
Key Management for Transcrypt

by

Abhijit Bagri

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

May 2007

i

Key Management for TransCrypt

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Abhijit Bagri

to the

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY,KANPUR

May 2007

ii

CERTIFICATE

It is certified that the work contained in the thesis entitled " Key Management for 1ran-

sCrypt" by Abhijit Bagri has been carried out under my supervision and that this work has

not been submitted elsewhere for a degree.

Indian Institute of Technology Kanpur,

Kanpur-208016. Kanpur-208016.

Dr. Dheeraj Sanghi

Department of Computer Science

& Engineering,

Dr. Rajat Moona

Department of Computer Science

& Engineering,

Indian Institute of Technology Kanpur,

iii

Abstract

With data storage and processing snowballing into a necessity from being an efficient part

of any business process or organization, the need for securing storage at various degrees of

granularity is gaining considerable interest. The challenge in designing an encrypted filesys-

tem stems from balancing performance, security perception, ease of usage and enterprise level

deployability. Often, the most secure solutions may not even be the best solution either due

to hit on performance or due to decreased usability. Further, narrowing the trust circle to

exclude even hitherto trusted system administrators makes creating an encrypted filesystem

a huge engineering exercise.

In this thesis, we talk about key management issues in TransCrypt[21], an encrypted file

system design with smallest trust circle to the best of our knowledge. We provide an entire

architecture with utilities like secure key stores, and their management through libraries in-

side and outside the kernel space. We provide enhancement of kernel CryptoAPI to include

asymmetric cryptography, filesystem and file metadata management tools, and a communi-

cation framework to authenticate genuine users through user-space key stores. We present

a design that incorporates modularity, flexibility while providing a transparently operational

encrypted filesystem.

iv

Dedicated to

My lovely niece, Pari

v

Acknowledgements

I would like to express my gratitude to my thesis supervisors Dr Dheeraj Sanghi and Dr

Rajat Moona, without whose able guidance this work would not have been possible. I thank

Dr Manindra Agarwal for his insights in the project. I would like to thank all the people

who have been a part of TransCrypt group - Mohan Dhawan, Satyam Sharma, Deeptanshu

Shukla, V Bhanu Chandra, Arun Raghuraman and Sainath Vellal. Intense discussions during

TransCrypt meetings with these people have been a great learning experience, besides being

instrumental in the conceptualization and implementation of this work.

I would also like to thank Prabhu Goel Research Centre for Computer and Internet

Security for partially supporting my thesis and providing me with excellent facilities and a

highly flexible and open environment.

Any of my endeavours at IIT Kanpur would not have been possible without the support

of my friends, especially my wingmates, who have made my stay at IIT Kanpur a memorable

one. I thank them for being with me at all times.

Finally, I would like to thank my parents and my family for their affection and encour-

agement to succeed in all my ventures.

1

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope of this Work . 2

1.3 Organization of Thesis . 2

1.4 Abbreviations and Definitions . 3

2 Related Work 4

2.1 Approaches to Designing Encrypting Filesystems 4

2.2 Survey of Encrypted Filesystems . 5

2.2.1 Microsoft EFS for Windows . 6

2.2.2 Cryptoloop and dm-crypt . 6

2.2.3 Cryptfs . 7

2.2.4 eCryptfs . 8

2.2.5 NCryptfs . 9

2.2.6 Cryptographic File System (CFS) . 9

2.2.7 Transparent Cryptographic File System (TCFS) 10

2.2.8 BestCrypt . 10

2.2.9 Steganographic File Systems . 10

2.3 Summary . 11

3 TransCrypt Architecture 12

3.1 TransCrypt Features . 12

3.1.1 Per-file Encryption, Per-user Access Control. 12

2

3.1.2 Block Level Encryption. 12

3.1.3 Novel Cryptography Scheme. 13

3.1.4 Multiple Transparent Authentication Options 13

3.1.5 Minimum Admin Trust . 14

3.1.6 Data Recovery Agent . 14

3.1.7 Integrity . 14

3.2 The TransCrypt Architecture . 15

3.2.1 Cryptographic Metadata . 15

3.2.2 Filesystem Creation, Mounting . 15

3.2.3 File lifecycle . 15

3.2.3.1 Creation . 15

3.2.3.2 Opening . 16

3.2.3.3 Read/Write . 16

3.2.3.4 Changing Permissions . 16

3.2.4 User Space Modules . 17

3.3 Security Framework . 18

3.3.1 Physical Access to the System . 18

3.3.2 Superuser Under Minimal Trust . 19

3.3.3 Enhanced Security through FSK . 19

3.3.4 Concurrent Access by Multiple Users 19

3.3.5 Secure PKS . 20

4 Kernel Crypto API 21

4.1 TransCrypt’s Cryptographic Requirements in the Kernel 21

4.2 PKCS#1 compliance . 22

4.2.1 Encryption using Public Key . 23

4.2.1.1 Version 1.5 Padding . 23

4.2.1.2 OAEP Padding . 23

4.2.2 Decryption using Private Key . 25

4.2.2.1 Decoding Version 1.5 Padding 25

3

4.2.2.2 Decoding OAEP padding . 25

4.2.3 Signing Using Private Key . 26

4.2.3.1 Version 1.5 Encoding . 26

4.2.3.2 PSS Encoding . 27

4.2.4 Verification Using Public Key . 29

4.2.4.1 Verification for Version 1.5 Encoding 29

4.2.4.2 Verification for PSS Encoding 29

4.2.5 Options used in PKCS#1 Version 2.1 Implementation 30

4.2.5.1 Mask Generating Function 31

4.3 Crypto API . 31

4.4 Keyring Infrastructure . 32

5 Daemon and Private Key Store 33

5.1 PKS Options . 33

5.1.1 Services Offered by the PKS . 33

5.1.2 PKS Limitations . 34

5.1.3 Candidates for PKS . 34

5.2 TransCrypt Daemon . 35

5.3 Communication Protocol . 35

5.3.1 Communication Interfaces . 36

5.3.2 Packet Headers . 37

5.3.3 Packet - Structure and Handling . 37

5.4 Protocol Enhancements . 41

6 Putting Things Together 44

6.1 ACL Based Changes . 44

6.2 Changes in the Superblock . 45

6.2.1 Utility for Filesystem Creation . 46

6.2.2 Filesystem Mounting Utility . 47

6.3 Modifications in the Kernel . 47

6.3.1 Mounting . 47

4

6.3.2 File Creation . 48

6.3.3 Opening a File . 49

6.3.4 Reading/Writing a File . 49

6.4 Using TransCrypt . 49

6.4.1 Setting Up . 49

6.4.2 Creating a TransCrypt Partition and Mounting 50

6.4.3 File Lifecycle . 50

7 Future Work and Conclusions 51

7.1 Future Work . 51

7.2 Conclusions . 52

Bibliography 53

5

List of Figures

3.1 Schematic TransCrypt Architecture . 17

4.1 Schematic description of OAEP Encoding Scheme. lHash is hash of label L. PS

is padding strong of zero octets. Figure adapted from [19] 24

4.2 Schematic description of PSS encoding scheme. Figure from [19] 28

5.1 TransCrypt Header . 38

5.2 TCPT PKT REPLY CERT Packets . 39

5.3 TCPT PKT EST SESS Packet . 40

5.4 TCPT PKT KEY ACQ and TCPT PKT KEY RESP Packets 41

5.5 Communication Protocol between kernel, daemon and PKS 42

5.6 Unified Key Acquisition Packet, TCPT PKT ES KA and unified reply packet,

TCPT PKT RESP KA . 43

1

Chapter 1

Introduction

1.1 Motivation

Data security has become a very important issue with growing dependence on storage systems

and increasing reliance on the internet for communication. Millions of dollars have been

reported to be lost due to security breaches [16]. The key factors of interest for a deployment

of a storage solution are security, performance and usability.

Further, administering networks and storage over thousands of systems spread over em-

ployees in companies with large headcounts is an increasingly difficult task. With growing

number of outsourcing industries, such usage conditions are becoming very common. These

industries are usually attributed with high attrition rates. Getting system administrators

who may be trusted with proprietary data is a difficult task. Theft of data by employees

who may later cross-over to competitors is another concern. While companies commonly

impose restrictions like not allowing USB thumb drives in offices, these restrictions have been

ineffective in preventing data thefts and are generally inconvenient.

Security is a greater concern in defense establishments, where secrecy of data is of

paramount importance. Most data thefts are found to be rooted at collusion with system

administrators. Similar examples are present in other Government organizations. Most users

in this kind of environment are non-experts who require ease of usability of any new solution

provided.

The pressing need is to develop storage solutions which may provide a heightened security

barrier. While several cryptographic filesystem designs are available, as detailed in Chapter 2;

2

all trust the system administrator. We present implementation of a cryptographic filesystem,

designed earlier by our group [21] that minimizes trust on the administrator. The other

key issue is that of transparency for regular users who should be able to migrate to the

new solution with minimal learning curve. Other issues that of interest for an enterprise

deployment are data recovery and compatibility with existing systems.

1.2 Scope of this Work

The TransCrypt filesystem was designed and a proof of concept was presented in our earlier

work [21]. We provide the key management scheme for TransCrypt in this work. This involves

design of storage for cryptographic metadata in the filesystem, metadata creation, metadata

extraction while opening encrypted files and metadata management. We also provide the

kernel cryptographic algorithms necessary for implementing this key management scheme.

We also detail communication with user space utilities which has been done in association

with another work of our group [23]. Some of the salient features of this work are:

• Providing support for handling cryptographic metadata.

• Providing a TransCrypt version with full filesystem and file lifecycle.

• Adding associated cryptographic support.

• Providing user space support modules.

• Communication framework with user space utilities.

