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Abstract  
 
The project aims to build up a computational platform for an autonomous 
unmanned aerial vehicle and implement the computational platform using off-
the-shelf components for the hardware. We have chosen a miniature airplane 
for the project. The project has reached a stage where we have fabricated the 
airplane, designed control laws for it and implemented the major individual 
components separately, namely the control system, the actuation system and 
the data acquisition and filtering system. 
 
The project was a joint effort of the departments of AE, CSE and EE. The 
work done for a CSE project has been highlighted in this report. The work 
involved implementation of control laws on a single board computer, the 
actuation system for deflecting the control surfaces using a servo controller 
card and servos and the communication protocol between the single board 
computer and the data acquisition and filtering system. 
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1. Introduction  
 
Research and development in the field of autonomous vehicles has always been attractive, 
for a variety of actual and potential applications in several different fields. Unmanned 
aerial, underwater and ground vehicles have been used in Earth and Space exploration, 
military reconnaissance and intelligence gathering, provision of data and services for 
commercial and scientific applications. Unmanned vehicles can perform critical tasks 
without endangering the life of human pilots. They can be designed and developed without 
having to account for the presence of a pilot and the associated life-support and safety 
systems, potentially resulting in cost and size savings and increased operational 
capabilities. 
 
In this project we attempt to actually implement autonomous mode of operation on a self-
fabricated miniature airplane. This is largely an inter-disciplinary project involving 
components from Electrical Engineering, Aeronautical Engineering, and Computer Science 
and Engineering.  

 
2. Problem Statement  

 
In this project we have to do a Hardware Implementation of a Flight Control System for an 
Unmanned Aerial Vehicle. The Hardware Implementation involves the On-Board 
Computer Setup, implementation of control laws, Sensing, Data Acquisition and Filtering 
and Actuation. 

 
 

3. Project Objectives  
 

At the top level our project objectives can be stated as – 
• Fabrication of airplane 
• Design of control system 

o Simulations for testing stability and controllability. 
• Hardware Implementation 

o On board Computer setup 
o Interfacing On board computer with actuators. 
o Data Acquisition from sensors, filtering of sensor data. 
o Communication system between On board computer and data acquisition 

and filtering system. 
o Implementation of control laws. 

• Testing  
o Unit testing of control law implementation, filtering system 
o Hardware In Loop Simulation (HILS)  

 
Amongst these, the topics related to CSE are described in detail in the next few sections.  



 
4. Hardware Details 

 
 Here are some terms which are necessary to follow up this report: 
 

 
 4.1 Model Details  
 
 Our model is shown in Figure 1. The controllable parameters available for this 
 miniature airplane are: 
 

      
Figure 1 
 

1. Engine throttle: more engine power can roughly translate into more airspeed. 
2. Servo deflections in control surfaces – aileron, flaps, elevator, rudder. 
 
 
 



 
4.2 Servo Motor  
 
Servo motors are distinct from the general DC motors in the sense that they are position 
motors. One can precisely control the angular position (out of 180 degrees) of these motors 
using Pulse Width Position. Another key feature is that they are high torque motors, which 
is essential required to change the airplane’s surface orientation against the drag. We are 
using Futaba S3003 Servo motors. 
 
4.3 Servo Card  
 
In order to communicate with the Servos, we need a hardware controller. We have used 
PicoPic from PicoBotics for this purpose. It is a versatile, light weight, robust and low on 
power, high performance Servo Controller Card. It can simultaneously control 20 servos 
and can be programmed over a serial port. It follows a very clean 5 character packet 
protocol for serial communication. 
 
4.4 Sensors  
 
We are using rate gyros, magnetometers, pressure sensors for data acquisition through an 
Analog to Digital Converter (ADC) and followed by filtering done using Kalman filtering 
implemented on an FPGA. Currently we have not managed to include these sensors in the 
simulation loop  
 
4.5 Single Board Computer (SBC)  
 
We have done our development on Soekris net4521. It is based on a 133 Mhz 486 class 
processor. It uses a Compact Flash module for program and data storage. 
 
The Soekris net4521 is not really a general purpose SBC but more of a communication 
computer. Recently we have switched over to LIOD Evaluation Platform. The LIOD 
Evaluation Platform is a software development kit based on Intel PXA 270 Processor. The 
kit has peripheral and expansion capability for application software development. 

  
We are running Linux on both these computers. I would like to emphasize here that it took 
us a lot of effort to configure and setup Linux on these computers. We had done an 
installation of Pebble on the flash card (256 MB) since it takes about 50MBs after 
installation and has all the packages we required at this initial stage. We had also done a 
smaller installation (about 10 MB) on the Soekris from scratch earlier but found Pebble to 
be easier to maintain and upgrade. 
 
