appendix D.)
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The variables declare list and rule list represent the list of all declarations

And-rules in the IR. In other words, IR is just a collection of list of declarations and

list of rules. The complete detail of a declaration or a rule can be accessed from

the relevant elements of these list. All the base classes of IR contain an object of

Context class. This holds the information about the source code location for the

corresponding entity and is used for the purpose of error reporting by tools.

Context is specified by the following tuple - <line start, line end, name>.

The variables line start and line end store the starting and ending line num-

bers in the file corresponding to that entity. The name is a string which stores the

context string. For the constant definitions like let and type which are substituted

by their values, this context string stores the name of that particular definition. For

everything else, name will just be the name of the description file.

The IR class is constructed during the parsing of the Sim-nML description. This

process works as shown in figure 2.2 below.

Analyzer
Lexical

Parser

IR

status

tokens

Sim−nML Description

   Post Processing

Figure 2.2: IR Generation

The input Sim-nML description is converted into a stream of tokens by lexical

analyzer which are consumed by the parser. As each individual rule and declaration
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gets reduced by the parser, they are added to the IR object. This object, however,

is incomplete at this stage. This is due to the use of forward references in the

processor description. For example, the sub-rules of an or-rule may be defined later

than that rule itself. All such information is saved during the parsing phase and at

the end all the stubs are filled in appropriately in the post-processing stage. After

post-processing we get the complete IR structure which can be used by the tools.

We will now see how the data is stored in IR. We first describe the building

blocks of this IR hierarchy and then show how declarations and rules are added

using the example processor description given below.

\\ ****Type declarations ****\\

[1] let REGS = 5

[2] let MSIZE = 2**8

[3] type byte = card(8)

[4] type index = card ( REGS )

[5] type long = card ( 32 )

[6] type slong = int ( 32 )

[7] reg GPR [ 2 ** REGS , slong ]

[8] mem cq_ptr [ 1 , byte ]

[9] mem wait_id [ 1 , byte ]

[10] mem CQ [ 6 , long ]

[11] mem int_id [ 1 , byte ]

[12] mem M [MSIZE, byte]

[13] mem TMP_SHWORD [ 1 , int ( 16 ) ]
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[14] mem TMP_SHWORD_A0 [ 1 , int ( 8 ) ]

[15] alias = TMP_SHWORD [ 0 ]

[16] mem TMP_SHWORD_A1 [ 1 , int ( 8 ) ]

[17] alias = TMP_SHWORD [ 8 ]

[18] resource int_unit

\\ ****Addressing Modes****\\

[19] mode REG_IND ( r : index ) = GPR [ r ]

[20] syntax = format ( "%d", r )

[21] image = format ( "%5b", r )

[22] mode IMM16 ( n : int ( 16 ) ) = n

[23] syntax = format ( ‘‘%d’’, n )

[24] image = format ( ‘‘%16b’’, n )

\\ ****Instruction Set****\\

[25] op instruction ( x : instr_action )

[26] uses = x.uses

[27] syntax = x.syntax

[28] image = x.image

[29] action = {

[30] x.action;

[31] }

[32] op instr_action = arith_instr
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[33] | branch_instr

[34] op arith_instr = add

[35] | sub

[36] | mul

[37] | div

[38] op add ( rd : index, ra : REG_IND, rb : REG_IND )

[39] uses = int_unit #{1}

[40] syntax = format ("add %d,%s,%s", rd, ra.syntax, rb.syntax)

[41] image = format ("011111%5b%s%s01000010100",

rd, ra.image, rb.image<4..2>)

[42] action = {

[43] GPR [ rd ] = ra + rb;

[44] }

[45] preact = {

[46] int_id = CQ [ wait_id ];

[47] wait_id = wait_id + 1;

[48] }

//other instructions

Figure 2.3: Example processor description

2.3.3 Types

Types in the IR are represented by the class Type <arg type>

arg type holds the kind of Type stored. It can be either DATA TYPE or

RULE TYPE. The further details are defined in the Type subclasses BasicType (used
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when arg type is DATA TYPE) and RuleType (used when arg type is RULE TYPE).

BasicType class is used to represent basic data types like bool, int, card etc. It

consists of the tuple <data type, val1, val2>

data type defines the type of this BasicType and val1 and val2 are bit widths

of integer and fractional part of the data type. For example, for card(6), data type

will be a constant IR MT CARD, val1 will be 6 and val2 will be unused. Similarly,

for fix(5,3), data type will be IR MT FIX, val1 will be 5, and val2 will be 3.

The class RuleType <param rule> is used to represent the rule type parameters.

Here param rule will point to the appropriate rule. In the example description

above, in rule add, parameter ra is of rule type. In this case param rule will be

pointer to the rule REG IND.

2.3.4 Parameters

The and-rule parameters are stored in the objects of class Param <no, name,

type>

The variable no is the unique number assigned to this particular parameter. The

variable name holds the name of this param. Finally, the variable type holds the

type of that particular parameter as defined in section 2.3.3. For example, in the

description given in figure 2.3 in line 38, for parameter rd, name will be “rd” and

type will be representation of card(5), which refers to user type index defined in

line 4 of the example.

2.3.5 Expressions

Expressions form a core part of Sim-nML language. It is important to understand

how they are stored in the IR. Expressions are constructed in a tree like structure

and the class AttrDef is used to represent them.

AttrDef class is represented by <def type>.

This class encapsulates the whole variety of expressions possible. The variable

def type denotes the type of expression that the object will have and the corre-

sponding subclass contains the actual value. The values it can take are the following.
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• Literal: Literals occuring in Sim-nML description are represented by the class

LiteralDef <literal type>

The kinds of literals possible in Sim-nML are integer, real and string, as in 5,

3.63 and “hello” respectively. The variable literal type denotes the type of

literal and the actual value is stored in the objects of respective derived classes,

IntLiteral<int val>, RealLiteral<real val> and StrLiteral<str val>.

• Declaration: When a declaration is used in an expression, it is stored as an

object of class DeclDef<decl def>

decl def is the pointer to the actual declaration being referred. For example,

in the line 47 of figure 2.3, wait id is used in the expression. Here decl def

will point the memory declaration of wait id.

• Parameter: The usage of parameters in an expression is stored in an object

of class ParamUse<param use>

param use is the pointer to the parameter used. For example, in line 43 of

figure 2.3, an expression ra + rb is used that uses two parameters ra and

rb. For the usage of ra and rb, ParamUse object is used where the variable

param use points to the respective parameters ra and rb.

• Attribute Name: An attribute name may occur in an expression, for exam-

ple in the expression x.image < 4..8 > an image attribute is used. It is stored

as an object of class AttrNameDef <attr name>

For the above expression, attr name will be “image”.

• Sub Expressions: Most expressions will be formed by combining the simple

expressions given above with some operator. For example, the expression “d

+ 5” is formed by combining the declared variable, d with the interger literal 5

using operator ‘+’. ‘d’ and ‘5’ will be called the operands of the operator ‘+’.

Such expressions are stored using an object of class OprDef<type, arity,

list>.
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Here type denotes the type of operator and arity is the arity of that operator.

Finally, list contains the actual list of a number of operands that is defined

by the arity. A complex expression is stored in hierarchial manner where

the operands of an operator can themselves be operators having their own

operands. Figure 2.4 gives some examples of expressions as stored in the

IR. All the expressions possible are stored using OprDef class only. To make

it possible, IR adds some operators not in Sim-nML. For example, to store

an if-then-else expression, a ternary IF operator is used with the operands

being if-condition, if-action and else-action respectively. Appendix C gives

the complete list of operators used in IR and their arity.

R 10

[  ]

R [10]

[  ]

M rd

5

+

.

x image

4 2

 <  >

x.image < 4 .. 2>

GPR rd

[  ]0xff

&

|

TMP_WORD

TMP_WORD | ( 0xff & GPR [ rd ] )

(ParamUse)

(OprDef)

(OprDef)

(OprDef)

(LiteralDef)

(DeclDef)

(DeclDef)

M[rd] + 5

(DeclDef)

(AttrNameDef)

(OprDef)

(LiteralDef)(DeclDef) (LiteralDef)

(OprDef)

(OprDef)

(OprDef)

(ParamUse)

(ParamUse)

(OprDef)

(LiteralDef)

Figure 2.4: Example showing expressions
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2.3.6 Adding Declarations

Declarations are used to store the processor specific infrastructure available to us

as part of the description. These include processor registers, memory, resources,

flags and variables local to the description. The top level class which represents all

declarations is Declaration<name, id, type>.

Here, name is the name of the declaration, id is the unique number assigned to

this declaration and type contains the type of this declaration. It can be CONST,

STORAGE or RESOURCE for the three type of declarations possible in Sim-nML.

These types of declarations are stored as objects of their respective subclasses

as given below.

• Storage<size, data type, stor type>. The variable size represents the

size of that storage entity. The variable data type is an object of class Type

representing the type of the storage. Finally, stor type is the type of the stor-

age. We have three types of Storage entities possible and they are represented

by the following subclasses.

– Register<read ports, write ports, init val> The variables read ports

and write ports represent the number of read and write ports available

for that register. The variable init val provides the initial value for this

register. If these values are not provided in the description, they are filled

in according to the conventions specified in the Appendix A.

– Memory<attr def> A memory can be an alias to some other memory

location as described in the Appendix A. The variable attr def stores

an expression providing the definition of the alias. For example, in the

case of memory declaration in line 12 in figure 2.3, the value of variable

attr def will be NULL representing absence of an alias. However, in the

declaration of TMP SHWORD A0, attr def will contain an expression

corresponding to TMP SHWORD [0].

– Variable<attr def> The variable attr def here provides the same pur-

pose as in the case of memory. We do not currrently allow variables to
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be aliased to some other variable. attr def here is present primarily for

backward compatibility.

• Constant<const type>. The constant declarations specified in the descrip-

tion using let keyword are represented by this class. The variable const type

here denotes the type of Constant as described below. The actual value is

stored in the objects of corresponding subclasses as given below.

– IntConstant<int val> for integer constant. The variable int val stores

the integer value.

– FlotConstant<flot val> for floating point constant. The value is stored

in the variable flot val.

– StrConstant<str val> for string constants. The variable str val stores

the string value. For example, in case of declaration let endianity =

“big”, the complete tree representation in IR will be as shown in fig-

ure 2.5

Declaration <"endianity", ID, CONST>

Constant <STR_CONST>

StrConstant<"big">

Figure 2.5: Example showing storage of a string constant in IR

• Resource<no units> The variable no units holds the number of units of this

particular resource.

2.3.7 Adding Rules

Rules are the used to store the instruction set specific information present in the de-

scription. These rules are described in a hierarchial tree like structure as described
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in the Appendix A. The instruction set contains two orthogonal components - mode-

rules, which are used to define the addresing modes; and op-rules, which describe

the instructions. From the point of view of IR there is no difference between mode

and op rules as they are stored in the same data structures. Both these compo-

nents are specified using production or-rules and and-rules. Or-rules are used to

group together a related set of op-rules whereas an And-rule describes a particu-

lar instruction and contains its details. These rules are described in detail in the

Appendix A.

The base class that represents rules is Rule <name, id, type, ret list>

The variable name stores the name of the rule. The variable id stores the unique

number assigned to this rule. The variable type denotes the type of the rule. It can

be an OR RULE or an AND RULE. The variable ret list is used as a placeholder

for tool specific information and is actually independent of any particular tool.

OR Rules

An Or-rule is basically a list of all possible rules for that particular rule. Or rules

are represented by the class OrRule <no child, or and list>

The variable no child stores the number of children of this or-rule. The variable

or and list provides the list of possible rules this or-rule can expand to. For

example, in line 34 in figure 2.3, add, sub, mul and div are the possible rules for the

arith instr. In this case the value of variable no child will be 4 and the variable

or and list will contain a list of Rule pointers to these individual rules. The base

class variable name will be “arith instr” and type will be OR RULE.

And Rules

An And-rule has two components, parameters and attributes. For example, in line

38 in figure 2.3, the add instruction has three parameters - rd, ra and rb and five

attributes - uses, syntax, image, action and preact.

The parameters are represnted by Param class as described earlier.

There are four predefined attributes for an And-rule - image, syntax, action and
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uses. Additional attributes can be added to this list. The new attributes are all

similar in syntax and sematics and use the same data structure for storage in IR as

of action attribute. The preact attribute in add instruction is an example of such an

attribute. Attributes are stored as objects of the class IrAttr<name, id, type>

The variables name, id and type represent the name, a unique number by which

the attributes are referred to and type of the attribute, which can have the values

as IMAGE, SYNTAX, ACTION and USES.