The last two above have been done in association with another work of our group[23]

1.3 Organization of Thesis

In the next chapter we discuss other encrypting filesystems and establish the need for a new

encrypting filesystem. In chapter 3 we outline the architecture of TransCrypt. We also discuss

the security framework for TransCrypt. We provide implementation details in chapters 4 to

6 which form the core of this work. In chapter 7 we take an insight of the future work on

TransCrypt and finally provide our conclusions.

3

1.4 Abbreviations and Definitions

PFK. Per File Key. It denotes the key used to encrypt a file.

FSK. File system Key. It denotes the file system wide key.

PKS. Private Key Store. It denotes the secure module that stores the private key of a user

and provides token decryption service.

daemon. It is the user space daemon that communicates with the kernel and facilitates

key acquisition for the kernel.

SK. Session Key that is established by the kernel with the PKS.

PuKUID ,CERT−ID . It denotes the Public Key of the user with user id UID as mentioned in

certificate with certificate number CERT-ID.

PrKUID ,CERT−ID . It denotes the Private Key of the user with user id UID corresponding

to the public key as mentioned in certificate with certificate number CERT-ID.

(A)b. Cipher text produced by encryption of plain text A using symmetric key b.

[A]PuKUID,CERT−ID
. Cipher text produced by encryption of plain text A using public key

PuKUID ,CERT−ID .

4

Chapter 2

Related Work

2.1 Approaches to Designing Encrypting Filesystems

An encrypting filesystem design takes several approaches. The design of an encrypting filesys-

tem needs to trade between flexibility, efficiency and security. The various encrypted filesys-

tems use a variety of techniques and it is essential, before we venture out to compare them,

to lay out the parameters which decide what makes a good encrypting filesystem.

1. Encryption Layer. This decides where the actual encryption/decryption operations

are performed on the contents of a file during the write/read process from the disk to

memory. This would decide where data remains in plain text in the various stages in

which it exists on the system, like buffer cache, page cache. The criterion is important

because while some of these buffers are per-process, others are per-system and therefore

affects other elements of design.

2. Granularity and Encryption Target. This refers to the smallest unit which uses

the same encryption key. This may be whole filesystems as in the case of Cryptographic

File System(CFS) [2], or a per-file key as in eCryptfs [10]. It is also necessary to decide

what elements are stored encrypted on the disk. The objects in question are file data,

metadata, file system based information etc.

3. Algorithm. This refers to the choice of using symmetric key or asymmetric key based

algorithms. Symmetric key algorithms provide better speed while asymmetric key based

algorithms provide greater security by means of robust key management scheme. A

5

trade-off between the two also brings up using a combination of these algorithms.

4. Key Management. The design needs to specify the format and location in which the

keys are stored. This may be the metadata of the file or the filesystem information in

the superblock as two examples. Also, an important design decision is whether the keys

are per-file, per-user or per-system.

5. User Interaction. All encrypting filesystems need to define how the keys will be

loaded for authentic users and disallow invalid access to the files. This design detail

will have security implications. For example, the author may be hesitant to have a

pass-phrase based authentication scheme, susceptible to dictionary attacks. This layer

also defines access control for the data. A file may be shared among multiple related

users (such as groups) or among multiple unrelated users on an individual basis.

6. Admin Role. The role of the administrator and the housekeeping needed to be done

by the administrator is another essential point in the design of a filesystem.

7. Recovery. Good encrypting filesystem designs also need to address handling of events

when things go wrong, for example events such as loss of keys, unavailability of genuine

users. There will generally be other non-generic issues evolving out of each particular

design.

Integrity is another important criteria for a security-conscious user, but is generally not

essential for an encrypting filesystem design and hence is not present in the above list. Some

other factors which need consideration during the design process are installation, efficiency,

ease of usage, and last but definitely important, backward compatibility with systems, archi-

tectures and file-formats.

2.2 Survey of Encrypted Filesystems

Based on the parameters identified in section 2.1 we now survey the existing encrypting

filesystems. While this work deals with GNU/Linux based implementation we also discuss

the Windows EFS in our survey.

6

2.2.1 Microsoft EFS for Windows

Microsoft Encrypting File System [5] provides a secure filesystem, as long as user does not

gain physical access to the machine. The salient features are the following:

• EFS encrypts files using NTFS file control call-out feature. The files therefore remain

encrypted in system-specific buffers.

• Files and folders that are to be encrypted by the file system must be marked with an

encryption attribute.

• EFS uses a hybrid approach with random per-file keys, which are encrypted with a

user’s public key.

• EFS uses only user-specific keys and no system-wide keys. The keys are stored in the

header of each file that is encrypted.

• The public keys are stored on the system itself. In Microsoft’s new Vista edition it

provides authentication using a smart card module.

• The administrator functions as the default recovery agent. EFS provides a strong design

for data recovery.

While EFS restricts itself to Windows platform, it does provide several good design attributes.

It however does not provide protection against physical access, and the provision of explicitly

setting the encryption attribute decreases its transparency and possibility of security lapse

due to carelessness.

2.2.2 Cryptoloop and dm-crypt

The original patch of Linux CryptoAPI [6] in the 2.2 series kernel was designed to provide

filesystem encryption. Cryptoloop [11] provides an indirection at mount time whereby system

calls are intercepted to provide encryption and decryption of filesystem data.

• Cryptoloop uses the loop device as a pseudo device that allows each file system calls

to be intercepted for encryption/decryption. This implies that all system and process

buffers remain encrypted.

7

• Cryptoloop encrypts the entire filesystem using a common mount-time pass phrase.

• It uses a symmetric key algorithm which is provided during mount operation.

• The authentication is solely based on the pass-phrase and very susceptible to dictionary

attacks.

• No recovery is possible if the user forgets the password as there is no specific recovery

agent.

The Cryptoloop project has now been deprecated and is replaced by more actively main-

tained dm-crypt [8]. dm-crypt [8] provides several additional features and improves upon the

cryptoloop with the same base architecture.

• dm-crypt provides setting up IVs, and chaining modes

• It provides greater compatibility with filesystems, and decouples itself from the Logical

Volume Manager(LVM)

While a mount time encryption scheme as cryptoloop loop has advantages with compatibility,

it falters on various flexibility and security aspects. The absence of recovery agent makes it

usage for critical data dangerous. A single system wide key implies re-encryption of entire

filesystem if one needs to change the key.

2.2.3 Cryptfs

Cryptfs [29] was developed as an encrypted filesystem which gave way to more robust and

now well maintained filesystems eCryptfs[10] and NCryptfs[27]

• Encryption is done by calculating the pages being affected by a write. This leads to

encryption of more blocks than that are affected. Encryption layer is at page cache.

• It encrypts at a file granularity. However, multiple files maybe using the same key.

Cryptfs decouples encryption with ownership.

• It uses Blowfish algorithm with CBC mode. It does not use asymmetric keys.

8

• The keys used are per-session. This means the users sharing same keys have to use the

same session.

• The keys are derive from a 16-character pass-phrase prompted when a user starts a new

session for reading files.

• Administrator alone can mount the encrypted filesystem and is kept totally in the trust

circle.

• No recovery module is specified.

Cryptfs claims to be just a proof of concept and not a full fledged cryptographic file

system. Its two off-shoots eCryptfs and NCryptfs are more important from a comparison

point of view.

2.2.4 eCryptfs

eCryptfs [10] uses some features of Cryptfs notably, per-session based authentication. It has

some important changes

• The cryptographic metadata is now stored in the header of files itself. The storage

format makes it incompatible for sparse files.

• There is a per-file key, which is encrypted with a session-wide key provided through a

pass-phrase. These are called authentication tokens.

• The authentication tokens are per-session. This implies that reading files with different

authentication requires a remount.

• eCryptfs uses the kernel keyring infrastructure.

• While pass-phrase mode is suggested, it also provides a pluggable authentication mod-

ule, which is under development.

eCryptfs provides flexibility and a higher security cover. However, superuser is still in the

trust domain, the new file format and session based authentication token are some negative

points.

9

2.2.5 NCryptfs

NCryptfs [27] improves substantially on Cryptfs specifically in providing group access, and

improving upon the session specific authentication scheme.

• It adds support for multiple ciphers and authentication methods.

• It provides an architecture for providing access to groups.

• The system administrator is trusted for proper mounting and for proper user space

components. It is not trusted with the encryption keys

• It distinguishes between owners and other users, where owners set out policies for other

users.

• Provides a user mode mount feature called attach

• While authentication is still based on sessions, the access control is managed by using

policies, and prompts for keys.

• Keys are prompted on command line after policies allow usage.

NCryptfs provides several desirable features, but its trust on user space processes makes

it susceptible to masquerading attacks. Also, request for keys at command line hinders with

transparency from a usage point of view.

2.2.6 Cryptographic File System (CFS)

Cryptographic File System(CFS) [2] is an encrypting file system that is implemented as a

user-level NFS server. Users create a directory on the local or remote file system to store

encrypted data. The cipher and key are specified when the directory is first created. It

provides a user space daemon, that is responsible for providing the owner access to the

encrypted data through an attach command. The daemon, after verifying the user ID and

key, creates a directory in the mount point directory that acts as an unencrypted window

to the user’s encrypted data. Once attached, the user accesses the attached directory like

any other directory. CFS runs all its major operations in the user space and so its major

10

drawback is performance due to the several context switches required. Also, due to need of

explicitly attaching a file to be used as encrypted, it falters on transparency from a usage

perspective.

2.2.7 Transparent Cryptographic File System (TCFS)

TCFS [13] is a improved form of CFS, which eliminates need of attach and detach commands

required in CFS. It allows setting up encrypted attributed associated with files and directories

instead. It uses the UNIX authentication system to authenticate users. The file keys are

stored in a directory. TCFS is very low on security because of its reliance on login-passphrase

based system and storage of file keys on the disk itself.