 
 
 
 



5. Problem Solving  
 
Here we describe the approach we have followed. First task is to get an accurate estimate of 
the current orientation and position in space. This is followed by the execution of the 
control logic. The control logic determines the actuations based on factors such as desired 
parameters given to the autopilot, current state of the airplane and stability of the airplane. 
This is followed by sending the actuation commands to the servo controller card which 
takes care of moving the servos to the desired angles. 
 

5.1 Obtaining accurate attitude of airplane 
 

Our data acquisition and filtering is done on an FPGA. The sensor data is digitized using an 
Analog to Digital converter card and then fed to the FPGA. The FPGA runs Kalman 
filtering on the received data. It provides us with the filtered values of the physical 
quantities – Velocity, Angle, angular velocity and the navigation quantities in the 3 axis. 
We have designed and implemented an efficient communication protocol to obtain these 
values every cycle of control execution. Please refer Appendix A1 for a detailed functional 
specification. 

 
5.2 Control logic execution 
  
 The control logic is the central component of the entire system. The control laws have been 
 developed and tested (on MATLAB using Simulink) by our AE team. The control system 
 is composed of a longitudinal control system (for controlling the pitch rate and airspeed) 
 and a Lateral control system (for controlling the roll rate and yaw rate) along with a bank 
 angle control system. 
 
 As shown in figure 2, the longitudinal autopilot takes in as inputs the commanded altitude, 

hc and commanded velocity, Vc. The outputs are the elevator defection, δe, and the throttle 
command, δt. The Altitude Hold autopilot converts altitude error into a commanded pitch 
angle θc. Then, the pitch Attitude Hold block converts pitch attitude error into a 
commanded pitch rate qc, which in turn is converted to the elevator command based on the 
error. The Velocity Hold autopilot converts velocity error to throttle command. 

 
 

 
Figure 2 

 
 



The lateral autopilot is shown in Figure 3. The input command to the lateral autopilot is the 
commanded heading, ψc. The output is the aileron command δa. The Heading Hold 
autopilot converts heading error to roll attitude command, φc. The Roll Attitude Hold 
autopilot converts roll angle error to roll rate command, pc. The Roll Rate Hold autopilot 
converts the roll rate error to aileron command, δa.  
 

 
Figure 3 

 
  The bank angle control system is a simple PI (P – Proportional, I – Integral)   controller 

which takes in the current bank angle and outputs a correction in the roll rate. Basically it 
tries to make the airplane fly at the desired bank angle (which is usually zero).  

 
The control system which been designed and tested on MATLAB was a continuous time 
domain control system. See Appendix A2. The control system has been converted from 
continuous to discrete domain for implementation on a computer. After conversion, the 
control system essentially consists of equations in state space form: 

 
Xk+1 = A Xk + B Uk 
Yk = C Xk + D Uk 

 
 Where Xk is the state Matrix of the control system, Uk is the input matrix consisting of 
 attitude of the airplane and Yk is the output matrix containing the actuation values (angles 
 of control surfaces). 

  
Here A, B, C and D are matrices which are computed from a set of matrices KA, KB, KC 
and KD (different values for each airspeed range) based on the airspeed of the airplane. 
Basically the control system has been designed for a range of airspeeds (11 – 25 m/s) and 
simulations have been carried out for each airspeed in MATLAB giving us the 
corresponding KA, KB, KC and KD matrices for both the lateral and longitudinal control 
system. The computation of A, B, C and D from KA, KB, KC and KD also involves the 
parameter T, which is the cycle time of the control law’s execution on the on board 
computer (T = 20 ms in our case).  
 
Our control logic algorithm can thus be written as a simple sequence of the following steps: 

1. Obtain the latest values of attitude and update the input matrices Uk for both the 
lateral and longitudinal control system. 

2. Based on the current airspeed, calculate the matrices A, B, C and D for both the 
control systems. 

3. Calculate the output for the aileron, flaps, rudder, throttle and elevator for this 
cycle. 

4. Calculate the correction in the roll rate from the bank angle stability control system. 
5. Calculate the next state (k+1) of the lateral and longitudinal control system. 