The detailed storage structure of these attributes is as follows.

• Image and Syntax: Image attribute specifies the binary pattern of the in-

struction. Syntax describes the assembler level version of the instruction. The

image and syntax attributes have similar structure and are by the class Im-

ageSyntax <no subpart, subpart list>.

The variable no subpart provides the number of subparts that the particular

image or syntax has. The variable subpart list contains the actual values

stored as list of AttrSubPart<type, width>.

Here, the variable width holds the number of bits that subpart takes as given in

the format string. The variable type denotes the kind of subpart. The actual

value of the subpart is stored in the corresponding subclass object according

to the type. These are

– StrSubPart<str> This is the simple string type subpart. The variable

str contains the actual string value.

– ParamSubPart<specifier type, param> This type of subpart refers

to a parameter of the current And-rule. The variable specifier type

denotes the kind of specifier for that subpart as given in the format string.

The variable param stores the pointer to the corresponding parameter of

the current And-rule.

– ExprSubPart<specifier type, attr def> This is used when the sub-

part is an expression. The variable specifier type is same as in Param-

SubPart. The variable attr def contains the pointer to the expression

stored as AttrDef.
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Consider the image attribute of add instruction given in line 41 of figure 2.3.

This image attribute has 5 subparts. First subpart is string type subpart

with str equal to “011111” and width 6. Second subpart is a param type

subpart specified by “%5b” and rd. Here width is 5, specifier type is ‘b’

which stands for binary and the variable param stores a pointer to Param rd

of this And-rule. Third attribute is specified by “%s” and the corresponding

ra.image is an expression type subpart. In this case, width is unspecified

and specifier type is ‘s’. The variable attr def points to the expression

ra.image stored as an AttrDef object. Simlarly, the fouth and fifth subparts

are (expression type subpart with specifier ‘s’ and expression rb.image<4..2>)

and (string type subpart with value “01000010100”) respectively.

Image and Syntax can also be written as simple string or just a reference to

the corresponding attribute of a parameter, for example syntax = “add” or

syntax = x.syntax where x is a parameter of that rule. In this case, we form

the subpart list consisting of a single subpart which is of string type in

former and expression type with specifier type set as ‘s’ in latter case.

• Action

Action attribute describes the execution behaviour of an instruction. It is

represented by the class Action<no def, attr def>

The variable no def holds the total number of attribute definitions in an action

attribute. The variable attr def holds the value of action attribute in form

of tree of expressions. Action is defined in grammar as sequence of statements

where each statement is delimited by a semicolon. For the add instruction

given in figure 2.3 the trees for action and preact are shown in the figure 2.6.

• Uses

The Uses attribute is used for describing resource usage pattern of a particular

instruction. It is stored as a list of sequential clauses each separated by a

comma. The complete details of the resource usage model are explained in

the Appendix A.
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Figure 2.6: Expression tree for action and preact attributes

Uses attribute is represented by the class Uses<clause list> where the vari-

able clause list stores the list of objects of class Clause.

The class Clause is described as the tuple <type, cond, action, time,

if expr, clause1, clause2>

Here, the variable type denotes the type of clause which can be a simple clause,

an or-clause, an and-clause or an if-expression. cond, action and time are

used to store the corresponding attribute of the clause. If the clause is of type

if-expression, if expr stores the expression for that. In case of an and-clause

or an or-clause, clause1 and clause2 will have the corresponding sub-clauses

which are anded or ored.

The simple clause is represented by the Clause subclass ResUnitSpec<res unit type>

The variable res unit type denotes the type of usage of clause which can

be either Resource or a Rule. These are further represented by the following

classes.

– ResUses <type, opr, dec, index> The variable type holds the type of

resource, which can be either a resource instance or a register operation.
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These register operations are - intent to read, intent to write, actual

read operation, actual write operation and forwarding of register value.

The variable opr holds the operation to be applied on this resource or

register. It can take the following values - aquisition of resource, release

of resource, using all resources, using a particular resource or register,

single resource or register.

The variable dec holds the pointer to the declaration of resource or reg-

ister used in this clause. The variable index holds the array index of this

declaration.

– UsesAttr <rule>: UsesAttr is used in case the clause refers to the re-

source usage of another rule, for example x.uses. In this case the variable

rule will contain pointer to the appropriate rule.

Now let us see how a complicated attribute of type uses will be stored with

an example given below.

uses = x.uses, ( { bu_busy == 0 } fetch_unit1 : preact1 #{1}

| { bu_busy == 0 } fetch_unit2 : preact2 #{1}

), R[2].itr

Figure 2.7: Example of uses attribute

This uses attribute consists of 3 clauses. Its representation in IR is shown in

figure 2.8

Mode Rules

In case of mode rules, we have an additional attribute called val attribute which are

used for describing the addressing mode of an instruction. For example, in case of

mode rule REG IND in figure 2.3, GPR [ r ] will be the val attribute. The expression

in val attribute is stored as an AttrDef variable. The val attribute itself is stored

like any additional attribute defined ie like an Action attribute.
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Clause<SIMPLE>

ResUnitSpec <RULE>

UsesAttr <ptr to rule of param x>

Clause<OR, clause1, clause2>

Clause<SIMPLE, cond, action, time> 

ResUnitSpec <RESOURCE>

ResUses <RES_INST, SINGLE_RES, ptr to fetch_unit1>

bu_busy == 0

preact1

1

ResUses <ITR, RES_INDEX, ptr to R, 2>

ResUnitSpec <RESOURCE>

Clause<SIMPLE>

Uses < clause1, clause2, clause3 >

Figure 2.8: Uses attribute of figure 2.7 in IR
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Chapter 3

Disassembler

3.1 Overview

A disassembler for a particular processor takes the machine code as an input and

produces the assembly instructions for that processor. We have implemented a

retargetable disassembler that takes the processor information from the intermediate

representation of the its Sim-nML description. This disassembler is generic in nature

meaning that it doesn’t depend on the type of the processor and works according its

processor descriptions. The disassembly works by traversing the IR hierarchy and

matching the instructions with the input binary stream.

3.2 Traversing

The disassembler works in conjunction with the tool independent traversal library [Vis06].

This is co-recursive in the sense that traversal routine calls the disassembler func-

tions which in turn call this traversal routine to process other rules. The two types

of traversals possible are, (1) complete traversal of the tree in which all the nodes

of the tree are visited, and, (2) guided traversal in which only a subset of nodes are

visited as guided by the input data.

In this disassembler, we have used guided traversal, where the input byte stream
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for machine code is used to guide the traversal down the tree. Complete traversal can

be avoided here as we just need to find a single match for each machine instruction.

The disassembler needs to look at only the image and syntax attributes. For an

instruction, these attributes will be distributed over the complete and-or IR tree.

The disassembler traverses the instruction tree top-down in a depth-first fashion and

uses backtracking while matching input with the image attribute. As the matches

are made successfully, the corresponding syntax definitions are used to generate the

assembly instruction.

To traverse the tree, disassembler needs to store some data at all the successful

intermediate nodes to reach at correct node. This data is stored in the placeholder

for tool specific information, represented by class RetList, in the Rule class as men-

tioned in the previous chapter. We store the following data in case of an and-rule.

• Path: This is the path by which we arrive at this particular rule. It is defined

as the sequence of rule references required in reaching a node. It is used to

identify if a particular rule was traversed earlier with the same path.

• Bits Matched: This is the list of number of bits matched for each image sub-

part. It is used to change the input matching offset in case of backtracking.

• Length: This is just the sum of all the entries in the previous list.

• Syntax: This is the syntax of the rule constructed at the end of successful

match of all image subparts.

• Parameter Syntax: This is the list of syntax of each parameter reference in

the image subparts. This is used to construct the final syntax string for this

rule.

In case of an or-rule, we store Path, Length and Syntax as before. The lists

Bits Matched and Parameter Syntax are empty in this case. In addition, we store

a pointer to the Next Rule which is just the subrule which resulted in successful

traversal. This is needed because whenever we backtrack, we need an or-rule traver-

sal to continue from the previous successful point. This Next Rule pointer is not

used and is just stored as NULL in case of an and-rule.
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3.3 Disassembler Algorithm

The disassembler works as follows.

We iterate over the image subpart list of the rule being processed and try to

match the subparts with the input binary stream. The processing of different types

of subparts as follows is done as follows.

• String: String type subparts can be directly compared with the input.

• Parameter: The data type parameters are the parameters of that particular

instruction. The parameter which can be, for example, a register number

or an immediate value, is formed from the input equal to the length of that

parameter. So in this case, the input stream subset of length equal to the

number of bits of this parameter is saved.

• Expression: An expression can involve reference to other rules, for example in

case of x.image. In this case we would need to traverse the rule referred by

parameter x. This traversal is performed with the unique integer id of this

parameter appened to path. In case of a successful match the syntax returned

from this traversal is saved.

At each point, if the subpart is matched, the offset of tool in the input data

stream is incremented by the number of bits of this subpart. But, if the match is

unsuccessful, we would need to backtrack to a previous point of rule reference to try

for other possibilities (Backtracking is explained in more detail in next section). If

backtracking fails, the disassembler routine returns failure.

If the iteration gets completed, it means that the rule’s image attribute has

successfully matched the input binary stream. At this point we will process the

syntax attribute and construct the rule’s syntax using the information collected

during the image processing stage. The complete data for this successful traversal

is stored in the fields as mentioned above.

We will see the working of the disassembler with the example below.

op bran_cond_link_abs ( BO : card ( 5 ), BI : card ( 5 ), BD : SIMM )
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syntax = format ( ‘‘bcla %d,%d,%s’’, BO, BI, BD.syntax )

image = format ( ‘‘010000%5b%5b%s11’’, BO, BI, BD.image )

.

.

// other attributes

mode SIMM ( n : int ( 14 ) ) = n

syntax = format ( ‘‘%d’’, n )

image = format ( ‘‘%14b’’, n )

Figure 3.1: Example to show the working of disassembler

Suppose the input binary stream is -

01000010 01001001 11000000 11100111 10101100 11010110 ...

In processing the instruction bran cond link abs, we will iterate over the image

subparts.

• The first subpart is the string type subpart with value “010000”. It matches

the binary stream.

• Second and third subparts are data type parameters, BO and BI respectively.

These are considered as matched and their values are taken from input as

10010, 01001 and stored.

• Fourth subpart is a expression type subpart with parameter BD referring

to rule SIMM. This will result in another traversal where the input value

11000000111001 is matched with image. Since SIMM has now matched com-

pletely, its syntax will be computed according to the syntax attribute as the

decimal value 12345. This data is then available in the original rule and we

store “12345” as syntax for parameter BD.
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• Finally, fifth subpart string “11” matches the input.

At this point we can process the syntax attribute and compute the syntax as

bcla 18, 9, 12345.

The advantage of this tree matching algorithm is that complete subtrees starting

at some node can be discarded without descending further into them. For example,

if we know that all arithmetic instructions in our processor description have image

pattern starting with 1010 and the input stream doesn’t match it we can completely

discard this subtree having, potentially, several instructions.

3.3.1 Backtracking

It is possible that a image subpart that refers to another rule matches some subrules

while the subsequent image subparts don’t match the input as shown in example in

figure 3.2. This means that the choice we made at some previous rule references was

wrong or that perhaps we are in a wrong subtree altogether. To correct our decision

we need to change the choices made in earlier rule reference. This is accomplished

by backtracking in the tree.

arith_insn_type

arith_insn (x : arith_insn_type)

add( )
image = "10"

mul( )
image = "101"

01110110
input

image =  format ("011%s10", x.image)

Figure 3.2: Example for showing Backtracking

For example in case of example of figure 3.2, while processing image for arith insn

we will succeed in matching the input with add. However, later part of image ie

10 does not match with input. This means that we selected wrong subrule for
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arith insn type and we will need to backtrack and change our choice. We get the

correct matching with mul instruction and processing of arith insn succeeds. If, for

example, the input stream is like ‘‘0111XXXX...’’, the rule mul would also not

match it. In this case, the traversal of arith insn will result in failure and we will

have to backtrack to a node in IR tree that is above arith insn and search in some

other portion of the tree.

This differs from traditional backtracking in that we may revisit nodes that were

successfully traversed earlier. For example, in figure 3.2, even though traversal of

node arith insn type was successful and resulted in selection of add sub-rule, we had

to visit this node again and chose the mul sub-rule due to failure ahead.