2.2.8 BestCrypt

BestCrypt [1] is a commercially available encrypting filesystem. Its features are the following:

• The encryption is provided by intercepting system calls using a loopback device.

• It defines containers which are huge files loaded as a loopback raw block device. Con-

tainers are backing stores that may be formatted as any filesystem

• Each container is associated with its own symmetric key.

• Containers need to be created, formatted, mounted by the administrator.

BestCrypt is quite unsuitable for multi-user modes as it involves huge administrative roles

and prevents sharing of containers amongst users with unequal permissions.

2.2.9 Steganographic File Systems

Some other important filesystem with greater security cover use steganography along with

encryption like StegFS [14] and Magikfs [24]. These not only prevent access to hidden data

but also what is hidden on the filesystems. StegFS provides several security levels, each with

its own key. It modifies EXT2 kernel driver to maintain a separate block allocation table for

files on StegFS. Besides, these pack in some other security features to prevent data recovery

11

after deletion. The goal of these file systems are more oriented towards hiding data, rather

than providing transparency and trading with performance.

2.3 Summary

Most filesystems maintain page cache in encrypted mode. While this provides easier im-

plementation, encrypting/decrypting at buffer cache is faster. However, maintaining page

cache unencrypted is susceptible to memory screening attacks. Apart from Microsoft EFS,

no encrypting filesystems uses a hybrid approach of symmetric and asymmetric keys. The

superuser is fully trusted in most implementations except in NCryptfs. Minimal trust on

superuser which is an important goal of TransCrypt. All filesystems including NCryptfs have

ignored masquerading attacks by which the user space utilities can be faked. Such attacks

are other considerations dealt with in TransCrypt. TransCrypt offers per-user keys for access

control and authentication. and uses a novel scheme for thwarting super-user based attacks

by including a system-wide key. While only some designs provide full transparency to users,

TransCrypt states making file operation totally transparent as its basic goal. The recovery

framework dealt earlier [21] provides the key feature for enterprise deployment.

12

Chapter 3

TransCrypt Architecture

TransCrypt filesystem described in this chapter is essentially an extension of work done earlier

[21, 22]. A number of improvements have been made in this design, and this chapter attempts

to provide a complete picture of the current TransCrypt design.

3.1 TransCrypt Features

We discussed in section 2.1 the parameters that are considered while designing and encrypted

file system. We now present a TransCrypt feature set based on those criteria.

3.1.1 Per-file Encryption, Per-user Access Control.

TransCrypt encrypts each file with a unique per-file key(PFK). The PFKs are randomly

generated at each file creation. The security granularity for access is extended to per-user by

using a special cryptographic scheme outlined in section 3.1.3

3.1.2 Block Level Encryption.

TransCrypt encrypts data at granularity of filesystem blocks. The encryption/decryption

may be performed during the block write/read level or page write/read level depending on a

user’s threat perception. The former maintains an unencrypted page cache while the latter

keeps the page cache encrypted covering a greater threat model. This option is configurable

by a compile time option.

13

3.1.3 Novel Cryptography Scheme.

The PFKs are generated randomly to protect data. However, access control is provided for

a user. This is achieved by combining symmetric key based PFKs with asymmetric key

cryptography. The PFK for a file is encrypted using the public key of a user to whom access

is to be provided. This is known as token and is part of the metadata of the file. In order

to get access to a file, the user must be able to process the token using his private key. This

functionality is completed in the user space. This however has a problem where the naked

PFKs travel in plaintext back to the kernel after the token is decrypted using the private

key of the user. Also, it is not desirable for even the legitimate users to have access to the

PFKs. TransCrypt uses a novel scheme by including a filesystem-wide key, the File System

Key(FSK) to blind the PFKs. The actual format cryptographic metadata, the token , is

the following.

token = [(PFK)FSK]PuKUID,CERT−ID

The notation mean that PFK is first encrypted using symmetric key FSK. This is then

encrypted with the public key of user with user-id as UID and corresponding certificate id

as CERT-ID. A list of these tokens is stored in the Access Control List (ACL) of a file.

PuKUID ,CERT−ID denotes the public key of the user. The meaning and need of UID and

CERT-ID are explained when we talk about cryptographic metadata storage in more detail

in section 3.2.1.

3.1.4 Multiple Transparent Authentication Options

User authentication in TransCrypt is achieved by a decryption with private key and this

operation is performed in the user space. TransCrypt defines an independent authentication

module which services kernel requests. This module is known as the Private Key Store(PKS).

This authentication module may be a smart card based module, a secure authenticating server

or anything else. Once the smart card is inserted or the server is configured, the user can

work transparently without any special intervention by him, such as entering a pass-phrase

each time a file is opened. This provides a higher degree of convenience compared to many

other systems. We use a user-space daemon to communicate with the kernel, but we do not

14

impose any security assumptions on it. Such a daemon acts simply as a conduit between the

kernel and the PKS.

3.1.5 Minimum Admin Trust

TransCrypt keeps the super user outside the trust model which means even if an attacker gains

superuser privileges through some compromise, the attacker will be unable to gain access to

a user’s file. It may be noted that the design does allow partial trust in the superuser and is

not resistant against attacks like kernel image forging. Use of Trusted Platform Module in

future will further restrict the Trust Model. This design is outlined in section 3.3.

The File System Key(FSK) discussed above is stored with a hash in the superblock of

the filesystem. The FSK is obtained through a mount-time pass-phrase, which needs to be

supplied by the superuser while mounting a TransCrypt filesystem.

3.1.6 Data Recovery Agent

For purpose of data recovery in case of lost keys, we use a data recovery agent. The superuser

in TransCrypt is unable to read files. A special user called the Data Recovery Agent (DRA)

is given read access to each file at the time of creation. The DRA is an additional hierarchy

created by TransCrypt with the sole responsibility of recovering lost files. The private keys

of the DRA is broken and stored with multiple entities. In a real life scenario, recovering

files should require multiple people to come together and provide authentication to recover

files.

3.1.7 Integrity

TransCrypt design [21], provides an integrity framework for TransCrypt. Keyed hashes of

each block will be created, and stored with the metadata. A “hash of hashes” will also

be signed with the user’s private key and stored in the metadata. The metadata would be

also hashed and signed to prevent altering permissions and tampering with cryptographic

metadata. The current implementation lays smaller focus on the integrity of data and relies

on the current OS implementation for the same.

15

3.2 The TransCrypt Architecture

3.2.1 Cryptographic Metadata

TransCrypt uses the Access Control List [9] data structure in the filesystem for storing its

cryptographic metadata(token). We disallow the usage of un-named users in the ACL. Only

named users are allowed. The named user entry in the ACL is augmented to contain two

more fields in addition to the uid and permissions. These fields are cert-id and the token.

Since each user may have several key pairs, the unique public key used is identified by the

(uid,cert-id) pair. token is the cryptographic metadata as described earlier in 3.1.3.

3.2.2 Filesystem Creation, Mounting

At the time of creation of the filesystem, the user is prompted for a pass-phrase, which is

then used to create the FSK. The FSK is then hashed and stored in the superblock of the

filesystem.

The filesystem to be mounted as a TransCrypt partition is mounted with the ‘acl’ and

‘tcpt’ option switched on. The pass-phrase needs to be provided at the prompt in order to

construct the FSK and verify it with the hash stored in the superblock. The FSK is then

stored in the in-memory image of the superblock.

3.2.3 File lifecycle

In addition to the normal operations certain additional cryptographic operations need to be

performed during creation, opening, reading and writing of the file. In addition to this ACL

based commands(setfacl, chacl) also require certain changes as described later.

3.2.3.1 Creation

• A random PFK is generated for the file.

• PFK is blinded by performing a symmetric encryption using FSK as the key creating

the blinded PFK.

16

• The certificate of the user is obtained by requesting the user space daemon for it. The

user space daemon returns the most current certificate and the corresponding cert-id is

later stored in the ACL entry.

• The certificate is verified by the kernel and public key of the user is extracted.

• The token is created by performing a RSA encryption on the blinded PFK using the

public key of the user.

• The token is stored in the ACL entry along with cert-id and uid.

3.2.3.2 Opening

• The token is extracted for the user using the UID.

• The token is sent over to the PKS for decryption. After decryption with the private

key, the daemon returns the blinded PFK.

• The blinded PFK is decrypted by using FSK from super block to retrieve the PFK.

• The PFK is stored in the in-memory metadata of the file.

3.2.3.3 Read/Write

• Symmetric key encryption is performed whenever a block is written back to the disk.

If page cache is to be encrypted, encryption takes place whenever a page write is

committed.

• Symmetric key decryption is performed to provide plaintext data to the application. If

page cache is to be kept in encrypted form, decryption takes place whenever a page is

requested. Otherwise, decryption takes place when a block is read from the disk and

plaintext is stored in the page cache.

3.2.3.4 Changing Permissions

• Providing Access: Access may be provided to a user only by the owner of the file or

users having access to the file. In such a case, when the kernel updates the ACL entry,

17

it requests the PKS to decrypt the user’s token to get the blinded PFK which is then

encrypted by the public key of the new user to create a token. The token is then used

to create a new entry for the named user in ACL of the file.

• Revoking Access: Access may be revoked by simply deleting the ACL entry.

Encrypted Volume

Superblock ACL File
data

Crypto API

PKI

User
Process

libacl

daemon

mkfs

mount

PKS

CERT
STORE

CA CERTS

Figure 3.1: Schematic TransCrypt Architecture

3.2.4 User Space Modules

Two user space modules are used by TransCrypt: (a) The TransCrypt daemon for commu-

nication between the kernel and the user space; and (b) The PKS for providing the private

key operations. The user space functionalities have been split between the daemon and the

PKS as the daemon needs to be present on the system while the PKS may be at a remote

18

location. Further, the PKS is trusted while no such assumption is made about the daemon.