6. Repeat Steps 1 to 5. 
 

5.3 Actuation 
 

Based on the actuation values generated from the control system we have to now set the 
control surfaces at the desired angles. This is done through the servo controller card (SCC). 
The SCC is can be interfaced to a serial port from which it can receive actuation commands 
and control multiple motors in parallel. We have calibrated the servos and obtained the 
ratio of angle deflection to PWM input. The setup had an accuracy of half-a-degree.  
The readings were taken for four different speed values: 

• speed 10 - a typical operational speed (Table II) 
• speed 100 - a medium to fast operational speed (Table III) 
• speed 1 - minimum possible operational speed (Table V). 
• speed 0 - maximum operational speed supported by servo(Table IV). 

 
 The results are given below: 
 

 
 

 
 
The on-board computer creates a packet with the servo number and pwm value based on 
the control logic’s output. This is sent to the SCC according to the communication protocol 
as described in A1. 
 
 
 
 



6. Conclusion 
 
We have done the hardware implementation of the individual components necessary for 
achieving the autonomous mode of operation in our airplane – namely the actuation 
system, the control laws implementation on a computer and the data acquisition and 
filtering. However we have still not done a Hardware In Loop Simulation of the entire 
system to test out the implementation in real time.   
 

7. Future Work  
 
We plan to test out our implementation using HILS to give us more confidence in the 
implementation before actually carrying out test flights. Our team of EE is already working 
on a vision based control system since 2 semesters which would add more control to the 
control system. Finally we will be putting in the avionics along with the control laws we 
have developed on the UAV model being developed by AE The first stage will be simple 
data acquisition in which we will try to plot the path traveled based on the data. The second 
stage will be to have autonomous control using one of the two – lateral and longitudinal 
control system and radio control the other. Finally we will try to have full autonomous 
control using the two control systems operating simultaneously. 
I would like to mention that most of the components we have used are off the shelf 
components. We have had pretty bad experience working with on board computers with 
faulty serial ports which had taken us weeks to diagnose. We have had some minor and 
major crashes also in the last one year. Such an implementation has required us to work in 
domains of not only computer science but also understand concepts of aerospace 
engineering and electrical engineering. 
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Appendix 

A1 Functional Specification of the Communication 
Protocol 
 
This functional specification is written for defining the communication protocol between 
the components: Single Board Computer (SBC), FPGA-B(connected to ADC-Analog To 
Digital Converter) and FPGA-A(connected to SCC - Servo Controller Card).  

 

Fig 1(A) shows the block diagram of the system.  

Version Change history 

• Version 1 : Initial Protocol which had header, byte count, data, chksum-
>unnecessary complications and processing.  

• Version 2 : Checksum, header removed; packet type and byte count merged in one 
byte; IP request and reply packets handling improved.  

• Version 3: Bits dedicated to channel no, axis; no need of data bits size specification 
from SBC (earlier bit 5).  

• Version 4: Calibrate command added ( command is 0x40 = 01000000, 01 at 7:6 
imply that its a packet from SBC to FPGA-B )  



Description  

The communication between the components is in form of packets. A packet is simply a 
stream of characters. There are 3 kinds of packets - Information Packets (IP: FPGA-B to 
SBC), Actuation packets (SBC to FPGA-A), Command/Request packets (SBC to FPGA-
B). The packet structure is described below:  
 
 

Protocol summary 

Byte 1  Src, Dest, length, request information encoded  

Bytes 2-n Data or command bytes 
need not be always present: many packets only contain 1 Byte 

 
 

Byte 1 

Bit Number 
7 6  5  4  3  2  1  0  

Description 

0 X X X X X X X A packet from SBC  
0 0 X X X X X X Other End is FPGA-A: hence Bits 7:6 = 00 => Actuation packet  

0 0 0 0 0 1 0 1 
Bits 5:0 have the usual meaning of length 
For Actuation packet size is 5 bytes(details of following bytes in next 
table)  

0 1 X X X X X X Other End is FPGA-B: Look at Bit 5  
0 1 0 0 0 0 0 0 Calibrate command  

0 1 0 X X X X X 
Reserved for Future, Bits 5:0 with bit 5 hard coded to 0 => max 32 
byte packet from SBC to FPGA-B 
Bytes 2-n in this case have not been decided presently.  

0 1 1 X X X X X IP(Information Packet) Request packet: no further bytes in packet  
Bits 4:2 encode the channel number and Bits 1:0 encode axis. 