Backtracking essentially provides us with next possible choice to compare with

the input. If we enumerate all the rules by flattenning out all the subrule references,

we will get an order of all possible values of the image to match. Backtracking

provides us with the next value in this enumeration to compare the input against.

This is done without actually flattening all the rules and is made possible with the

help of the data we store at all the successful rule matches.

Whenever we start to process a particular rule, we need to know if this rule

was successfully traversed earlier with the same path. If this is indeed the case, it

means that there was failure in matching somewhere ahead and we are backracking

and have returned to this rule to explore other possibilities of match. We then

restore all the information stored from the earlier successful traversal and then start

backtracking in image subpart list from the end to get at next enumeration.

It is possible that the input data doesn’t match with any instruction in the tree.

This can be the case, for example, when a particular instruction is left out from the

processor description or in case of incorrect input data being fed. In this case the

traversal will result in failure and the disassembler outputs a .byte pseudo-op and

continues matching from the next byte onwards.
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Chapter 4

Interfacing Disassembler with

GDB

A debugger is an interactive software containing fine-grained controls for execution of

a program and examining and changing the processor states. GNU debugger (GDB)

is a popular, free and open source debugger. We have interfaced our disassembler

with GDB to utilize its debugging facilities.

4.1 Overview of GDB

The block diagram of GDB is shown in figure 4.1. Internally, GDB can be viewed

as having 3 major subsystems: user interface, symbol handling and target system

handling.

The user interface consists of various routines for display of information and

other supporting code for features such as providing command line buffer etc.

The symbol side consists of object file readers, symbol table management, ex-

pression handling, language support, source display and other actibities that involve

symbolic data. BFD library [BFD] which consists of facilities for reading various

executable and object file formats (ELF, coff, a.out etc) is a core component of this

subsystem.
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The target side consists of execution control, stack frame analysis, disassembly

opcode library etc. It mainly works with numerical data such as modifying program

counter, manipulating breakpoint information etc.

This modular separation allows GDB to be ported to large number of target

architectures.

GDB also provides support for interfacing with simulators through a simulator

interface which is a very helpful feature for development of embedded systems.

Debugging algorithms
Arch definitions

Execution control
Opcode library
.
.

Target side

Symbol side

Object file readers
Symbol table
management

Source display 
Language support
.
.

GDB
User Interface

Subsystem

Simulator Interface Simulator

Figure 4.1: GDB structure
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4.2 Interfacing with GDB

GDB provides a disassemble command which is used to examine the disassembly of a

specified region of a program binary during interactive debugging. The disassembly

information for all the supported target architectures is contained in the opcode

library which is linked with GDB. This information is present in a hardcoded way

in the opcode library.

We have changed this interface of GDB to its opcode library by plugging in our

own disassembler in its place. This is shown in figure 4.2.

GDB

Simulator Interface

Simulator

Disassembler
Sim−nML 

Figure 4.2: GDB Interface

The disassembler also interacts with the simulator interface [Vis06] to read the

memory from the location it has to disassemble. The simulator provides the re-

quested data from its memory management subsystem.

The signature of function that was changed in gdb is given below.

static int

dump_insns (struct ui_out *uiout, struct disassemble_info * di,

CORE_ADDR low, CORE_ADDR high,
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int how_many, struct ui_stream *stb)

Here the variables uiout and stb contain the user interface details and are used

by gdb to determine how to display the disassembled data. The variables low and

high contain the range of addresss to disassemble. The variable how many specifies

the number of disassembly lines to display. It is intended to be used by systems

which use the debugger as just one small component of a larger system to control

the exact amount of display. For standalone gdb, as in our case, this variable is

passed as -1 which means full range of address will be disassembled and shown. To

manage the display, the print functions associated with ui streams have the facility

to pause after a screenful of output. The variable di contains architecture specific

details for the current processor. Since we are using our own disassembler here,

the usage of di is removed from this function. The function returns the number of

instructions displayed.

Now whenever disassemble command is issued, it results in call to the Sim-nML

disassembler. This whole process works as follows:

1. Disassemble command is given in gdb, for example, disassemble main

2. GDB finds out the address range of the given symbol.

3. GDB disassemble function (dump insns) runs a loop from this starting address

to end address of the range computed above.

(a) In this loop Sim-nML disassembler is called with the specified address.

(b) Sim-nML disassembler reads the data from this address through simulator

interface and finds out the syntax of instruction which matches this data

and prints it.

(c) Sim-nML disassembler returns the number of bytes for this instruction.

(d) The loop counter is incremented by this number.

This makes the whole disassembly facility in GDB retargetable with opcode

information coming dynamically from the given processor description instead of in

a hard-coded way.
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Chapter 5

Results

In this chapter we will discuss the performance results for disassembler and conclude

our thesis with insight into future work.

5.1 Experiments

We have tested our disassembler using a processor description for PowerPC 603

architecture. The experiments conducted and the methodology is explained below.

5.1.1 Setting for Experiments

We have tested the disassembler on two different machines. The configuration of

these machines is as follows.

• Machine1: Intel Pentium-4 2.4 GHz processor with 512 KB cache and 256

MB RAM running Linux 2.6.12

• Machine2: Intel Pentium-4 3.4 GHz processor with 1MB cache and 1 GB

RAM running Linux 2.6.11

We have chosen some diverse set of applications to test our disassembler. These

applications are.
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• IntMatMult.c: This is a program to multiply two integer matrices.

• BubbleSort.c: This is a program to sort an integer array using bubble sort

algorithm.

• Fibonacci.c: This is a program to find the nth number in Fibonacci sequence.

• QuickSort.c: This is a program to sort an integer array using quick sort

algorithm.

• NQueens.c: In this program, we have to find a way to place N queens on an

NxN chessboard such that no two queens are able to capture each other.

5.2 Results

These programs were compiled using GCC cross compiler version 2.95.3 [gcc] for

PowerPC and statically linked as the underlying simulator does not provide sup-

port for handling dynamic link library calls. These programs were then provided

to GDB where we used the disasm command to disassemble the functions con-

taining their core functionality. This mimics the real term scenarios as experienced

in live debugging in GBD. The performance results obtained for Machine1 and

Machine2 are shown in table 5.1.

5.3 Analysis of Results

We are getting an average time of disassembly per instruction in the range of 3.5-

4.9 msec in case of Machine1 and 2.5-3.8 msec in case of Machine2. Machine2

clearly performs much better than Machine1 which can be attributed to its superior

configuration. We see that the relative performance of test programs is more or

less the same on both the machines. One exception we find in this is that the

disassembly of the program NQueens outperforms that of program Bubblesort in

terms of average time per instruction in case of Machine2 whereas it lagged in case
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Program
Instructions

disassembled
Total time

Avg Time

per instr

Max Time

of an instr
Machine

IntMatMul.c 97
356.947 3.679 18.997 Machine1

263.96 2.721 13.998 Machine2

BubbleSort.c 117
406.937 3.478 19.997 Machine1

292.955 2.503 13.998 Machine2

Fibonacci.c 36
175.973 4.88 19.997 Machine1

137.981 3.832 14.998 Machine2

QuickSort.c 132
477.927 3.62 19.997 Machine1

340.946 2.582 13.998 Machine2

NQueens.c 252
881.868 3.499 19.997 Machine1

627.904 2.491 13.998 Machine2

Table 5.1: Performance results (All times in msec)

of Machine1. This is perhaps due to the larger cache and RAM size of Machine2.

As the number of instructions are much more in case of NQueens the amount of

available cache and memory had an increasingly important role to play.

The amount of time taken to disassemble an instruction will be directly related to

where its node is located in the IR tree. The leftmost instruction leaf can be reached

in the shortest time from the root and represents the best case traversal possible.

Similarly, the rightmost leaf in the tree presents the worst case traversal scenario.

This is exactly what we witnessed in the disassembly output. The leftmost leaves in

this PowerPC IR (a set of unconditional branch instructions) were just four hops

from the root and had a negligible and near zero traversal time. The rightmost

leaves for PowerPC IR were found to be the instructions mfspr (move from special

purpose register) and mtspr (move to special purpose register). To match these

instructions, the traversal routines had to go through all the intermediary nodes.
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These were precisely the instructions that took the maximum amount of time to

disassemble as given in table 5.1.

Another interesting point to note about the results is the average time to disas-

semble per instructions for Fibonacci, which is much greater than other programs.

We found out that all the functions in a PowerPC program contain mfspr & mtspr

instructions for saving the state of special purpose register at the beginning and

restoring it before returning. Since these instructions have the worst disassembly

times and the Fibonacci program itself is very small, it results in the inflation of

average disassembly time for this program.

The performance of the disassembler will also depend a lot on how the processor

specification is written. Consider the example shown in figure 5.1

op arith_insn(x: arith_insn_type)

image = format(‘‘0110%s’’, x.image)

op arith_insn_type = add

| sub

| mul

| sub

op add (r1 : REG, r2: REG)

image = format(‘‘%s%s00’’, r1.image, r2.image)

op sub (r1 : REG, r2: REG)

image = format(‘‘%s%s01’’, r1.image, r2.image)

op mul (r1 : REG, r2: REG)

image = format(‘‘%s%s10’’, r1.image, r2.image)

op div (r1 : REG, r2: REG)

image = format(‘‘%s%s11’’, r1.image, r2.image)

Figure 5.1: Example instructions 1
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These same set of instructions can also be written as the example shown in

figure 5.2

op arith_insn = add

| sub

| mul

| sub

op add (r1 : REG, r2: REG)

image = format(‘‘0110%s%s00’’, r1.image, r2.image)

op sub (r1 : REG, r2: REG)

image = format(‘‘0110%s%s01’’, r1.image, r2.image)

op mul (r1 : REG, r2: REG)

image = format(‘‘0110%s%s10’’, r1.image, r2.image)

op div (r1 : REG, r2: REG)

image = format(‘‘0110%s%s11’’, r1.image, r2.image)

Figure 5.2: Example instructions 2

If the binary stream doesn’t match the image pattern of any of these instructions,

then the disassembler will need to perform four comparisons to figure this out for

example 2 versus just one comparison for example 1. The way of writing instructions

of example 1 is, thus, much more efficient than that of ex ample 2 in this case. So

it is very important that the instruction set be written in such a way that common

pattern of related instruction is as close to root as possible.

In the current PowerPC description, we find that this common structure of

instructions is not exploited. The performance of the disassembler will improve

greatly when this description is optimized as described.

Another processor description related optimization possible to improve disas-

sembly times is to profile the target benchmark applications and find out the most
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used instructions. These and related set of instructions can then be written as close

to root instruction as possible in the processor description to achive a better IR tree.

This is possible because the rules are added linearly in the IR as the description is

parsed.

5.4 Conclusions

In this thesis, we have described the retargetable processor description language

Sim-nML and its application in automatic generation of processor modeling software

tool-sets for embedded systems. We have made a parser for converting the Sim-nML

processor description to an Intermediate Representation as an easy and efficient

interface between tool generators and the processor description.

We have also built a generic retargetable disassembler based on Sim-nML pro-

cessor descriptions. We have also interfaced this disassembler with GDB and the

Sim-nML simulator for providing a generic debugging environment. We have tested

the disassembler with description of PowerPC 603 architecture.

5.5 Future Work

We propose the following future extensions to our work.

• This is a core disassembler and works in conjunction with GDB. It can easily

be extended to a complete standalone disassembler with the help of a driver

routine.

• Our disassembler provides raw disassembly, for example, it gives out the ac-

tual location or offset in case of jump or branch instructions. This can be

improved by giving out labels instead of actual numeric addresses. To achieve

this, we will have to provide a way to identify the jump, branch and other

such instructions. This can be done by providing a separate configuration file

containing the details of all such instructions.
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• The Sim-nML class hierarchy in the form of Intermediate Representation to-

gether with traversal library provides a unique platform for development of

retargetable tools. Various processor modelling tools such as performance

simulators, compiler back-end, assemblers etc can be developed using this

platform.
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Appendix A

Sim-nML

A.1 Introduction

Sim-nML is a language for describing an arbitrary processor architecture. It pro-

vides processor description at an abstraction level of the instruction set, thus hiding

all implementation specific details. Sim-nML is flexible, easy to use and is based

on attribute grammar. It can be used to describe processor architecture for vari-

ous processor-centric tools, such as instruction-set Simulator, assembler, dissembler,

compiler back-end etc, in a retargetable manner.