The TransCrypt daemon provides two services.

• Provides the kernel with user certificates

• Forwards kernel’s token decryption requests to the PKS.

The PKS decrypts the token using the private key of the user corresponding to the cert-id

and provides the blinded PFK to the kernel when requested. This operation is conducted

over a secure channel created before each such token decryption request.

Now that we have defined each of the modules of TransCrypt we can outline the complete

TransCrypt architecture. A schematic representation is shown in the Figure 3.1. This figure

is an adaptation from the earlier work [21] and has been augmented to represent the changes

in TransCrypt. The Crypto-API of the kernel is augmented with certificate parsing and vali-

dation routines as outlined in Chapter 4. The user space communication and implementation

of the TransCrypt daemon and PKS is detailed in Chapter 5. Finally, the augmentations in

the GNU/Linux kernel and utilities such as mount, mkfs, libacl is detailed in Chapter 6.

3.3 Security Framework

TransCrypt provides a unique security framework by minimizing the trust on the superuser.

The aim is to avoid all forms of online and offline attacks. Some of the salient security features

and attacks avoided are outline here.

3.3.1 Physical Access to the System

Physical Access to the system does not compromise security in TransCrypt. TransCrypt does

not allow anyone to see any files when a hard disk or a laptop is stolen or someone has access

to a system physically. This is because of the fact even if someone gains access to a session,

without the PKS module to perform key acquisition, he cannot access the files of a user.

A scan of the disk data will provide metadata in plaintext and file data in ciphertext. The

metadata is unable to provide the PFKs without the PKS and using asymmetric cryptography

ensures that even dictionary attacks or brute force are infeasible.

19

3.3.2 Superuser Under Minimal Trust

A user may gain superuser privileges through loopholes or backdoors in softwares using

techniques such as buffer overflow attacks [15]. Without PKS authentication, the superuser

will not be able to read a user’s file. PKS authentication is not possible unless the superuser

is provided access to the file through ACL entries. If the page cache is encrypted, even a

memory screening will be unable to gain access to any plaintext.

We however trust the superuser for booting a non-malicious kernel and loading non-

malicious modules. The user-space daemon runs under superuser privileges is however, not

trusted. A malicious masquerading daemon may launch a denial of service attacks but it

will not be able to gain access to the files as all communication over the PKS is secured

by session keys established between the kernel and PKS. As we discussed in Chapter 2, no

existing filesystem provides this security framework.

3.3.3 Enhanced Security through FSK

FSK provides enhanced security when some user may have been provided access in the past,

but is no longer considered legitimate. Through FSK based blinding, even legitimate users

do not have access to PFKs used to decrypt the files.

It should be noted that FSK just provides blinding and is not required to be very safe

as FSK itself does not encrypt any data. Individual access to FSK will not provide attacker

with any illegitimate access. Therefore, we choose to store the hash of FSK in the superblock

itself and use passphrase to obtain FSK at mount-time.

3.3.4 Concurrent Access by Multiple Users

Though TransCrypt encrypts data at buffer cache layer where context of who requested a

read or write is not available, it does not allow the following attack. A user Alice is reading a

file. At that time a malicious user Marvin tries to open a file. Since we do not authenticate

the PKS, the key acquisition may result in a garbled key being returned by the daemon.

This key is first compared with the key stored in the keyring through the inode context and

only then is the user allowed access. If this step was not performed, Marvin would be able to

20

launch a denial of service attack as future read/write operations of Alice would use incorrect

PFK.

Another attack scenario is when Marvin could open a file and have an incorrect PFK

through a masquerading daemon installed in the inode context. It could then go to sleep and

wait for Alice to open the file. However, since Alice’s key will not match the installed PFK,

the real PFK will not be stored in the inode context. If this comparison was not done, then

Marvin could have gained access to the files after opening the file and then waiting for Alice

to open the same file. However, while this does launch a denial of service attack, it prevents

data theft which is our primary aim.

3.3.5 Secure PKS

We assume that PKS is extremely secure. This is one of the basic assumptions of TransCrypt.

However, by providing secure communication setup with the PKS, we include attacks like

middleman listening on communication channel to the PKS, especially important when the

PKS is a remote authentication server. Even in case of smart cards, this would handle cable

snooping attacks.

While we understand that TransCrypt is still susceptible to sophisticated attacks by the

superuser where online access to the memory may leak certain data, we aim TransCrypt for

an enterprise deployment where such online attacks by the superuser is considered infeasible

or unexpected. However, it completely protects against malicious users and illegitimate

physical access. There are other denial of service attacks identified by us like overwriting

user certificates, daemon masquerading etc., but we decided to ignore such denial of service

attacks in favour of simple design and improved performance.

21

Chapter 4

Kernel Crypto API

This chapter focuses on the augmentation of kernel crypto API. We summarize the crypto

API additions made in the previous work [21], [4] and outline the augmentations made by us.

While the kernel crypto API additions are essentially designed to serve the requirements of

TransCrypt, the implementations are towards developing a generic API. However, omission

of certain features from this generic API are either due to the lack of their necessity for

TransCrypt or for the sake of a simplistic implementation. We also talk about the keyring

infrastructure used by our implementation.

4.1 TransCrypt’s Cryptographic Requirements in the Kernel

While several standard user space libraries exist for both symmetric and asymmetric crypto-

graphic operations in the user space [25, 12], the kernel cryptographic functionality has so far

been restricted to symmetric key operations [6]. TransCrypt requires support for following

cryptographic functionalities.

1. Symmetric Key Operations. These operations are already implemented in the ker-

nel.In TransCrypt these operations are for blinding, data block encryption/decryption,

securing communication with the PKS, extracting FSK from super block.

2. Public Key Operations. TransCrypt requires encryption with public keys for token

creation and establishing secure session establishment with the PKS. We also need

compatibility with PKCS#1 [19] standards while creating secure cipher text.

22

3. Certificate Parsing and Verification. As public keys are stored in the user space,

there authenticity is verified in the kernel by using certificate chains signed by trusted

root CAs. We therefore need certificate parsing and verification routines in the kernel.

The earlier works [21, 4], had added RSA encryption and decryption services for a fixed

modulus size 1024. The implementation [21] took as input a 1024-bit integer A and created

a cipher text C by doing the modular exponentiation.

C = Ae mod n

Here e is the public key while n is the modulus. In our case, n is taken as 1024. However,

the input A is usually smaller than 1024 bits. For our requirement, the plaintext is usually

the symmetric keys of length 128 bits. When dealing with input strings smaller than the

modulus size in RSA, PKCS standards [19] lay out specific padding schemes which have now

been incorporated in the asymmetric crypto API of the kernel. The private key based decrypt,

sign and verify functions have similarly been implemented as outlined PKCS#1 standards.

These functions are henceforth referred to as RSAEP, RSADP, RSASP1 and RSAVP1 as stated

in the PKCS#1 standards.

Certificate parsing and verification functionality was added earlier [3] by porting user

space implementation of xyssl [28].

4.2 PKCS#1 compliance

Asymmetric cryptographic operations require implementation of four routines - encrypt with

public key of recipient, decrypt with private key of receiver, sign with private key of signer

and verify with public key of signer. While TransCrypt’s current design requires the public

encrypt and verify operations, our implementation includes all four functions to provide

a generic functionality. We implement two padding schemes as laid out in version 2.1 of

PKCS#1 [19]. We detail the padding schemes implemented by us. The exponentiations

required for each operation is achieved using the implementation of [21, 4] and is therefore

not detailed here.

23

4.2.1 Encryption using Public Key

We implement two padding schemes as outlined in PKCS#1 version 1.5 and the OAEP

padding detailed in version 2.1 of the PKCS#1 document [19]. Once the padding is done we

perform a RSAEP to create the cipher text.

4.2.1.1 Version 1.5 Padding

The plain text block(encoded message), EM corresponding to a message M looks like the

following:

EM = 0x00 ‖ 0x02 ‖ PS ‖ 0x00 ‖ M

Here, PS is a padding string of non-zero octets of length k− message length −3. k is the

length of modulus in octets. In our case, this is equal to 128(or 1024 bits). The function

which performs this padding is called EME PKCS V1 5 ENCODE.

4.2.1.2 OAEP Padding

PKCS#1 version 2.1 lays out a more comprehensive padding scheme called the Optimal

Asymmetric Encryption Padding(OAEP). The scheme is shown in figure 4.1. The figure has

been borrowed from the version 2.1 of PKCS#1 draft [19].

The function is called EME OAEP ENCODE. The implementation of the encoding scheme is

as follows.

• lHash is generated from label L using SHA-1 hash.

• DB is generated by the following concatenation:

DB = lHash ‖ PS ‖ 0x01 ‖ M

Here, M is the message to be encrypted. PS is a zeroed padding string of length

k− (message length)− (2∗hash length)−2. Again, k is the length of modulus in octets.

In our scheme, this translates to 86 − (message length)

• A random seed is generated of length equal to the length of hash.

24

Figure 4.1: Schematic description of OAEP Encoding Scheme. lHash is hash of label L. PS
is padding strong of zero octets. Figure adapted from [19]

• A mask of length equal to DB is generated using the mask generating function. The

mask generating function is outlined later. We call it dbMask. The mask generating

function generates mask using seed as the input. We create masked DB by XORing

DB with the mask generated above.

maskedDB = DB ⊕ dbMask

• We generate a mask of the length of seed with maskedDB as input called the seedMask.

We then create maskedSeed by XORing with seedMask.

maskedSeed = seed ⊕ seedMask

• Finally, the encoded message is created by concatenating the above two and appending

a zero octet in the front.