0 1 1 0 0 0 X X Channel number 0 requested: Channels correspond to the physical 
quantities: Velocity, angle, rate and Navigation (See Table 4) 

0 1 1 0 0 0 0 0 Channel 0 ,Axis 1 component requested 
0 1 1 0 0 0 0 1 Channel 0 ,Axis 2 component requested 
0 1 1 0 0 0 1 0 Channel 0 ,Axis 3 component requested 
0 1 1 0 0 0 1 1 Channel 0, All Axis components requested 
0 1 1 0 0 1 X X Channel number 1 requested: Channels correspond to the physical 



quantities: Velocity, angle, rate and Navigation (See Table 4) 
0 1 1 0 0 1 0 0 Channel 1 ,Axis 1 component requested 
0 1 1 0 0 1 0 1 Channel 1 ,Axis 2 component requested 
0 1 1 0 0 1 1 0 Channel 1 ,Axis 3 component requested 
0 1 1 0 0 1 1 1 Channel 1, All Axis components requested 

0 1 1 0 1 0 X X Channel number 2 requested: Channels correspond to the physical 
quantities: Velocity, angle, rate and Navigation (See Table 4) 

0 1 1 0 1 0 0 0 Channel 2 ,Axis 1 component requested 
0 1 1 0 1 0 0 1 Channel 2 ,Axis 2 component requested 
0 1 1 0 1 0 1 0 Channel 2 ,Axis 3 component requested 
0 1 1 0 1 0 1 1 Channel 2, All Axis components requested 

0 1 1 0 1 1 X X Channel number 3 requested: Channels correspond to the physical 
quantities: Velocity, angle, rate and Navigation (See Table 4) 

0 1 1 0 1 1 0 0 Channel 3 ,Axis 1 component requested 
0 1 1 0 1 1 0 1 Channel 3 ,Axis 2 component requested 
0 1 1 0 1 1 1 0 Channel 3 ,Axis 3 component requested 
0 1 1 0 1 1 1 1 Channel 3, All Axis components requested 
0 1 1 1 0 0 X X Unused currently 
0 1 1 1 0 1 X X Unused currently 
0 1 1 1 1 0 X X Unused currently 

0 1 1 1 1 1 X X All Channels requested: Channels correspond to the physical 
quantities: Velocity, angle, rate and Navigation (See Table 4) 

0 1 1 1 1 1 0 0 All Channels ,Axis 1 component requested 
0 1 1 1 1 1 0 1 All Channels, Axis 2 component requested 
0 1 1 1 1 1 1 0 All Channels, Axis 3 component requested 
0 1 1 1 1 1 1 1 All Channels, All Axis components requested 
1 X X X X X X X SBC is destination.  
1 0 X X X X X X Other end is FPGA-A: Reserved for Future.  

1 1 X X X X X X 

Other end is FPGA-B. It is an Information Packet.  
Bytes 2-n represent the data bytes. 
If data bits = 16 then byte (i) is most significant byte and byte (i+1) is 
least significant byte. 
If data bits = 8 then byte alone represents the value, there is no 
padding. Bits 5:0 represent the length of the bytes to follow in the IP. 

 
 
 



Bytes 2-n  

Actuation Packet Bytes 2 - 6  
 
Byte 2  Address (120 = 0x78 = 0 1 1 1 1 0 0 0 by default)  
Byte 3  Servo number to actuate ( 1 - 20 )  
Byte 4  Offset's hi; offset is in us of pwm  
Byte 5  Offset's lo; offset is in us of pwm  

Byte 6  Speed with which the actuation is to be executed (0 for max possible, 1 - 255 : 
255 is max, 1 is slowest)  

 
Information Packet Bytes 2 - n  

 

Byte (i)  If data bits = 16 then byte(i) is most significant byte 
If data bits = 8 then byte alone represents the value, there is no padding.  

Byte (i+1)  If data bits = 16 then, byte(i+1) is least significant byte. 
If data bits = 8 then byte alone represents the value, there is no padding.  

Note: In case multiple channels (and/or) multiple Axis components are requested, then the 
order of components in the data bytes is strictly according to lowest channel number first 
and then lowest Axis number first. Hence if all components are requested, then the 
components would be in order : u, v, w, phi, theta, psi, p, q, r, x, y and z.  

Physical Quantities, Channels and Axis explained 

Channel Number Axis Number Physical Quantity 
 Velocity 
1 u 
2 v 

0 

3 w 
 Angle 
1 phi 
2 theta 

1 

3 psi 
 Rate of change of angle
1 p 
2 q 

2 

3 r 



 Navigation Quantities 
1 x=latitude 
2 y=longitude 

3 

3 h=altitude 
 
 
A2 Simulation and Control 
 
The open loop (no control) simulink MATLAB simulation model is shown in the Figure 4 
below. 
 

 
Figure 4 

 
The Lateral control system developed is shown in Figure 5.  



 
Figure 5 

 
The Longitudinal control system is shown in the figure 6 below: 
 

 
Figure 6 

 