Sim-nML description of a processor can be viewed as a programmer’s model of

the processor. This model consists of the following.

• Syntax and semantics of instruction

• Addressing modes

• Definition of registers and memory

• Resource usage model

• Methods for handling traps and other synchronized events
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A.1.1 Hierarchical tree structure for Instruction set

In Sim-nML, an instruction set is described by a hierarchical tree like structure. The

hierarchical structure facilitates sharing of description among related instructions in

the instruction set. In this tree structure, any path from the root node to a leaf

node constructs an individual instruction description. Each non-leaf node contains

certain attributes, which can be shared by its descendants.

Instruction set 1 Instruction set 2

Inst_type2inst_type1

inst_type1.2

inst_type1.2.1 inst_type1.2.2

instruction1

instruction2 instruction3

Figure A.1: Hierarchical tree structure for Instruction set

Figure A.1 explains description sharing by various instructions. This figure is

indeed a forest, consisting of multiple instruction sets. This facilitates description of

processors having more than one instruction set (e.g. ARM processor with Thumb

instruction set). Let us consider the first instruction set tree in the figure. The

root node provides an abstraction of the complete instruction set. Each node in

between the root and the leaf nodes represents a set of instructions having certain

common features, such as numeric instruction and load/store instruction. Each leaf

node represents an individual instruction. It shares all the attributes of its proper
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ancestors and describes only remainder of the attributes. Thus, traversal from the

root node to a leaf node gives complete description of an instruction. Similar tree

structures can be used for other constructs, like addressing modes in the processor

architecture.

A.1.2 Example processor description

Figure A.2 describes a simple processor architecture. This processor supports 64

bytes of external memory and has 16 registers. It supports three instructions, i.e.

Add, Sub and Mov. All of these instructions operate on two operands. There are

three addressing modes for operands, i.e. MEM, REG and IREG. Register PC is

used to denote the value of program counter. Fetch unit, execute unit and commit

unit are the available resources (or abstraction of resources) in the processor. All

instructions are of 16 bit length. This example description is used as a reference to

explain various features of Sim-nML language in this chapter.

\\************ Type declarations start ************\\

[1] let MSIZE = 2**6

[2] let REGS = 16

[3] type index = card(6)

[4] type nibble = card(4)

[5] type byte = int(8)

[6] mem M[MSIZE, byte]

[7] reg R[REGS, byte]

[8] reg PC[1, byte]

[9] var SRC1[1, byte], SRC2[1, byte], DEST[1, byte]

[10] resource Fetch_unit, Exec_unit[3], Commit_unit

\\************ Type declarations end ************\\
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\\************ Addressing modes start ************\\

[11] mode OPRND = MEM | REG | IREG

[12] mode MEM(i: index)=M[i]

[13] syntax = format("(%d)",i)

[14] image = format("%6b",i)

[15] mode IREG(i: nibble)=M[R[i]]

[16] syntax = format("(R%d)",i)

[17] image = format("00%4b",i)

[18] mode REG(i: nibble)=R[i]

[19] syntax = format("R%d",i)

[20] image = format("01%4b",i)

\\************ Addressing modes end ************\\

\\************ Instruction set starts ************\\

[21] op Instruction(x: arith_mem_inst)

[22] uses = Fetch_unit #{2}, x.uses, Commit_unit #{2}

[23] syntax = x.syntax

[24] image = x.image

[25] action = x.action
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[26] op arith_mem_inst(y: Add_sub_mov, op1: OPRND, op2: OPRND)

[27] uses = y.uses

[28] syntax = format("%s %s %s", y.syntax, op1.syntax, op2.syntax)

[29] image = format("%s %s 00%s", y.image, op1.image, op2.image)

[30] action = {

[31] SRC1 = op1;

[32] SRC2 = op2;

[33] y.action;

[34] op1 = DEST;

[35] PC = PC + 2;

[36] }

[37] Add_sub_mov = Add | Sub | Mov

[38] op Add()

[39] uses = Exec_unit #{2}

[40] syntax = "add"

[41] image = "00"

[42] action = {

[43] DEST = SRC1 + SRC2;

[44] }

[45] op Sub()

[46] uses = Exec_unit #{2}

[47] syntax = "sub"

[48] image = "01"

[49] action = {
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[50] DEST = SRC1 - SRC2;

[51] }

[52] op Mov()

[53] uses = #0

[54] syntax = "mov"

[55] image = "10"

[56] action = {

[57] DEST = SRC2;

[58] }

\\************ Instruction set ends ************\\

Figure A.2: Sim-nML description for a Simple hypothetical processor

A.2 Syntax and semantics of Sim-nML language

Sim-nML description is based on the attribute grammar. This grammar is acyclic

and each non-terminal has at least one production. Thus, any symbol in the gram-

mar having no production rule associated with it is a terminal symbol.

A.2.1 Instructions

There are two orthogonal components in an instruction set. The addressing modes,

which define the mechanisms to obtain operands for instructions and the operations

performed by the instructions. In Sim-nML, addressing modes are described using

mode-rules.

Instructions are described using operations and operands. The operations are

specified as op-rules whereas the operands are specified as parameters to op-rules.
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The types of parameters that define the operands are the addressing modes specified

using mode-rules.

Mode and Op-rules are arranged hierarchically using production rules. There are

two kinds of production rules, OR rule and AND rule.

Operations

Both the production rules for op-rules are as follows.

• OR rule

op n0 = n1 | n2 | n3 . . .

• AND rule

op n0( p1: t1, p2: t2, p3: t3 . . . )

a1 = e1 a2 = e2 a3 = e3 . . .

For example, line 37 in figure A.2 defines an OR rule, while line 38 defines an AND

rule.

For each instruction set of the processor, there is one start symbol (e.g. “In-

struction” in line 21). Any terminal string derived from start symbol corresponds

to an instruction in the instruction set. This string however does not provide any

information regarding syntax and semantics of the instruction. This information

inference can be made using attributes attached with the terminals of the string.

An example instruction derivation and corresponding attributes are shown in fig-

ure A.3. Here root node corresponds to the start symbol “Instruction” and leaf

nodes constitute derived terminal string “Add REG REG”. Attributes are shown

in rectangular boxes attached with each node in the derivation tree. Dashed nodes

and arrows show other possible derivation paths.

In the AND rules, ti is a token (either non terminal or terminal) and is interpreted

as type of parameter pi, where pi is the corresponding parameter name. Each (ai,

ei) pair denotes attribute and corresponding definition, respectively for the terminal

symbol n0. For example in the AND rule at line 21, “arith mem inst” is a token,

while “x” is the corresponding parameter name. There are four attributes, uses,
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Figure A.3: Derivation of Add instruction from description given in figure A.2

syntax, image and action with appropriate definitions. More details about attributes

are given in section A.2.2.

The attributes of a descending node in the specification tree can be used while

defining an attribute. This can be done using expression such as pi.attr where pi

defines the descending node. For example, definition of “Instruction” node in line 23

uses x.syntax where x is the descending node “arith mem inst” in the specification

tree.

OR rules do not have any attribute definitions.
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Addressing modes

Sim-nML facilitates easy description of various addressing modes using mode rules.

Mode rules are nearly analogous to above described op rules. Keyword “mode” is

used to define mode rules.

• OR rule

mode n0 = n1 | n2 | n3 . . .

• AND rule

mode n0(p1: t1, p2: t2, p3: t3 . . . ) [= value assign]

a1 = e1 a2 = e2 a3 = e3 . . .

The mechanism to obtain the value of the operand defined by an addressing mode

is specified as an optional value assignment at the end of AND rule. This value can

be thought of as an extra attribute for terminal symbol n0. Moreover, this value is

used as an operand in the op-rule whenever a parameter of corresponding addressing

mode type is used. In figure A.2, the mode rule at line 11 is an OR rule, while mode

rules at lines 12, 15 and 18 are the AND rules. All the AND rules are followed by

value assignments ( M[i], M[R[i]] and R[i] at lines 12, 15 and 18 respectively).

A.2.2 The attribute sets

In Sim-nML, attributes are used to describe properties of instructions and address-

ing modes. Sim-nML facilitates use of arbitrary number of attributes. There are

some important predefined attributes. It is the responsibility of description writer

to provide appropriate definitions for both self-defined and predefined attributes.

All predefined attributes except the uses-attribute (described later in details) are

explained below.

Syntax-attribute

It describes textual(assembly) syntax of the instruction and evaluates to a string

value. The definition part would consists of one of the following.

55



• Strings: Defined simply by putting value in double quotes, as shown in line

40 of figure A.2.

• Parameter attribute: Defined using notation “Parameter.attr”, where “attr”

is of syntax type. For example, x.syntax at line 23 in figure A.2.

• Format expression: Defined using expression “format” (such as in line 28 of

figure A.2), having similar interpretation as of C function “printf”. “Format”

expression is described later in details.

Image-attribute

It describes binary coding of the instruction and evaluates to a string of 0s and 1s.

White spaces are allowed in resulting binary string for improved readability. The

definition part would consists of one of the following.

• Strings: Defined Simply by putting value in double quotes, as shown in line

41 of figure A.2.

• Parameter attribute: Defined using notation “Parameter.attr”, where “attr”

is of image type. For example, x.image at line 24 in figure A.2.

• Format expression: Defined using expression “format”(such as in line 29 of

figure A.2), having same interpretation as of C function “printf”. “Format”

expression is described later in details.

Action-attribute

It describes semantics of the instruction in terms of sequence of register trans-

fer statements. The definition part consists of either register transfer statements

or“Parameter.attr”, where “attr” is also of type action. In figure 2, lines 25, 30, 42,

49 and 56 show various definitions for action attribute.
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A.2.3 Type declarations

Sim-nML facilitates declaration of constants and macros, data types, memory, reg-

isters, temporary variables and resources.

Constants and Macros

In Sim-nML constants are declared by using the following statement.

let C=100

Here let is a reserved word, C is the name of the constant and 100 is its value.

After this declaration, C is a global constant and can be used in any context.

Global constants are defined only once. Some of these constants may be used to

define the behavior of processor tools. For example, a processor simulator may use

a constant ”ENDIANITY” to implement endianity of the processor. This constant

need to be defined in the Sim-nML description of that processor.

Macros are used to define a short hand for arbitrary expressions. They may

have parameters embedded in their definition. Macros terminate with a new line.

However, they can span multiple lines by adding “\” character at the end of each

line except the last one, which obviously terminates with a new line. The nMP

preprocessor tool can translate Sim-nML macro definitions to standard m4 macros.

A Simple macro definition with two parameters is as shown below.

macro comp(A, B) if (A)==(B) then 0 else -1 endif

Data types

A data type specifies a range of values for the declared object. A Simple type dec-

laration in Sim-nML is as follows.
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type addr = card(32)

Here type is a reserved word, addr is an object name and card(32) is its data

type. Sim-nML supports the following primitive data types. (For more examples

see line numbers 3 to 5 in figure A.2)

• int(n): This is signed integer data type. Negative numbers are stored in 2’s

complement form. Here n is number of bits and the possible range of values

is [−2n−1 . . . 2n−1 − 1].

• card(n): This is unsigned integer data type. Here n is number of bits and

possible value range is [0 . . . 2n − 1].

• float: This is IEEE 754 floating point number.

• fix(n,m): This is signed fix format number, having n and m bits before and

after the binary point, respectively. The value of a real number r represents

br ∗ 2mc as int(n+m).

• [n..m]: This specifies integer or cardinal number in range (n,m) (where n≤m).

• enum(id1, id2, . . . idi): Defines an enumeration type, where constants id1=0,

id2=1, . . . idi=i-1. Type of enum will be card(dlog2(i)e).

• bool: This is Boolean data type with two predefined constant values: false

and true. If one coerces these constants to int or card type, true is coerced

to 1 and false is coerced to 0. In the reverse direction, integer 0 is treated as

false and every other value is treated as true.

Memory, Registers and variables

In Sim-nML, memory is modeled as an external entity while registers are internal

to the processor. Both represent the user visible state of the processor and across

the execution of two instructions only this state is carried. Variables represent

temporary storage for facilitating the compact processor description. They do not

represent the externally visible state of the processor.
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• Memory

A typical memory declaration statement is as given below.

mem M[N, type] [optional-properties]

In this declaration, M is the name of the memory , N is the number of memory

locations and type is the data type of each location. If no data type is specified,

card(8) is default type. Successive memory locations can be accessed using

expressions like M[0], M[1] . . . M[n-1]. Memory declarations can have certain

optional properties, which are explained below.