25

EM = 0x00 ‖ maskedSeed ‖ maskedDB

4.2.2 Decryption using Private Key

The message is first decrypted using RSADP operation. The obtained block is then decoded

to retrieve the message.

4.2.2.1 Decoding Version 1.5 Padding

The function is called EME PKLCS V1 5 DECODE. The steps are the following.

• Assert that the first two octets are 0x00 and 0x02 respectively.

• Ignore octets till a zero octet is found.

• The octets beyond the zero octet constitute the original message.

• Return the decrypted message and its length.

4.2.2.2 Decoding OAEP padding

The function is called EME OAEP DECODE. The decoding function is also provided the label L

used during encoding of the message. The deciding takes place in the following sequence of

operations.

• Generate Hash of the label using SHA-1.

• Assert that the first octet of decrypted message is 0x00.

• The remaining octets are parsed as maskedSeed and maskedDB where maskedSeed is of

length equal to 20 bytes corresponding to SHA-1 hash and the rest form the maskedDB.

• The seedMask is generated by using the mask generating function to produce mask

of length equal to 20 bytes corresponding to the length of SHA-1 hash and input as

maskedDB.

• The seed is retrieved by XORing maskedSeed with seedMask.

seed = maskedSeed ⊕ seedMask

26

• dbMask is retrieved using the mask generating function with seed as input and output

length equal to length of maskedDB

• DB is retrieved by following XOR operation.

DB = maskedDB ⊕ dbMask

• The first 20 bytes of DB is parsed as hash of the label and verified against the hash of

the label provided.

• The zero octets are ignored till we reach an octet with a value 0x01.

• The remaining octets are the original message

• The message and its length are returned.

4.2.3 Signing Using Private Key

The Sign and Verify operation uses modular exponentiation with private and public keys

respectively. The earlier implementation [4] simply performed modular exponentiation for

signing and verifying. We implement the full signing-verification module in this work. The

message to be signed is first encoded using either the scheme outlined in version 1.5 of

PKCS#1 standard or the Probabilistic Signature Scheme(PSS) scheme laid out in version

2.1 of the document.

4.2.3.1 Version 1.5 Encoding

The function takes as input the message and the output length, which is equal to modulus

of RSA. The hash function used is SHA-1. The function is called EMSA PKCS#1 V1 5 ENCODE.

The encoded message, EM has the format

EM = 0x00 ‖ 0x01 ‖ PS ‖ 0x00 ‖ T

The algorithm for hash is encoded with the hash value in the block T as an ASN.1 value

with Distinguished Encoding Rules(DER). The block T is a value of type DigestInfo which

has the digest algorithm followed by the digest octet string. PS is sequence of octet strings

27

with values 0xff and large enough to make the length of the encoded message equal to size

of RSA.

The steps to encode the message just involve generating SHA-1 hash of the message,

creating the DER encoded block and concatenating them. The modular exponentiation is

then performed with private key to produce the signature using the RSASP1 operation.

4.2.3.2 PSS Encoding

The PSS encoding is illustrated by the figure 4.2 from PKCS#1 standard [19]. The function

encoding using this technique is called EMSA PSS ENCODE. The function takes as an argument

the length of salt to be used. The steps used to create the encoded message are the following.

• Calculate length of encoded message as emLen octets. Here modbits is equal to length

in bits of modulus.

emLen = �(modbits − 1)/8�

• Generate SHA-1 hash of the message to be signed. Call it mHash

• A random salt is generated of length as provided in the argument.

• Create M ′ of (length 8 + hash length + salt length) and format:

M ′ = (0x) 00 00 00 00 00 00 00 00 00 ‖ mHash ‖ salt

• Generate Hash of above message M ′. Call it H.

• Generate DB of length (emLen - hash length - 1) octets and format

DB = PS ‖ 0x01 ‖ salt

The padding string is all zero octets and has length emLen - hash length - salt length -

2

• A dbMask is generated using the mask generating function of length equal to length of

DB and input as H.

28

Figure 4.2: Schematic description of PSS encoding scheme. Figure from [19]

• The maskedDB is now created using

maskedDB = DB ⊕ dbMask

• Most significant (8*emLen - emBits) bits of the leftmost octet in maskedDb are set to

zero.

• Finally, encoded message is created by concatenating maskedDB, H and followed by a

special octet of value 0xbc.

29

4.2.4 Verification Using Public Key

The verification arguments take as input the message to be verified and the signature. In

case of PSS encoding it also takes the length of salt used as an argument. The function

returns success or failure. As there are two encoding schemes, they have their corresponding

verification routines involving respective decoding schemes.

For verification, first the modular exponentiation of signature is computed using public

key as outlined in RSAVP1. This produces the encoded message EM. The message whose

signature is to be verified is then converted into another encoded message, EM ′ using the

encoding schemes defined above. The two encoded messages EM and EM ′ are then checked

for consistency. If they are consistent then the verification returns a success else a failure.

4.2.4.1 Verification for Version 1.5 Encoding

For version 1.5 the two encoded messages are verified for consistency by simply comparing

their contents. A total match implies a valid signature else verification returns a failure. The

function is called RSASSA PKCS V1 5 VERIFY

4.2.4.2 Verification for PSS Encoding

For PSS encoding, a simple match does not suffice due to inclusion of random values in its

encoding. The verification routine is therefore done using the function EMSA PSS VERIFY.

The function takes the message whose signature is to be verified and the encoded message

produced by the RSAVP1 operation. It also takes as input the length of salt used.

The EMSA PSS VERIFY function consists of the following steps:

• Calculate emLen, the length of the encoded message. Here, modbits is equal to length

in bits of modulus.

emLen = �(modbits − 1)/8�

• Generate SHA-1 hash of the message M . Call it mHash.

30

• Check that the rightmost octet has value 0xbc

• Parse the encoded message to have maskedDB as the leftmost emLen -hash length - 1

and H as the next hash lengthoctets.

• Check that the leftmost 8 * emLen - emBits bits are zeroes.

• Retrieve maskedDB using the mask generating function as a mask of size equal to length

of DB and input as hash H.

• Calculate DB using

DB = maskedDB ⊕ dbMask

• Leftmost 8 * emLen - emBits of leftmost octet in maskedDb is set to zero.

• Check that the leftmost emLen - hash length - salt length - 2 octets are zero and the

next octet is 0x01

• Retrieve salt as the last salt length octets of DB.

• Create M ′ as

M ′ = (0x) 00 00 00 00 00 00 00 00 00 ‖ mHash ‖ salt

• Generate hash H ′ as the hash of M ′.

• Check that H = H ′. If all the checks above pass, then the signature is returned valid,

else it is returned invalid.

4.2.5 Options used in PKCS#1 Version 2.1 Implementation

PKCS#1 allows options of hash functions as per the implementation requirement. Further

the mask generating functions also have variable features. We use SHA-1 hash built in

the kernel crypto API for all hash generation. The mask generating function used is the

recommended mask generating function as outlined in PKCS#1 standards. We outline the

mask generating function called MGF1 here.

31

4.2.5.1 Mask Generating Function

The function takes an input string, the mgfSeed and length of generated mask as argument.

The mask generating function also creates hash values. We again use SHA-1 hash for our

purposes. The algorithm used is the following.

• Initialize a empty octet string T of length T len such that

T len = �(masklength)/(hashlength)� × (hashlength)

• For counter = 0 to T len/(hash length)

– Convert integer counter to base 256, and create a 4 octet string C

– Generate hash of mgfSeed ‖ C and concatenate it to the octet string T

• Return leading mask length octets of T.

4.3 Crypto API

The asymmetric functionalities added have then been augmented to be made usable with the

current symmetric crypto API [17]. We summarize some key point here.

1. We introduce asymmetric_tfm similar to symmetric_tfm in the kernel.

2. asymmetric_tfm contains the following functions in addition to other structures to

define options used and to store public/private keys.

• ast_setprivkey/ast_setpubkey: To set public and private keys.

• ast_encrypt/ast_decrypt: Encryption and Decryption routines

• ast_sign/ast_verify: Signing and verification routines.

3. The following publicly exported mechanisms are added:

• crypto_alloc_asymmetric()/crypto_free_asymmetric()

• crypto_asymmetric_setprivkey()/crypto_asymmetric_setpubkey()

• crypto_asymmetric_encrypt()/crypto_asymmetric_decrypt()

32

• crypto_asymmetric_sign()/crypto_asymmetric_verify()

While the latter three correspond to the three functions defined above the first is used

to allocate/free cryptographic transforms for asymmetric operations.

4.4 Keyring Infrastructure

A keyring infrastructure is present in the kernel to help user space utilities to maintain keys

inside the kernel. We adapt this infrastructure to maintain keys of different files and different

users in the kernel.

The kernel provides several keyrings with variable permission sets. These are thread

specific keyrings, process specific keyrings, user specific keyrings and session specific keyrings.

Once a reference to a keyring is obtained one may add or update keys in it using the function

key create or update. The function takes keyring reference as an argument in addition to

a key payload and key descriptor. The key descriptor is a string value used to index the key.

The same descriptor is later used to retrieve the key by calling lookup user key. In using

the keyring infrastructure one key decision was what keyring to use and another what should

be used to index the keys in the keyring.

We add keys during open/creat system call while keyrings are retrieved at time of com-

mitting buffers to be written or while reading it from the disk. However, the read/write

operations are asynchronous to the read/write system calls. This means that we do not

have any context to the process which initiated the read or write. We, therefore need to use

a keyring which maintains state over multiple users. Also, any process specific state may not

be used for indexing the keys.

We use the session keyring which serves our purpose and use the string equivalent of

inode pointer values to index our keys in the keyrings. Specific details of where the keys are

updated, searched are discussed in chapter 6.