– Alias: Describes declared memory as an alias of some other memory as

well. Thus, both memories will refer to the same address but with differ-

ent type interpretations.

mem A[6, int(32)]

mem M[3, card(32)] alias = A[3]

In this example, memory locations A[3], A[4] and A[5] can also be refer-

enced as M[0], M[1] and M[2] respectively. However, memory locations of

A are interpreted as 32 bit signed integers while that of M are interpreted

as unsigned 32 bit numbers.

• Register

In Sim-nML registers can be declared in the following manner.

reg R[N, type] [optional-properties]

In this declaration, R is a register file name, N is an optional parameter rep-

resenting the number of registers in the register file and type is the data type

of each register. If only type is specified, number of registers is taken as 1.
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Successive registers are accessed using expressions like R[0], R[1] . . . R[n-1].

Register declaration can also have optional attributes, as explained below.

– Ports: Describes number of read and write ports for register file.

reg R[16, int(8)] port = 3, 2

In above example, register file R has 3 write ports and 2 read ports.

Moreover, each register in R consists of 2 read ports, equal to the read

ports declared for R itself and one write port. These ports are treated as

resources and are used to define the instruction dependencies.

– Initial: Describes the initial value for declared register.

reg R[1, card(32)] initial = 100

• Variables

Temporary variables are typically declared as shown below.

var TEMP[N, type]

In this declaration, TEMP is a variable array name, N is the number of vari-

ables in the array and type is the data type of each variable. If only type is

specified, number of variables is taken as 1. Successive variables are accessed

using expressions like TEMP[0], TEMP[1] . . . TEMP[n-1]. Unlike memory

and register declarations, variable declarations do not have any optional at-

tributes. Also, the values of variables are not carried across two instructions.

A.3 Resource-usage Model

In Sim-nML, an instruction is described by associating it with the following two

views (of which the timing model view is optional).
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• Instruction semantics

In this view, an instruction is described in terms of the operations it will

perform, operands of these operations and the resulting value. For this, Sim-

nML provides syntax, image and action attributes as described earlier.

• Timing model

This view describes an instruction by its execution sequence and timing spec-

ifications. For this purpose a resource-usage model is used.

The resource-usage model is described using the following constructs.

A.3.1 Resource declaration

A resource is an abstraction of hardware units within a processor, through which

an instruction flows during execution. It is not necessarily the hardware implemen-

tation, but may be an approximation used to define the timing of execution.

Sim-nML facilitates the declaration of various resource units. A typical example of

a declaration is given below.

resource Exec unit[2]

In this declaration, resource is a reserved word and Exec unit is the name of a

resource unit in the processor. Using an optional number after the resource unit

name, more than one instances of that particular unit can be declared. The default

value is one.

A.3.2 Registers

In Sim-nML, registers and associated ports are also considered as resources. In

addition, registers are grouped in a single register file which is also considered a

resource. To read a register, one register read port and one register file read port

should be available. As stated previously, each register in a register file has number

of read ports equal to the total number of read ports for that register file and write
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ports equal to one. Thus, number of parallel read operations on a single register is

equal to total number of read ports for the corresponding register file. To write a

register, all the read ports and write port of that register and one write port of the

corresponding register file should be available. Thus, a register should be written

exclusively. To capture the behavior of registers as resources, following 5 operations

are defined on them.

• itR: This declares intention for reading a register value and implicitly demands

one read port of the register and one read port of the corresponding register file.

Actual read operation can take place only after acquisition of these resources.

• itW: This declares intention for writing a register value and implicitly de-

mands one write port and all the read ports of the register and one write port

of the corresponding register file. Actual write operation can take place only

after acquisition of these resources.

• Rdone: This declares actual read operation.

• Forward: This declares forwarding of register value to certain other resource

unit.

• Wdone: This declares actual write operation.

Actual implementation of these operations is dependent on the tool-generator. For

example, itW operation can be blocking or non-blocking. In former case, instruction

is made to wait if resources required for actual write operation are not available at

that time. While in latter case, instruction will proceed independent of the avail-

ability of required resources. However, actual read and write operations could not

progress without the availability of demanded resources. These operations together

with declared resources describe the complete resource-usage model.

A.3.3 Uses-attribute

This describes the resource-usage model of instructions in a hierarchical manner. An

instruction specification includes all the resources required by the instruction in a
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timing sequence. As explained in section A.1, in Sim-nML, instructions are described

in a tree-like hierarchical structure. Individual instructions, which are present at leaf

nodes, share the attributes of their ancestor nodes. This sharing applies to usage-

attribute as well. While describing the instruction set for a processor, the resource

requirements for every node are specified directly at that node or as a reference to the

resource requirements of its children nodes. This description is continued recursively,

until it reaches leaf nodes. For example, consider the usage attribute definition in line

22 of figure A.2. It says that an instruction will require the fetch unit for two units

of time, followed by the resources required by parameter “x” (determined by token

arith mem inst) and in the end, the commit unit for 2 units of time. Parameter “x”

acquires resources from parameter “y” (determined by token Add sub mov), which

corresponds to an OR rule and forks into three operations(Add, Sub and Mov). The

uses-attribute definitions for these three operations are given at line number 39, 46

and 53 respectively. Both Add and Sub require the execution unit for 2 units of

time, while Mov uses no resources.

A.3.4 Semantics of resource-usage model

Semantics of resource-usage model can be explained with the help of following con-

structs.

• Clauses

Resource requirements of an instruction can be modeled by a sequence of

resource-use-clauses, separated by “,”. An individual clause in the sequence

corresponds to one or more resources with different semantics attached to it.

An example Sim-nML description for the resource requirements of three in-

structions is shown in figure A.4. Instructions acquire and release the resources

specified in the clauses in a sequence during execution. In figure A.4, the re-

source acquisition sequence for instruction1 is as follows. It will first acquire

either of the two fetch unit (clause1), followed by execution unit (clause2) and

in the end, it requires store buffer and one of the commit unit (clause3). Thus,

a clause may correspond to a single resource or a Boolean combination of
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multiple resources.

• Timing modeling

Resources are acquired for fixed units of time, which typically corresponds

to the multiple of clock cycles of the processor. However, time unit is an

abstract quantity and any other mapping to machine cycles may be assumed.

For example, instruction1 requires all the resource units except store buffer

for 2 units of time. Multiple resources in a single clause can be acquired for

different units of time. For example, in the clause3 of instruction1, store buffer

is required for 1 unit of time while commit unit is required for 2 units of time.

• Conflict resolution

All the resources specified in a single clause are either acquired simultaneously

or none. However, until an instruction acquires all the resources in the current

clause, it will hold the resources of the previous clause. If more than one

instruction contends for the same resource, then the conflict is resolved in

FIFO order. All instructions except the one which acquires the resource, wait

for the release of that resource. Moreover, if waiting instructions already have

some resources of the current clause, these resources are released.

The resource reservation table for the example description is shown in fig-

ure A.5 (for simplicity instruction3 is ignored). As shown in the table, both

instruction1 and instruction2 contend for the execution unit at time unit 3.

The conflict is resolved in favor of instruction1 according to FIFO order and

instruction2 is stalled for 2 units of time.

• Acquisition from multiple choices

An instruction can request for more than one resource alternative in a single

clause. If at least one resource out of all the specified alternatives is free, then

the instruction will not stall. In case more than one of the alternatives is avail-

able, allocation is done arbitrarily. In figure A.4, instruction1 specifies each

of the two fetch units as alternatives in the clause1. An alternative syntax

for the same is to use “|” operator, as shown in the clause1 and clause3 of
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instruction2. Similarly, instructions can request for more than one resource

simultaneously. In this case, either all these resources are allocated simulta-

neously or none are allocated at all. For example, instruction2 requires both

commit unit as well as store buffer in the clause3.

• Conditional acquisition

Resource acquisition can be conditional. In this case, an instruction will ac-

quire the resources in a clause if and only if certain conditions specified in the

clause hold. In figure A.4, instruction2 will acquire the resources in the clause1

if and only if the condition (pipeline == 1) holds. In order to specify such

a condition, both conditional expressions and the if-then-else construct can

be used. However, only constant values are allowed for specifying conditions.

Conditional resource acquisition is useful to model certain optional resources in

the target processor. For example, instruction2 can model both the pipelined

and unpipelined processor depending on the outcome of the condition specified

in the clause1.

• Book-keeping actions

Uses-definition also facilitates the description of an optional action after each

resource request in a clause. The specified action takes place either after

resource acquisition or after resource release, depending on where it is declared.

In the example description, an action branch handler is specified with execution

unit (clause2) of both instruction1 and instruction2. However, in the case of

instruction1 the action will take place just after the acquisition of execution

unit, whereas for instruction2 it will take place after the release of execution

unit. Actions in the uses-definition do not have any semantic meaning attached

to them in the context of execution of instructions. They are mainly used

for book keeping purpose. Typically such actions can be used for branch

prediction and management of cache replacement policy.

• Instruction sequencing

To specify advanced pipeline features like out of order execution, uses-definition

provides ‘<’ and ‘>’ operators. < operator marks the arrival order of in-
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coming instructions. > operator regulates the departure order of outgoing

instructions according to the marking done by matching < operator. All out

of order instructions are made to wait until they become aligned with the

marked order of arrival. In between a single <. . .> operator pair any order

of execution is allowed. For example, instruction3 has 4 clauses with a unique

resource in each clause. Clause2 and Clause3 are enclosed in a <. . .> operator

pair. Thus, in the pipeline, < operator will note the arrival order of incoming

instructions from fetch unit to decode unit, while > will enforce the same or-

der on outgoing instructions from execution unit to commit unit. Transition

of instructions from decode unit to execution unit can be out of order.

    
    Instruction1: 

   
    Instruction2: 
        uses = { pipeline ==1} (Fetch_unit[1] #{1} | Fetch_unit[2] #{1}), 

  

        uses = (Fetch_unit #{2}), Exec_unit : branch_handle #{2}, 

        Exec_unit #{1} : branch_handle, 

        (Store_buffer #{1} & Commit_unit  #{2})

 Resource Fetch_unit[2], Decode_unit,  Exec_unit, Commit_unit[2] 

       (Commit_unit[1] #{2} | Commit_unit[2] #{2})

    Instruction3:

        Commit_unit[1]#{2}
        uses = Fetch_unit[1]#{1}, < Decode_unit#{1}, Exec_unit > #{1}, 

Figure A.4: Example Sim-nML description

A.4 Syntax and Semantics of attributes

In Sim-nML, attribute definitions can contain expressions and statement sequences.

There are certain assumptions in the language, which one should keep in mind
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inst2 inst2

isnt1Store_buffer

Figure A.5: Reservation table for example shown in figure A.4

when writing the attribute definitions. In the subsequent sections these issues are

explored.

A.4.1 Expressions

An expressions can be one of the following.

• Constant: one of the following type.

– string (e.g. “al”)

– binary (e.g. 0b101010)

– decimal (e.g. 4 or 65.4)

– hexadecimal (e.g. 0x34FA3D)

• Identifier: any possible combination of alphabets, numbers and . For exam-

ple byte, M etc.

• Attribute reference: an attribute of an identifier, expressed as “ID.attr”.

For example x.action, y.image etc.

• Parametrized expressions: one of the following types.
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– operators and operands like a + b

– identifier and parameters like format(“%s”, “mov”)

– canonical function like “sin”(30)

• Indexed expression: one of the following.

– Memory location (e.g. M[2] or M)

– Register (e.g. R[3] or PC)

– Variable (e.g. V[1] or V)

– Any of the above with bit select (e.g. R[3]< . . >)

• Conditional: a conditional statement with if-then-else construct.

If A<B then . . . else . . .

• Switch case:

switch choice {
case 0: “Zero byte instruction”

case 1: “One byte instruction”

case 3: “Three byte instruction”

default: “Invalid instruction”

}

• Macro: a macro call corresponding to macro definition given in description.

Macro call: DIV(6,3)

Macro definition: macro DIV(a,b) = a/b

A.4.2 Operators

Sim-nML provides variety of operators for easy, flexible and speedy description of

the processor. Following is the list of operators with syntax and semantics explained.

• Binary +, –

These are the usual addition and subtraction operators which operate on two
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operands. For FLOAT and FIX data types, both operands must be of the same

type. In the case of operand mismatch for INT and CARD types, following

rules apply.

– If operands are of different bit width, result will have bit width at most

2 more than the larger bit width.

– If one operand is INT type and other one is CARD type, result will be

of INT type.

• Unary +, –

These operators are used only for INT, FLOAT and FIX data types.

• *, /, %

These are usual multiplication, division and remainder operators, which op-

erate on two operands. If operands are of INT or CARD types, rules Similar

to that for binary +,- are applied. However, maximum bit width of result can

be equal to twice of the larger bit width. In the case of FLOAT and FIX type

operands, mixing with INT or CARD data types is allowed, result type being

of that FLOAT or FIX type numbers.

• **

This is a double star operator for exponentiation operation. Out of two

operands, first can be of any type but second must be a constant. Bit width of

result can be determined by assuming this operation to be equal to multiple

* operations.

• <, >, <=, >=, ==, ! =

These are usual comparison operators and return a Boolean type of result.

For true value 1 is returned and 0 is returned for false value.

• <<, >>, &, |, ∧, ∼
These are usual bit level operators. To perform left shift and right shift, <<

and >> are used, while &, |, ∧ and ∼ are used for bit-wise and, or, xor and

complement respectively.
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• <<<, >>>

These are left and right rotate operators.

• &&, ||, !

These are logical and, or and not operators respectively. Non-zero operand is

treated as having true value while zero is treated as having false value. After

application of these logical operators, result is always of Boolean type.

• ::

This is a binary concatenation operator. Operands can be arbitrary expres-

sions. Operands on right side are concatenated and resulting value is assigned

to left side. In case, bit width of expression on left side is greater than that

of on right side, right side result is sign extended or zero extended before it

is assigned to left side. On the other hand, if bit width of left side expression

is less than that of on right side, it is assigned the required bits from the

second operator in :: operation. However, if bit width of left side expression

is greater than the second operand, the first operand is used for remaining bits.

M[1] = R[0] :: R[1]

• Bit-field operator

The general signature for bit-field operations is: location<left expr . . right expr>

Here location can be a memory location, register or temporary variable. Left expr

and right expr evaluate to non-negative values, which specify range for bit se-

lection. An example for copying the lower 16 bits of a word to the upper 16

bits is shown below.

R[0]<16 . . 31> = R[0]<0 . . 15>
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A.4.3 Special parametrized expressions

• coerce(type, value)

This expression takes two arguments, value to be coerced and resulting type

of the value after coercion. Coercion may not be precise, in that case the value

is coerced to the best approximation in coerced type. For example if a floating

point number is coerced to an integer type, then fractional part of the floating

point number is discarded. Similarly if a signed number is coerced to unsigned

one, then 2’s complement representation of former is as such copied to latter

type. An example to coerce a register of card type to int type is shown below.

reg R[1, card(32)]

coerce(int(32), R)

• format(format-string, args. . . )

This expression takes as parameters a format-string and the corresponding list

of arguments. It returns a string value. A format specifier is written as %nC,

where n is the optional field-width and C can be one of the following.

– d: is used for decimal values to describe the syntax of instruction.

– b: is used for binary values to describe instruction image.

– x: is used for hexadecimal values to describe instruction syntax.

– s: is used for string values to describe both the syntax and image of

instruction. However, in the case of instruction image, only binary string

is allowed.

A simple example is shown below.

format(“%s %s %d”, “Add”, “R[1]”, 30)

• canonical(string, args. . . )

or

“string”(args. . . )
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They are known as canonical functions. These type of functions are not pre-

defined in Sim-nML language. It is assumed that description processing tools

know their semantics and can handle them. Canonical functions are only used

in the definitions of action type of attributes. They, by themselves can’t define

any attributes directly. In above two styles of writing canonical functions, the

first one is obsolete. A simple example of a canonical function to calculate

log-base-2 is given below.

“log”(100,2)

A.4.4 Sequences

All attributes in Sim-nML except syntax and image attributes are defined using

sequences. A sequence is composed of register-transfer like statements, enclosed in

braces ({,}) and separated by semi-colons (;).

Sequence = {
statement1;

statement2;

statement3;

. . .

}

For example

. . .

action = {
num = M[0];

denum = “log”(100, 2);

if(denum != 0)

result = num/denum;

. . .
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}
. . .

A statement is one of the following.

• An assignment statement like num = M[0].

• A reference to attribute, either direct like “action” or indirect like “ID.action”.

• A call to canonical or error function.

• A conditional statement which is similar to the conditional expression, except,

instead of expressions, sequences are used in if and else parts.

• A switch statement which is Similar to the switch expression, except, instead

of expressions, sequences are used in case parts.

A.5 Bit-true arithmetic

Bit-true arithmetic is used to resemble the target processor’s arithmetic operations

as closely as possible. Sim-nML facilitates the declaration of data objects having

arbitrary bit length. In arithmetic operations, any of the declared data objects can

be used as source and destination operands. This leads to the operands having

different bit length.

Consider the following example addition operation.

var Result[int(7)];

var Src1[card(3)];

var Src2[card(3)];

...

Result = Src1 + Src2;

...
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In the above example, two variables of card(3) type (Src1 and Src2) are added and

result is stored in Result of type int(7). Addition of two 3 bit numbers of card type

gives a result of same type having bit length of at most 4. Thus, before storing the

resultant value in the Result data object, it will be type casted to int(7). (Type

casting rules are explained in section A.6).

Now consider the second example given below.

var Result[int(3)];

var Src1[card(6)];

var Src2[card(6)];

...

Result = Src1 + Src2;

...

In this operation, resultant value after the addition operation will be of type card(7).

Again, before storing the resultant value in the Result data object, it will be type

casted to int(3).

A.6 Type casting rules

In Sim-nML, whenever two incompatible data types (either in size or type or both)

are used in an assignment statement, the casting rules shown in table A.1 apply.

Each table entry corresponds to a type casting rule between source and destination

data type. In all the rules, truncation and zero extension start from the most

significant bits.

A.7 Coercing rules

As explained in section A.4.3, one data type can be explicitly converted to another

data type using expression coerce. Type coercion rules are shown in table A.2. In
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all the rules except one, truncation and zero extension start from the most signif-

icant bits. In the exceptional rule, truncation and zero extension start from least

significant bits and it applies between card(m) and card(n) types.
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Source type

D
e
s
t
i
n
a
t
i
o
n

t
y
p
e

int(m) card(m) fix(m,k) float
int(n) Case(m=n):

Copy source
as such
Case(m>n):
Truncate source
to n bits
Case:(m<n):
Sign extend
source to n bits

Case(m=n):
Copy source
as such
Case(m>n):
Truncate source
to n bits
Case:(m<n):
Zero extend
source to n bits

Treat fix(m,k) as
int(m+k) and apply
the rule for int(n)
and int(m+k). For
example, value 1.25 is
001.01 in fix(3,2) for-
mat and after casting
to int(6) it becomes
000101 (=5). On the
other hand, if it is
casted to int(2), it
becomes 01 (=1).

Treat
float as
int(32)
and cast
to int(n)

card(n) Case(m=n):
Copy source
as such
Case(m>n):
Truncate source
to n bits
Case:(m<n):
Sign extend
source to n bits

Case(m=n):
Copy source
as such
Case(m>n):
Truncate source
to n bits
Case:(m<n):
Zero extend
source to n bits

Treat fix(m,k) as
int(m+k) and apply
the rule for card(n)
and int(m+k). For
example, value -1.25 is
111.01 in fix(3,2) for-
mat and after casting
to card(6) it becomes
111101 (=61). On the
other hand, if it is
casted to card(3), it
becomes 101 (=5).

Treat
float as
int(32)
and
cast to
card(n)

fix(n,l) Treat fix(n,l)
as int(n+l) and
apply the rule
for int(n+l) and
int(m)

Treat fix(n,l)
as int(n+l) and
apply the rule
for int(n+l) and
card(m)

Treat fix(n,l) as
int(n+l) and fix(m,k)
as int(m+k). Apply
rule for int(n+l) and
int(m+k). For ex-
ample, value 3.75 is
011.11 in fix(3,2) for-
mat and after casting
to fix(2,3) it becomes
01.111 (=1.8125).

Treat
float as
int(32)
and
cast to
fix(n,l)

float Treat float as
int(32) and cast
int(m) to it

Treat float as
int(32) and cast
card(m) to it

Treat float as int(32)
and cast fix(m,k) to it

No op-
eration

Table A.1: Type casting rules
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Source type

D
e
s
t
i
n
a
t
i
o
n

t
y
p
e

int(m) card(m) fix(m,k) float
int(n) Case(m=n):

Copy source
as such
Case(m>n):
Truncate
source
to n bits
Case:(m<n):
Sign extend
source to n
bits

Case(m=n):
Copy source
as such
Case(m>n):
Truncate
source
to n bits
Case:(m<n):
Zero extend
source to n
bits

Discard the fraction
part and apply the
rule between int(n)
and int(m) for inte-
ger part

If the float value
is f then put bfc
into int(n)

card(n) Case(m=n):
Copy source
as such
Case(m>n):
Truncate
source
to n bits
Case:(m<n):
Sign extend
source to n
bits

Case(m=n):
Copy source
as such
Case(m>n):
Truncate
source
to n bits
Case:(m<n):
Zero extend
source to n
bits

Discard the fraction
part and apply the
rule between card(n)
and int(m) for inte-
ger part

If the float value
is f then put
bfc into int(n)
and then coerce
that value to
card(n). For ex-
ample, to coerce
float -3.75 to
card(4), first put
b−3.75c=-4 into
int(4)=1100 and
then coerce it
to card(4)=1100
(=12)

fix(n,l) Make fraction
part =0 and
apply the
rule between
int(n) and
int(m) for
integer part

Make fraction
part =0 and
apply the
rule between
int(n) and
card(m) for
integer part

Apply the rule be-
tween int(n) and
int(m) for integer
part and the excep-
tion rule between
card(l) and card(k)
for fraction part. For
example, value 1.75
is 001.11 in fix(3,2)
format and after
coercing to fix(2,3)
it becomes 01.110
(=1.75).

If the float value
is f then put bfc
into int(n) and
fractional part
into int(l)

float Convert to
float

Convert to
float

Convert to float No operation

Table A.2: Type coercion rules
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Appendix B

Grammar for Sim-nML language

MachineSpec :

| MachineSpec LetDef

| MachineSpec TypeSpec

| MachineSpec MemorySpec

| MachineSpec RegisterSpec

| MachineSpec VarSpec

| MachineSpec ModeRuleSpec

| MachineSpec OpRuleSpec

| MachineSpec ResourceSpec

LetDef : LET ID ’=’ LetExpr

LetExpr : ConstNumExpr

| STRING_CONST

| IF ConstNumExpr THEN LetExpr OptionalElseLetExpr ENDIF

| SWITCH ’(’ ConstNumExpr ’)’ ’{’ CaseLetExprList ’}’

OptionalElseLetExpr :

| ELSE LetExpr
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CaseLetExprList : CaseLetExprList1

| CaseLetExprList1 DEFAULT ’:’ LetExpr

CaseLetExprList1 : CaseLetExprStat

| CaseLetExprList1 CaseLetExprStat

CaseLetExprStat : CASE ConstNumExpr ’:’ LetExpr

ResourceSpec : RESOURCE ResourceList

ResourceList : ID

| ID ’[’ ConstNumExpr ’]’

| ResourceList ’,’ ID

| ResourceList ’,’ ID ’[’ ConstNumExpr ’]’

TypeSpec : TYPE ID ’=’ TypeExpr

TypeExpr : BOOL

| INT ’(’ ConstNumExpr ’)’

| CARD ’(’ ConstNumExpr ’)’

| FIX ’(’ ConstNumExpr ’,’ ConstNumExpr ’)’

| FLOAT ’(’ ConstNumExpr ’,’ ConstNumExpr’)’

| ’[’ ConstNumExpr DOUBLE_DOT ConstNumExpr ’]’

| ENUM ’(’ IdentifierList ’)’ //Incomplete

IdentifierList : ID

| ID ’=’ CARD_CONST

| IdentifierList ’,’ ID

| IdentifierList ’,’ ID ’=’ CARD_CONST

MemorySpec : MEM ID ’[’ SizeType ’]’ OptionalMemVarAttr
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RegisterSpec : REG ID ’[’ SizeType ’]’ OptionalRegAttr