33

Chapter 5

Daemon and Private Key Store

Private Key Store(PKS) is the entity which stores the private keys of users. The PKS maybe

per-user as in the case of smart cards or per-group as in the case of secure authentication

servers. The kernel communicates with the PKS for decryption of tokens into Blinded PFKs.

The communication with the PKS is done over a secure channel. This chapter outlines the

various possible options for a PKS, the communication protocol and details of implementa-

tion.

5.1 PKS Options

The module which may act as the PKS is governed by the services that it needs to provide

and limits imposed on it. The limitations are governed by security requirements and a model

of implementation to ensure usage of a wide variety of entities as PKS.

5.1.1 Services Offered by the PKS

The PKS shall provide the following services to the kernel.

1. Session Establishment. The PKS should be able to establish a session as per the

communication protocol laid out later. The session key(SK) once established needs to

be remembered by the PKS for the ensuing key acquisition phase.

2. Key Acquisition. The PKS is required to decrypt the given token using the private key

of the user. The decrypted token(the blinded PFK) is then sent over to the kernel,

encrypted with SK.

34

The above two services require that the PKS be capable of performing asymmetric and

symmetric cryptographic operations. It also needs to maintain state parameters like the

session key, once a key acquisition is initiated. This will require some memory at the PKS

where the session key is stored by the PKS while the key acquisition is taking place. It also

needs to have non-volatile memory where the private key of the user is stored securely.

5.1.2 PKS Limitations

The choice and implementation of PKS is limited by certain properties of the communication.

1. As the PKS stores the private keys of user, it should be a reliable storage. Compromise

of this storage shall imply the compromise of the TransCrypt filesystem.

2. While TransCrypt aims at different forms of PKS, it is imposed that PKS is able to

deal with one session at a time, in order to make PKS compatible with per-user security

stores like smart cards. For non-smart cards, it must be one session per user to avoid

reflection attacks.

While the first limitation is a hard requirement for security, the second is a design decision

that aims to provide a generic interface for PKS and to mitigate reflection attacks. Any

batching of requests or attempts at parallelization needs to be implemented by the conduit

daemon instead of PKS itself. This is discussed in further details later in this chapter.

5.1.3 Candidates for PKS

The PKS may be implemented a variety of schemes including the following.

1. Smart Cards. A smart card based PKS will have a smart card reader attached to

the user system. The private key should never leave the smart card, which requires the

smart card to provide cryptographic operations including session key establishment.

2. Authentication Servers. For large organizations, a secure server may be used to

store the private keys of all users. It is recommended that such a server be dedicated

one, with no open ports except the one listening for key acquisition requests.

35

3. Trusted Platform Module(TPM). TPM provides secure decryption in a hardware

module. Together with a secure driver, TPM may also be used as PKS.

4. E-token. These are devices that provide functionality similar to smart cards.

While there are several other candidates for PKS, for example based on biometric identifi-

cation, the schemes described above and those similar to these are the focus of the current

implementation.

5.2 TransCrypt Daemon

Before we discuss the communication protocol for the PKS, we outline another entity of

TransCrypt architecture, the TransCrypt Daemon. The TransCrypt daemon is a non-trusted

entity, which facilitates communication between kernel and the PKS. It acts as a conduit for

transfer of packets between the kernel and the PKS.

The daemon also has the additional responsibility of providing the kernel with latest user

certificates from the user space certificate store. The certificates are indexed by user ids and

a certificate id is returned along with the certificate.

The daemon communicates with the kernel over a netlink socket [20]. All packets other

than the certificate acquisition packets are forwarded to the PKS by the daemon. For certifi-

cate acquisition requests, the daemon reads the certificate files, and returns it to the kernel.

The daemon is also responsible for finding a route to the PKS which may be over some other

conduit daemons. The route is decided by the uid and cert-id.

While we do not impose any security critical assumptions on the daemon, a masquerading

daemon will be able to launch a denial of service attacks as discussed in section 3.3.

5.3 Communication Protocol

The kernel may request one of the following operations to be serviced by either the daemon

or the PKS through the daemon.

1. Certificate Acquisition. The kernel requests the certificate of a certain user. The

request is serviced by the daemon. The daemon looks for the latest certificate in

36

the certificate store, and returns it to the kernel along with the certificate-id. This

communication takes place over unsecure connection. The certificate is acquired and

verified by the kernel before extracting and using the public key.

2. Session Establishment. The kernel provides a session key which will be used by the

kernel for secure key acquisition requests. The session key is encrypted using the public

key of the user, hence retrievable only by a valid PKS. The session key is valid till the

kernel kills a session or when the session is lost by the PKS because an alternate session

is established, possibly by another TransCrypt file system.

3. Key Acquisition. The kernel provides the token (i.e. blinded PFK encrypted with

the user’s public key). The communication is secured using the session key established

during a previous session establishment. The PKS looks up the user’s private key,

decrypts the token, and returns the blinded PFK encrypted with the session key. It

may return an error packet indicating that the session has been lost by the PKS.

4. Session Nullification. The kernel requests nullification of an established session. The

request is forwarded to the PKS. The session key is no longer usable after this, and any

subsequent Key Acquisition request requires a preceding Session Establishment request.

A session automatically expires when the user removes his PKS or kernel discontinues

the session key even without informing the PKS or when another kernel may contact

the same PKS.

5.3.1 Communication Interfaces

On booting, the kernel creates TCPT MAX FREE number of netlink sockets registered with

the same number of NETLINK TRANSCRYPT protocols. The daemon, which is started

through the inittab, on startup creates TCPT MAX FREE number of threads and starts

listening on each of these sockets. This provides TCPT MAX FREE number of possible

parallel communications. These multiple netlink sockets enables multiple open requests to

be processed, avoiding the need to wait for an ongoing key acquisition or certificate acquisition

to finish. The number of TCPT MAX FREE in the current implementation has been fixed

37

to 4. The need for parallel communication has been further addressed in a more efficient

manner in [26].

Each daemon thread further binds itself to a IP socket with the PKS. The PKS may have

another conduit daemon or driver which communicates with the PKS. This conduit daemon

opens an IP socket and listens on it for a request from the daemon and transfers all requests

to the PKS. There are several enhancements to the basic protocol described here, which are

described in detail at the end of this chapter.

5.3.2 Packet Headers

Each packet sent and received by the kernel is pre-pended with the TransCrypt Header. The

format of the header is shown in figure 5.1. The payload may be encrypted with the session

key if the connection is secure. The header is never encrypted. The type field specifies what

kind of request is being sought by the kernel. The length specifies the length of the packet

including the header length. The identifier field is used to maintain sessions, and indicates

who is supposed to receive the reply packet inside the kernel. A response to a packet is

expected to have the same identifier. To elucidate further, suppose at a point in time, two

threads inside the kernel are performing open corresponding to which two key acquisitions

have been initiated. The identifier field is used to determine which decrypted token goes to

which thread. Currently, the identifier field is indexed by the pid of the calling thread inside

the kernel. Therefore, before sending a request, the kernel fills up the identifier field with the

pid of the calling process. Now, when the blinded PFK is received, its identifier is checked

against the thread pid. Also, the identifier is used at the PKS to identify which session key

needs to be used. The uid and cert-id field is used to identify which PKS is to be contacted

by the daemon.The uid is the user-id of the user for which the request is made by the kernel.

As each user may have multiple certificates which maybe located in different PKS, the cert-id

field is used to match the correct PKS.

5.3.3 Packet - Structure and Handling

Corresponding to each of the service requests stated above, the kernel sends to the daemon

the following packets. While the first is meant for the daemon, the other three are meant for

38

2 bytes 2 bytes 4 bytes 4 bytes 4 bytes

Figure 5.1: TransCrypt Header

the PKS. The last two packets are encrypted using the session key.

1. TCPT PKT GET CERT. Certificate acquisition request

2. TCPT PKT EST SESS. Session establishment Request

3. TCPT PKT KEY ACQ. Key acquisition request

4. TCPT PKT KILL SESS. Kill Session Request.

The following response packets are sent to the kernel in request to the above packets.

While the first is sent by the daemon, the other two are sent by the PKS and are encrypted

using the session key.

1. TCPT PKT REPLY CERT. Certificate request response.

2. TCPT PKT KEY RESP. Blinded PFK from the token.

3. TCPT PKT KILL RESP. Confirmation of session invalidation.

In addition we also define a TCPT PKT ERROR which is sent by the PKS, or the

daemon, in case of error in a received packet or during its processing.

During processing of packets at each end, sanity checks are made. If these checks fail at

the kernel, then a corresponding error condition is returned to the calling function. If such

an error is detected at the PKS or at the daemon, corresponding error packet is sent. Also,

when kernel receives an error packet it returns an error to the calling function and sends

a session invalidation request, TCPT PKT KILL SESS. Session invalidation request is not

send in the case of certificate acquisition request. The packets are processed as described

below.

39

1. TCPT PKT GET CERT.

Structure: The payload has no additional data. The uid and cert-id from header is

used to match the correct certificate. When the certificate acquisition is done during

create, the cert-id is fixed by the kernel to 0.

Processing: This packet is processed by the daemon itself. On receiving the packet,

the daemon fetches the certificate after parsing the uid and cert-id field. If the cert-id

field is 0 it fetches the latest certificate. The cert-id field is updated in the response

packet. If the certificate is not available, the corresponding error packet is constructed

and returned.

Figure 5.2: TCPT PKT REPLY CERT Packets

2. TCPT PKT REPLY CERT.

Structure: The payload has the structure shown in figure 5.2. The certificate is the

appended as a char buffer.The cert-id field indicates which certificate of the user is

being sent.

Processing: On receiving the certificate acquisition response, if the request had sought

a particular cert-id(corresponding to an open request), and a mismatching cert-id is

received, error is returned. If the certificate acquisition request was corresponding to

the token creation call, then the cert-id field is updated in the metadata of the file.

The certificate is then parsed and verified by the kernel. The parsed certificate is then

used either to establish session or to create tokens depending on whether the request

corresponds to open or creat system call respectively.

3. TCPT PKT EST SESS.

Structure: The payload has the structure shown in figure 5.3. The uid and cert-id of

the header is used to establish session with the correct PKS. The rest of the payload

40

contains a random session key encrypted using public key of the user.

Processing: The daemon forwards the packet to the PKS. The PKS decrypts the

payload by using its private key as identified by uid and cert-id from the header. If

it does not find a corresponding private key, an error packet is sent when the next

token acquisition is requested. Otherwise, the PKS uses the session key till a session

kill request is received or till another TCPT PKT EST SESS packet is received for the

same session.

UID, CERT-ID

SK=Session Key
UID,CERT-ID = Public Key for (UID, CERT-ID)

Figure 5.3: TCPT PKT EST SESS Packet

4. TCPT PKT KEY ACQ.

Structure: The payload contains the token encrypted using the SK established during

the preceding session establishment request, TCPT PKT EST SESS. The structure is

shown in figure 5.4.

Processing: On receiving the packet, the PKS uses the SK corresponding to the UID

to decrypt and to retrieve the token. The private key identified by the uid and cert-id

from the header is used to decrypt the token and obtain the Blinded PFK. The blinded

PFK is then encrypted using the SK for the session and returned to the kernel in the

TCPT PKT KEY RESP packet.

5. TCPT PKT KEY RESP.

Structure: The payload contains the blinded PFK encrypted using the SK established

between the kernel and the PKS. The structure is shown in figure 5.4.

Processing: On receiving the packet, the kernel uses SK to decrypt the payload and

retrieve the blinded PFK. The blinded PFK is then decrypted using FSK and the PFK

is stored in the in-memory metadata. If there had been another PFK stored due to an

earlier open call, this PFK is only checked for equality.

41

SK=Session Key

Figure 5.4: TCPT PKT KEY ACQ and TCPT PKT KEY RESP Packets

6. TCPT PKT KILL SESS and TCPT PKT KILL RESP

These packets just have the header to indicate end of session. TCPT PKT KILL SESS

has a nonce value encrypted with session key to avoid someone in the middle from killing

a session and launching a Denial-of-Service. On receiving a TCPT PKT KILL SESS,

the PKS invalidates the session key. Even if there is no corresponding SK entry, a

TCPT PKT KILL RESP is sent to confirm there is no stale SK entry.

The overall communication consists of a certificate acquisition, session establishment, key

acquisition followed by session nullification. The steps are summarized in figure 5.5

5.4 Protocol Enhancements

The above protocol describes the current implementation of TransCrypt. However, some

enhancements of the protocols are mentioned herein to make the protocol more efficient.

For the rest of this discussion, we shall denote certificate acquisition packet by CA, Session

Establishment packet by ES, Key Acquisition packet by KA and Session Nullification by SN.

Thus, currently while a token creation requires just a CA, a token decryption requires

CA → ES → KA → SN . However, since we do not expect any response from the server after

ES, ES and KA may be packed in one packet. Further, we propose that the Session Key be

stored for a certain lifetime instead of per key acquisition. The whole token decryption phase

may then be summarized as CA → (ES‖KA)+ → SN . We also maintain a certain lock to

allow batching of multiple KA, so that whenever we are sending off an (ES‖KA) request, any

42

NETLINK
SOCKETS

NETLINK
SOCKETS

AF_INET
SOCKETS

AF_INET
SOCKETS

1. If for creat, store cert-id and
create token

2. For open create SK, encrypt
with public key from cert

TCPT_PKT_GET_CERT

TCPT_PKT_REPLY_CERT

TCPT_PKT_EST_SESS

TCPT_PKT_KEY_ACQ
Forward

Forward

TCPT_PKT_KEY_RESP

TCPT_PKT_KILL_SESS

TCPT_PKT_KILL_RESP

TCPT_PKT_EST_SESS

TCPT_PKT_KEY_ACQ

TCPT_PKT_KEY_RESP

TCPT_PKT_KILL_SESS

TCPT_PKT_KILL_RESP
Invalidate Session
Key

Token to Blinded PFK
conversion

Store session key and
lookup private key

Forward

Forward

Forward

Figure 5.5: Communication Protocol between kernel, daemon and PKS

further KA requests for the same UID, may be batched together.

The final protocol can then be expressed by the following grammar. Here, ‘*’ implies 0

or more occurrences and ‘+’ implies one or more occurences.

CA → (ES‖KA∗) → (KA+)∗ → SN

Thus, some examples of valid protocol messages are

• CA → ES → KA → SN

• CA → (ES‖KA) → SN

• CA → (ES‖KA‖KA) → SN

• CA → (ES‖KA‖KA) → KA → SN

• CA → (ES‖KA‖KA) → (KA‖KA) → SN

• CA → (ES‖KA‖KA) → (KA‖KA) → KA → SN

43

1 byte 1 byte

Figure 5.6: Unified Key Acquisition Packet, TCPT PKT ES KA and unified reply packet,
TCPT PKT RESP KA

The current implementation supports only the first sequence above. In light of these

enhancements, TCPT PKT EST SESS and TCPT PKT KEY ACQ packets. The structure

of the unified packet is shown in figure 5.6. We call this packet TCPT PKT ES KA. The

payload is read as per the values of ES present and number of KA’s in the packet. If ES is

present, it should be at the beginning of the packet. It is then followed by each KA payload.

The ES payload and KA payload is similar as the payloads of TCPT PKT EST SESS and

TCPT PKT KEY ACQ packets respectively. In case of TCPT PKT KEY ACQ each KA

will be preceded by its own identifier to match it to the correct kernel thread. ES present

being set to 1 and number of KA set to zero is similar TCPT PKT EST SESS. Similarly, ES

present being set to zero and number of KA being one is same as TCPT PKT KEY ACQ.

Similarly, replies may be batched together for the same UID. The structure of the packet

is shown in figure 5.6. The payload is the set of Blinded PFKs, appended with the identifiers

to match them with the correct kernel thread. The entire payload is encrypted using the

Session Key, SK.

44

Chapter 6

Putting Things Together

Our system has been built for GNU/Linux kernel version 2.6.20. WE have carried out certain

changes in the kernel as outlined earlier. We also outline the changes implemented in the

user space library for ACL manipulation libacl and the mkfs utility. The changes in libacl

have been carried out by Mohan Dhawan [7].

6.1 ACL Based Changes

As stated in Chapter 3, we use the Access Control Lists (ACLs) to store the cryptographic

metadata for TransCrypt. The current implementation of TransCrypt modifies the ext3

filesystem to work as a TransCrypt volume. The ACL data structure is therefore augmented

for an ext3 volume to include, two additional fields called e certid and e token for each named

user. The e certid stores the certificate number which was used to create the token for the

user, and e token stores the actual cryptographic metadata.

As ACL entries may also be changed by user space utilities through setfacl and chacl

commands. The user space library, libacl used has been updated by [7] for this purpose.

ACLs are implemented inside the kernel as Extended Attributes (EAs). libacl makes system

calls setxattr which takes a predefined structure as input. The changes made in libacl ensure

that the structures passed have the modified ACL data structure.

The following changes are carried out in the setxattr system call to support the modified

ACL behaviour and structure.

• If a new ACL is being created, it implies that the file has no cryptographic metadata.

45

The call shall then take the following path.

– The kernel generates a random PFK

– The PFK is blinded by using the FSK in the in-core copy of the super block

– For each named user, the kernel acquires the user certificate from the user space

and verifies it.

– If verification succeeds, the public key from the certificate is used to encrypt the

PFK to create tokens for each user.

– The cert-id as returned by the user space daemon, and the token are updated in

each ACL entry.

• If the ACL already exists, then the PFK has to be first extracted from the ACL entry

of the owner. The following sequence of action is performed in this case.

– If no new user is being granted access, the kernel just updates the permissions.

– If there is a new user being added, the kernel sends the token to the PKS to extract

the blinded PFK.

– For each new user being added, a token is created using blinded PFK and a new

ACL entry is created.

6.2 Changes in the Superblock

The superblock must provide mechanism to acquire FSK to be used for blinding and un-

blinding of PFKs during various filesystem operations. In addition, it contains information

regarding the algorithms to be used for encryption and blinding among other details. Cur-

rently, the filesystem superblock has the following additional TransCrypt specific parameters.

• TransCrypt flag. Used to test whether the filesystem is TransCrypt enabled

• Symmetric Key algorithm used for PFKs, pfalgo. This contains a string specifying

the algorithm, the chaining method and the key size, for example “aes-128-cb” denotes

AES encryption algorithm with key size 128 bits and using cipher-block chaining(CBC)

mode.

46

• Symmetric Key algorithm used for FSK, fsalgo. This has the same format as the pfalgo.

• IV generation method used, ivmode. Valid values are zero at present. Other intended

values are essiv to be provided in future.

• Hash of the FSK. We use SHA-1 hash algorithm to compute the hash of FSK.

6.2.1 Utility for Filesystem Creation

As the current TransCrypt is an extension of ext3 filesystem, we change the e2fsprogs user

space utility to create a TransCrypt enabled filesystem. It takes from the command line the

following options.

• tcpt flag. The “–tcpt” option indicates that filesystem created should be TransCrypt

enabled.

• pfalgo. The option takes the algorithm for encryption/decryption of files. Currently,

only ”aes-128-cbc” is supported. If the option is not specified, pfalgo defaults to “aes-

128-cbc”

• fsalgo. The option takes the algorithm for blinding PFKs. Currently, only “aes-128-

cbc” is supported. If the option is not specified, fsalgo defaults to “aes-128-cbc”.