VarSpec : VAR ID ’[’ SizeType ’]’ OptionalMemVarAttr

SizeType : TypeExpr

| ConstNumExpr

| ConstNumExpr ’,’ TypeExpr

OptionalMemVarAttr :

| ALIAS ’=’ MemLocation

OptionalRegAttr :

| PortsDef

| InitialDef

| PortsDef InitialDef

| InitialDef PortsDef

PortsDef : PORTS ’=’ CARD_CONST ’,’ CARD_CONST

InitialDef : INITIALA ’=’ ConstNumExpr

MemLocation : ID Opt_Bit_Optr

| ID ’[’ NumExpr ’]’ Opt_Bit_Optr

ModeRuleSpec : MODE ID ModeSpecPart

ModeSpecPart : AndRule OptionalModeExpr AttrDefList

| OrRule

OptionalModeExpr :
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| ’=’ Expr

OpRuleSpec : OP ID OpRulePart

OpRulePart : AndRule AttrDefList

| OrRule

OrRule : ’=’ Identifier_Or_List

Identifier_Or_List : ID

| Identifier_Or_List ’|’ ID

AndRule : ’(’ ParamList ’)’

ParamList :

| ParamListPart

| ParamList ’,’ ParamListPart

ParamListPart : ID ’:’ TypeExpr

| ID ’:’ ID

AttrDefList :

| AttrDefList AttrDef

AttrDef : ID ’=’ AttrDefPart

| SYNTAX ’=’ ID ’.’ SYNTAX

| SYNTAX ’=’ AttrExpr

| IMAGE ’=’ ID ’.’ IMAGE

| IMAGE ’=’ AttrExpr

| ACTION ’=’ ID ’.’ ACTION

| ACTION ’=’ ’{’ Sequence ’}’
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| USES ’=’ UsesDef

AttrDefPart : Expr

| ’{’ Sequence ’}’

AttrExpr : STRING_CONST

| FORMAT ’(’ STRING_CONST ’,’ FormatIdlist ’)’

FormatIdlist : FormatId

| FormatIdlist ’,’ FormatId

FormatId : ID

| ID ’.’ IMAGE OptBitSelect

| ID ’.’ SYNTAX

| DOLLAR ’+’ ConstNumExpr

| DOLLAR ’-’ ConstNumExpr

| ConstNumExpr ’-’ DOLLAR

| ID BinOp ConstNumExpr

| ConstNumExpr BinOp ID

| ’+’ ID

| ’-’ ID

| ’~’ ID

OptBitSelect :

| BIT_LEFT CARD_CONST DOUBLE_DOT CARD_CONST BIT_RIGHT

Sequence :

| StatementList ’;’

StatementList : Statement

| StatementList ’;’ Statement
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Statement : ID

| ID ’.’ ACTION

| ID ’.’ ID

| Location ’=’ Expr

| ConditionalStatement

| STRING_CONST ’(’ ArgList ’)’

| ERROR ’(’ STRING_CONST ’)’

ArgList :

| Expr

| ArgList ’,’ Expr

Opt_Bit_Optr :

| Bit_Optr

Location : LocationVal

| Location DOUBLE_COLON LocationVal

LocationVal : ID Opt_Bit_Optr

| ID ’[’ Expr ’]’ Opt_Bit_Optr

ConditionalStatement : IF NumExpr THEN Sequence OptionalElse ENDIF

| IF ’(’ STRING_CONST ’(’ ArgList ’)’ ’)’

THEN Sequence OptionalElse ENDIF

| SWITCH ’(’ NumExpr ’)’ ’{’ CaseList ’}’

| SWITCH ’(’ STRING_CONST ’(’ ArgList ’)’ ’)’

’{’ CaseList ’}’

OptionalElse :

| ELSE Sequence
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CaseList : CaseList1

| CaseList1 DEFAULT ’:’ Sequence

CaseList1 : CaseStat

| CaseList1 CaseStat

CaseStat : CASE Expr ’:’ Sequence

Expr : NumExpr

| NonNumExpr

NonNumExpr : StringExpr

| SyntaxImageExpr

| DOLLAR

| IF NumExpr THEN Expr OptionalElseExpr ENDIF

| SWITCH ’(’ NumExpr ’)’ ’{’ CaseExprList ’}’

| STRING_CONST ’(’ ArgList ’)’

| ’(’ NonNumExpr ’)’

NumExpr : ConstNumExpr

| VarNumExpr

ConstNumExpr : ConstExprVal

| ConstNumExpr BinOp ConstExprVal

ConstExprVal : CARD_CONST

| FIXED_CONST

| BINARY_CONST

| HEX_CONST

| ’!’ ConstNumExpr
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| ’~’ ConstNumExpr

| ’+’ ConstNumExpr %prec ’~’

| ’-’ ConstNumExpr %prec ’~’

| ’(’ ConstNumExpr ’)’

VarNumExpr : VarExprVal

| VarNumExpr BinOp VarExprVal

| VarNumExpr BinOp ConstExprVal

| ConstNumExpr BinOp VarExprVal

VarExprVal : ID Opt_Bit_Optr

| ID ’[’ NumExpr ’]’ Opt_Bit_Optr

| COERCE ’(’ SizeType ’,’ Expr’)’

| ’!’ VarNumExpr

| ’~’ VarNumExpr

| ’+’ VarNumExpr %prec ’~’

| ’-’ VarNumExpr %prec ’~’

| ’(’ VarNumExpr ’)’

Bit_Optr : BIT_LEFT Bit_Expr DOUBLE_DOT Bit_Expr BIT_RIGHT

SyntaxImageExpr : ID ’.’ SYNTAX

| ID ’.’ IMAGE

| ID ’.’ ID

| STRING_CONST

StringExpr : STRING_CONST ’<’ STRING_CONST

| STRING_CONST ’>’ STRING_CONST

| STRING_CONST EQ STRING_CONST

BinOp : ’+’
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| ’-’

| ’*’

| ’/’

| ’%’

| DOUBLE_STAR

| LEFT_SHIFT

| RIGHT_SHIFT

| ROTATE_LEFT

| ROTATE_RIGHT

| ’<’

| ’>’

| LEQ

| GEQ

| EQ

| NEQ

| ’&’

| ’^’

| ’|’

| AND

| OR

| DOUBLE_COLON

Bit_Expr : ID

| Bit_Expr ’+’ Bit_Expr

| Bit_Expr ’-’ Bit_Expr

| Bit_Expr ’*’ Bit_Expr

| Bit_Expr ’/’ Bit_Expr

| Bit_Expr ’%’ Bit_Expr

| Bit_Expr DOUBLE_STAR Bit_Expr

| ’(’ Bit_Expr ’)’

| FIXED_CONST
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| CARD_CONST

| STRING_CONST

| BINARY_CONST

| HEX_CONST

CaseExprList : CaseExprList1

| CaseExprList1 DEFAULT ’:’ Expr

CaseExprList1 : CaseExprStat

| CaseExprList1 CaseExprStat

CaseExprStat : CASE Expr ’:’ Expr

OptionalElseExpr :

| ELSE Expr

UsesDef : NULLUSAGE

| Clause

| UsesDef ’,’ Clause

Clause : UsesSpec

| CondExpr ’(’ Clause OpAndOr UsesSpec ’)’ ActionTimeSpec

OpAndOr : ’&’

| ’|’

UsesSpec : CondExpr ResourceUsageSpec ActionTimeSpec

CondExpr :

| CondExpr ’{’ Expr ’}’
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ActionTimeSpec :

| Action

| Time

| Action Time

| Time Action

Time : ’#’ ’{’ Expr ’}’

Action : ’:’ ID

| ’:’ ACTION

ResourceUsageSpec : ResourceUsage

| IF Expr THEN Clause OptionalElseUses ENDIF

OptionalElseUses :

| ELSE Clause

ResourceUsage : ID ’.’ USES

| ID

| ’<’ ID

| ID ’>’

| ID ’[’ ’]’

| ID ’[’ Expr ’]’

| RegOpr

RegOpr : ID ’[’ Expr ’]’ ’.’ ITR

| ID ’[’ Expr ’]’ ’.’ ITW

| ID ’[’ Expr ’]’ ’.’ FORWARD

| ID ’[’ Expr ’]’ ’.’ RDONE

| ID ’[’ Expr ’]’ ’.’ WDONE

| ID ’.’ ITR
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| ID ’.’ ITW

| ID ’.’ FORWARD

| ID ’.’ RDONE

| ID ’.’ WDONE
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Appendix C

Operators in IR

Name of Operator Symbol Arity of Operator

Addition + Binary

Subtraction - Binary

Multiplication * Binary

Division / Binary

Modulo % Binary

Exponentiation ** Binary

Greater than > Binary

Less than > Binary

Equal to == Binary

Not equal to != Binary

Greater than or equal to >= Binary

Less than or equal to <= Binary

AND & Binary

OR | Binary

XOR ∧ Binary

Logical AND && Binary

Logical OR || Binary

Left Shift << Binary
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Right Shift >> Binary

Left Rotate <<< Binary

Right Rotate >>> Binary

Dot . Binary

Concatenation :: Binary

Indexing [ ] Binary

Assignment = Binary

Statement Separator ; Binary

Unary Plus + Unary

Unary Not ! Unary

Unary Minus - Unary

Bitwise Complement ∼ Unary

Bit Range .. Ternary

If if then else Ternary

Function canonical function n-ary

Switch switch n-ary

default expression default 0-ary

NULL Nothing 0-ary

Colon : Binary

Table C.1: List of operators used in IR
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Appendix D

Class Hierarchy Structure

In this appendix we are going to discuss the Class Hierarchy structure. All the base

classes in hierarchy hold a pointer to a context class for error reporting.

D.1 Instruction Set Class

Sim-nML supports description of processors with multiple instruction sets i.e. ARM

and ARM Thumb instruction sets of ARM architecture. This class holds all the

instruction-set descriptions for the target processor.

class IntructionSet{

list<IR*> ir_list;

Context* ctx;

}

• ir list: This field holds a list of pointers to all instruction-sets in the Sim-nML

description.

D.2 IR Class

This is the main class to represent an instruction-set description.
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class IR{

list<Declaration*> ir_declare_list;

list<Rule*> ir_rule_list;

Context* ctx;

}

• ir declare list: This field holds a list of pointers to all the declarations in the

description.

• ir rule list: This field holds a list of pointers to all the rules in the description.

D.3 Declaration Class

This is a base class to describe all the declarations in the Sim-nML description.

class Declaration{

protected:

string decl_name;

int decl_id;

ir_decl_type decl_type;

Context* ctx;

}

• decl name: This field holds name of the declaration variable.

• decl id: This field holds a unique id for each declaration in the description.

• decl type: This field holds the type of the declaration. It can take the following

values: CONST, RESOURCE, STORAGE.

D.4 Constant Class

This is a derived class from the Declaration class to represent constants in the

description.
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class Constant :public Declaration{

protected:

ir_const_type const_type;

}

• const type: This field holds type of the constant. It can take one of the fol-

lowing values: INT CONST, FLOT CONST, STR CONST.

D.5 Integer Constant Class

This is a derived class from the Constant class to represent integer constants in the

description.

class IntConst :public Constant{

int const_num_val;

}

• const num val: This field holds the value of the integer constant.

D.6 String Constant Class

This is a derived class from the Constant class to represent string constants in the

description.

class StrConst :public Constant{

string const_str_val;

}

• const str val: This field holds the value of the string constant.

D.7 Real Constant Class

This is a derived class from the Constant class to represent real constants in the

description.
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class FloatConst :public Constant{

string const_num_val;

}

• const num val: This field holds the value of the real constant.

D.8 Resource Class

This is a derived class from the Declaration class to represent resources e.g. fetch

unit in the description.

class Resource :public Declaration{

int res_no_units;

}

• res no units: This field holds the total number of instances of the resource.

D.9 Storage Class

This is a derived class from the Declaration class to represent storage model of the

target processor.

class Storage :public Declaration{

protected:

int stor_size;

Type* stor_data_type;

ir_storage_type stor_type;

}

• stor size: This field holds total number of storage elements.

• stor data type: This field holds data type of the storage element. It is specified

through a pointer to the Type class.

• stor type: This field holds type of the storage element. It can take one of the

following values: IR REG, IR MEM, IR VAR.
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D.10 Register Class

This is a derived class from the Storage class to represent registers in the target

processor.

class Register :public Storage{

int reg_read_ports;

int reg_write_ports;

int reg_init_val;

}

• reg read ports: This field holds the number of read ports for a register file.

• reg write ports: This field holds the number of write ports for a register file.

• reg init val: This field holds the initial value of the registers.

D.11 Memory Class

This is a derived class from the Storage class to represent memory in the target

processor.

class Memory :public Storage{

AttrDef* mem_attr_def;

}

• mem attr def: This field holds a pointer to the AttrDef class, which will hold

various attributes, e.g. alias, of the memory.

D.12 Variable Class

This is a derived class from the Storage class to represent local variables in Sim-nML

description.
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class Variable :public Storage{

AttrDef* var_attr_def;

}

• var attr def: This field holds a pointer to the AttrDef class, which will hold

various attributes of the local variable.

D.13 Rule Class

This is a base class for all the rules in Sim-nML description.

class Rule{

protected:

string rule_name;

int rule_id;

ir_rule_type rule_type;

list<RetList*> ret_list;

Context* ctx;

}

• rule name: This field holds the name of the rule.

• rule id: This field holds a unique id for the rule.

• rule type: This field holds the type of the rule. It can take one of the following

values: OR RULE, AND RULE.

• ret list: This field holds a list of pointers to the RetList class. It is used by

various tool generators to store tool-centric information in the rule.

D.14 Or Rule Class

This is a derived class from the Rule class to represent or rules in the description.
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class OrRule :public Rule{

int or_no_child;

list<Rule*> or_and_list;

}

• or no child: This field holds the total number of children for the or rule.

• or and list: This field holds a list of pointers to child rules.

D.15 And Rule Class

This is a derived class from the Rule class to represent and rules in the description.

class AndRule :public Rule{

int and_total_params;

int and_total_attrs;

list<Param*> and_param_list;

list<IrAttr*> and_attr_list;

}

• and total params: This field holds the total number of parameters in the and

rule.

• and total attrs: This field holds the total number of attributes in the and rule.

• and param list: This field holds the list of pointers to the parameters in the

and rule.

• and attr list: This field holds the list of pointers to the attributes in the and

rule.

D.16 IrAttr Class

This is a base class for all the attributes of an and rule.
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class IrAttr{

protected:

string attr_name;

int attr_id;

ir_attr_type attr_type;

Context* ctx;

}

• attr name: This field holds the name of the attribute.

• attr id: This field holds a unique id for the attribute.

• ir attr type: This field holds the type of the attribute. It can take one of the

following values: SYNTAX, IMAGE, ACTION, USES, OTHER.

D.17 ImageSyntax Class

This is a derived class from the IrAttr class to represent image and syntax attributes

in an and rule.

class ImageSyntax :public IrAttr{

int imgsyn_no_subpart;

list<AttrSubPart*> imgsyn_subpart_list;

}

• imgsyn no subparts: This field holds the total number of subparts in an image

or syntax pattern.

• imgsyn subpart list: This field holds the definitions of all the subparts in an

image or syntax pattern. It is specified through a list of pointers to the Attr-

SubPart class.
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D.18 AttrSubPart Class

This is a base class for defining various subparts of an image or syntax attribute.

class AttrSubPart{

protected:

ir_subpart_type subpart_type;

int subpart_width;

Context* ctx;

}

• subpart type: This field holds the type of AttrSubPart. It can take one of the

following values: STRING, PARAMETER, ATTR DEF.

• subpart width: This field holds the width of the subpart. It is more relevant

for an image attribute as width will indicate the number of bits in an image

pattern.

D.19 StrSubPart Class

This is a derived class from the AttrSubPart Class to represent strings in an image

or syntax attribute.

class StrSubPart :public AttrSubPart{

string subpart_str;

}

• subpart str: This field holds value of the string subpart of an image or syntax

attribute.

D.20 ParamSubPart Class

This is a derived class from the AttrSubPart Class to represent parameters in an

image or syntax attribute.
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class ParamSubPart :public AttrSubPart{

char specifier_type;

Param* subpart_param;

}

• specifier type: This field holds the specifier type of the parameter. It can take

one of the following values: %s , %d, %b, %o, %x.

• subpart param: This field holds the definition of a parameter. It is specified

through a pointer to the Param class.

D.21 ExprSubPart Class

This is a derived class from the AttrSubPart class to represent expressions in an

image or syntax attribute.

class ExprSubPart :public AttrSubPart{

char specifier_type;

AttrDef* subpart_attr_def;

}

• specifier type: This field holds the type of parameter specifier of an expression

type parameter. It can take one of the following values: %s, %d, %b, %o, %x.

• subpart attr def: This field holds the specification of an expression type pa-

rameter. It is specified through a pointer to the AttrDef class.

D.22 Action Class

This is a derived class from the IrAtrr class to represent the action attribute of an

and rule.

class Action :public IrAttr{

int action_no_def;
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AttrDef* action_attr_def;

}

• action no def: This field holds the total number of attribute definitions in an

action attribute.

• action attr def: This field holds a pointer to the AttrDef class and defines the

semantics of the action attribute.

D.23 Uses Class

This is a derived class from the IrAttr class to represent the uses attribute of an

and rule.

class Uses :public IrAttr{

list<Clause*> uses_clause_list;

}

• uses clause list: This field holds a list of pointers to the Clause class. The

uses attribute is composed of list of clauses.

D.24 Clause Class

This is a base class to represent a clause in a uses attribute. The uses attribute is

composed of list of pointers to these clauses.

class Clause{

protected:

ir_clause_type clause_type;

AttrDef* clause_cond;

AttrDef* clause_action;

AttrDef* clause_time;
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AttrDef* clause_if_expr;

Clause* clause1;

Clause* clause2;

Context* ctx;

}

• clause type: This field holds the type of the clause. It can take one of the fol-

lowing values: CLAUSE SIMPLE, CLAUSE AND, CLAUSE OR, CLAUSE IF.

• clause cond: This field holds a pointer to the AttrDef class and represents the

conditional expression of the clause.

• clause action: This field holds a pointer to the AttrDef class and represents

optional book-keeping actions of the clause.

• clause time: This field holds a pointer to the AttrDef class and represents

optional timing expression of the clause.

• clause1: This field holds a pointer to the Clause class and represents first

operand of an and or or type of clause.

• clause2: This field holds a pointer to the Clause class and represents second

operand of an and or or type of clause.

D.25 ResUnitSpec Class

This is a derived class from the Clause class to specify a resource unit in the uses

attribute.

class ResUnitSpec :public Clause{

ir_res_unit_type res_unit_type;

}

• res unit type: This field holds the type of a resource unit. It can take one of

the following values: RESOURCE USES, PARAM USES.

103



D.26 ResUses Class

This is a derived class from the ResUnitSpec to directly specify the resource used.

class ResUses :public ResUnitSpec {

ir_res_uses_type res_uses_type;

ir_res_uses_opr res_uses_opr;

Declaration* res_uses_dec;

AttrDef* res_uses_index;

}

• res uses type: This field holds the type of resource, whether resource instance

or register operation. It can take one of the following values: RES INST,

REG ITR, REG ITW, REG READ, REG FORWARD, REG RDONE, REG WDONE.

• res uses opr: This field holds the operation to be applied on resource or

register. It can be one of the following: RES ACQ, RES REL, RES ALL,

RES REG INDEX, RES REG SIMPLE.

• res uses dec: This field holds the pointer to the declaration of resource or

register.

• res uses index: This field holds the value of index in case res uses opr is equal

to RES REG INDEX.

D.27 UsesAttr Class

This is a derived class from the ResUnitSpec to specify the rule referenced for the

resource.

class UsesAttr :public ResUnitSpec {

Rule* rule;

}

• rule: This field is a pointer to the rule referenced for resource.
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D.28 Param Class

This is a class to specify parameters in an and rule.

class Param{

protected:

int param_no;

string param_name;

Type* param_type;

Context* ctx;

}

• param no: This field holds a unique parameter number.

• param name: This field holds the name of the parameter.

• param type: This field holds a pointer to the Type class and specifies the type

of the parameter.

D.29 Type Class

This is a base class to specify both basic types and rule types.

class Type{

protected:

ir_arg_type arg_type;

Context* ctx;

}

• arg type: This field holds the type specification. It can take the following two

values: DATA TYPE, RULE TYPE.
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D.30 BasicType Class

This is a derived class from the Type class to represent basic data types.

class BasicType :public Type{

ir_var_data_type var_data_type;

int var_val1;

int var_val2;

}

• var data type: This field holds the data type of a variable or parameter. All

supported data types can be found in section A.2.3.

• var val1: This field holds the bit width of integer part of the data type.

• var val2: This field holds the bit width of fractional part of the data type.

D.31 RuleType Class

This is a derived class from the Type class to represent the parameters of type rule.

class RuleType :public Type{

Rule* param_rule;

}

• param rule: This field holds a pointer to the Rule class.

D.32 AttrDef Class

This is a base class to specify expressions in Sim-nML description. Expressions

are stored in a tree like structure and this class is used to create the tree nodes

recursively.
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class AttrDef{

protected:

ir_attr_def_type attr_def_type;

Context* ctx;

}

• attr def type: This field holds the type of an expression.

D.33 DeclDef Class

This is a derived class from the AttrDef class to represent declared variables used

in an expression.

class DeclDef :public AttrDef{

Declaration* decl_def;

}

• decl def: This field holds a pointer to the Declaration class to define declared

variables in an expression.

D.34 ParamUse Class

This is a derived class from the AttrDef class to represent parameters in an expres-

sion.

class ParamUse :public AttrDef{

Param* param;

}

• param: This field holds a pointer to the Param class to define parameters in

an expression.
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D.35 TypeUse Class

This is a derived class from the AttrDef class to represent data types in an expression.

class TypeUse :public AttrDef{

Type* type;

}

• param: This field holds a pointer to the Type class to define data types in an

expression.

D.36 AttrNameDef Class

This is a derived class from the AttrDef class to represent attribute names in an

expression.

class AttrNameDef :public AttrDef{

string attr_name;

}

• param: This field holds name of an attribute in an expression.

D.37 LiteralDef Class

This is a derived class from the AttrDef class to represent literal values in an ex-

pression.

class LiteralDef :public AttrDef{

protected:

ir_literal_type literal_type;

}

• literal type: This field holds the type of literal in an expression. It can take one

of the following values: INT LITERAL, REAL LITERAL, STR LITERAL.
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D.38 IntLiteral Class

This is a derived class from the Literal class to describe integer literals in an expres-

sion.

class IntLiteral :public LiteralDef{

protected:

int int_val;

}

• int val: This field holds the value of the integer literal in an expression.

D.39 RealLiteral Class

This is a derived class from the Literal class to describe real literals in an expression.

class RealLiteral :public LiteralDef{

float real_val;

}

• real val: This field holds the value of the real literal in an expression.

D.40 StrLiteral Class

This is a derived class from the Literal class to describe string literals in an expres-

sion.

class StrLiteral :public LiteralDef{

string str_val;

}

• str val: This field holds the value of the string literal in an expression.
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D.41 OprDef Class

This is a derived class from the AttrDef class to describe sub expressions within an

expression.

class OprDef :public AttrDef{

ir_attr_def_opr opr_type;

int opr_arity;

list<AttrDef*> oprnd_list;

}

• opr type: This field holds the type of operator in a sub expression. The com-

plete list of operators supported by Sim-nML is given in section A.4.2.

• opr arity: This field holds the value of the number of operands in a sub ex-

pression.

• oprnd list: This field holds a list of pointers to the AttrDef class to describe

the operands in a sub expression.

D.42 Traversal Library Interface

To handle tool specific data, we are providing the following two classes.

• RetList Class

class RetList{

}

This class is not a part of class hierarchy. It is used by tool generators to

store tool-centric information in it. RetList is a base class with no fields. Tool

generators need to derive subclasses to hold their specific information.

• ToolSpec Class
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class ToolSpec{

public:

virtual list<RetList*> tool_processor(list<Type*> and_param_list,

list<IrAttr*> attr_list);

}

This class is used by tool generators to perform tool-specific operations. Tool-

Spec is a base class with one virtual function. This virtual function takes a

parameter list and an attribute list as parameters. It returns a list of pointers

to the RetList class. Tool generators need to derive subclasses to hold their

specific information and implement the tool processor function.

Traversal library interface is implemented using a virtual function and list of pointers

to the RetList class in the Rule class. This function is implemented by both the

And class and the Or class. Signature of the traversal function is given below.

virtual void traverse(ToolSpec* tool_spec, bool traversal_type);

It takes a pointer to the ToolSpec class as parameter to carry tool specific informa-

tion. The type of traversal, complete or guided, is specified by traversal type.
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