• ivmode. Currently only zero mode is supported for IV generation, i.e. IVs are zero.

• FSK generation arguments. These maybe either of the two options.

– Passphrase.

– Hash of FSK and salt value. These options are primarily intended for wrapper

program which may take passphrase through other means.

When passphrase is entered, we use the key derivation function PBKDF1 outlined in

PKCS#5 standards [18]. We use the counter value as 1. The sequence used to derive FSK

from passphrase is the following.

• The salt S generated randomly as an 8-octet string.

47

• A new passphrase, P ′ is created by concatenating the salt S to passphrase P. P ′ =

(S‖P).

• Let T0 = SHA1-Hash(P ′‖S).

• FSK is the first 16 bytes(or 128 bits) of T0.

The SHA-1 hash of the FSK and the salt used is stored in the superblock.

6.2.2 Filesystem Mounting Utility

While mounting the filesystem, options are passed which are directly sent to the kernel. These

options are used to determine whether the filesystem is being mounted with TransCrypt

enabled or not. This does not require any changes in the mount utility. The options to be

passed are the Passphrase, ACL enabled option and that the filesystem is being mounted as

a TransCrypt volume.

6.3 Modifications in the Kernel

The modifications in the rest of the kernel essentially deal with reading cryptographic meta-

data, updating the in-memory data structures, and using them to encrypt/decrypt files. We,

therefore discuss the changes under the headings of the file and filesystem specific operations.

6.3.1 Mounting

When a file system is mounted, the tasks required are: (a) to update the in-memory data

structure with FSK and other parameters; (b) To determine whether the file system is Tran-

sCrypt enabled; and (c) Whether it is mounted as an encrypted volume or not. If the

filesystem is being mounted as an encrypted volume, but the TransCrypt flag is not enabled

in the superblock, then an error is flagged. A TransCrypt enabled filesytems may, however,

be mounted as an unencrypted volume. The filesystem should also be mounted with the ACL

option. If the ACL option is not set then the filesystem is considered to be mounted as an

unencrypted volume.

48

The flags ensure that no TransCrypt operation take place if the filesystem is not a Tran-

sCrypt volume or if it is mounted unencrypted.

If the filesystem is TransCrypt enabled and is mounted as an encrypted volume, then the

FSK is extracted from the passphrase from command line and salt from superblock by the

same sequence as in section 6.2.1. The hash of FSK is then verified against the hash in the

superblock to verify that FSK has not been tampered with. This prevents denial of service

attacks that may be launched very easily. If the verification succeeds, the FSK is updated in

the in-memory superblock. Also, information regarding algorithms, IV generation method is

updated in the in-memory superblock after reading it from disk.

6.3.2 File Creation

When a file is being created, the following sequence of steps are carried out after the legacy

permission checks have been performed while creating the ACL.

• A random PFK is generated.

• The PFK is blinded using the FSK from the in-memory superblock data structure.

• The named users and their permissions is borrowed from the default ACL of the direc-

tory in which the file is being created.

• For each named user ACL entry in the default ACL, tokens are generated as following.

– Certificate for each named user is acquired by contacting the daemon.

– The certificate is verified for correctness, and public key extracted.

– Tokens are created for each user by encrypting the blinded PFK using the public

key.

• The token and cert-id used are entered into each ACL entry.

• Since a creat system call is also considered as an open system call, the PFK is entered

into the kernel keyring.

49

6.3.3 Opening a File

Opening a file requires extracting the token from cryptographic metadata, and extracting

PFK from it. After legacy permission checks, the following sequence of steps are taken.

• The token is extracted from the user’s ACL entry.

• The token is sent to the PKS and blinded PFK is obtained. The cert id from the ACL

is used to indicate which private key should be used by the PKS.

• The PFK is retrieved by unblinding using the FSK.

• If the file has already been opened by some other user the PFK retrieved is compared

to the PFK stored in the kernel keyring. If a match is found access is granted, else

access is denied

• If the file is not open, the PFK is entered into the keyring.

6.3.4 Reading/Writing a File

When a read/write is being committed, if the filesystem is TransCrypt enabled and is mounted

as a TransCrypt enabled partition, the keyring is searched for a corresponding PFK for the

inode. The PFK is then used to encrypt/decrypt blocks using the algorithms specified in the

6.4 Using TransCrypt

6.4.1 Setting Up

Setting up a system for TransCrypt requires setting up the right kernel image and updating

user space utilities.

1. Kernel image. The TransCrypt kernel should be compiled with TransCrypt option on

while kernel is being configured. This will also enable several cryptographic libraries,

RSA crypto API, X509 module and libraries used by them. The kernel should then be

compiled in the usual way and setup for being run at boot.

50

2. Update libacl, mkfs. The libacl and mkfs that comes with TransCrypt should be

compiled and installed to be used instead of the corresponding utilities present in the

kernel.

3. Setting up daemon and PKS. The daemon should be compiled and setup for running

from /etc/inittab with the respawn flag. The authserver may be setup either on the

same system or a remote system. The corresponding IP addressed should be setup in

the configuration of daemon and PKS.

6.4.2 Creating a TransCrypt Partition and Mounting

After creating a partition for TransCrypt through any partition utility like fdisk, the parti-

tion should be formatted by using TransCrypt’s mkfs utility. The partition should then be

mounted as with encrypt flag switched on and ACL enabled. For the first time, the ACL

entries of the root of the TransCrypt should be setup, by using the setfacl command.

mkfs -t ext3 --tcpt --fsalgo=aes-128-cbc --pfalgo=aes-cbc-128 \

--ivmode=zero --pass=<Pass-phrase> <device>

mount -o acl,tcpt,pass=<Pass-phrase> <device> <mount directory>

setfacl -d -m <ACL entry> <mount directory>

setfacl -m <ACL entry> <mount directory>

The TransCrypt partition is now setup for usage. It may be mounted as above in any

directory as required. During the setfacl, it should be ensured that both the daemon and

PKS are up and running.

6.4.3 File Lifecycle

In future, the filesystem should always be mounted with the above options if it is to be used

as an encrypted volume. Also, the daemon and PKS should be running. If all of these are

setup, then files may be transparently opened, read and written without any other action

from the user. It should be noted that only installation and setup of TransCrypt requires

a few additional actions by the user, while the actual file system operation has been kept

totally transparent from a usage point of view.

51

Chapter 7

Future Work and Conclusions

7.1 Future Work

TransCrypt is currently at an advanced implementation stage. Some future goals of the

project are enlisted.

• Integrity Support. Adding integrity support for files to ascertain if files have been

tampered with or not. The metadata may also be signed to ensure that user tokens

have not been changed.

• Data Recovery Agent. For TransCrypt to be enterprise deployable, it should provide

recovery agent. The design of the recovery agent has partially been outlined in [21]

• Backup Support. TransCrypt, though implemented over ext3 filesystem, does not

handle journaling modes. Investigating and designing backup and recovery is another

goal for an enterprise deployable encrypting filesystem

• Smart Card based PKS. While TransCrypt has from its inception talked about

smart card based key acquisition. Smart Card based PKS is a very important future

work.

• Group Support. TransCrypt’s design has no provision of Groups, an essential and

useful feature of GNU/Linux and has wide ranging usage in enterprises. Group support

addition should be done to TransCrypt keeping in view the issues of scalability while

still maintaining the features of security, transparency and flexibility.

52

• Integration with Trusted Platform Module. The recent advent of Trusted Plat-

form Module (TPM) should be incorporated in TransCrypt. These may be used to

avert attacks like malicious kernel image or modules being loaded.

7.2 Conclusions

In this work, we have presented an enhanced architecture of TransCrypt, providing a com-

prehensive key management scheme. TransCrypt walks over the fine line between usability

and security. The design is an attempt to provide flexibility, transparency with a height-

ened security paradigm. We identify certain attacks, notably daemon masquerading which

TransCrypt is susceptible to. These attacks are of denial of service nature as opposed to

attacks which may lead to data theft. Attacks leading to data theft is only possible through

sophisticated techniques like changing the kernel image, screening the whole memory. We

do not consider these attacks a threat for our aim which is to provide an enterprise class

encrypting filesystem.

The major contribution of this work is implementation of a full file and filesystem lifecy-

cle. It also presents implementation of user space utilities to support TransCrypt operations.

Another contribution is cryptographic additions in the kernel which were needed for Tran-

sCrypt. However, these additions have been aimed at providing a common asymmetric API

and public key infrastructure in the kernel space.

53

Bibliography

[1] Mick Bauer. Paranoid penguin: Bestcrypt: cross-platform filesystem encryption. Linux

J., 2002(98):9, 2002.

[2] Matt Blaze. A cryptographic file system for UNIX. In ACM Conference on Computer

and Communications Security, pages 9–16, 1993.

[3] V Bhanu Chandra. PKI for transcrypt. Technical report, Indian Institute of Technology

Kanpur, Kanpur, 2006.

[4] V Bhanu Chandra. Transparent encrypted filesystem. Technical Report, Indian Institute

of Technology Kanpur, Kanpur, 2006.

[5] Microsoft Corporation. Encrypting file system for windows 2000. Technical report,

www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp, 1999.

[6] CryptoAPI. The GNU/Linux CryptoAPI, 2003. http://www.kernel.org.

[7] Mohan Dhawan. libacl for transcrypt. http://www.security.iitk.ac.in/home/transcrypt.

[8] dm crypt. A device-mapper crypto target for linux. http://www.saout.de/misc/dm-

crypt/.

[9] Andreas Grünbacher. POSIX access control lists on linux. In USENIX Annual Technical

Conference, FREENIX Track, pages 259–272, 2003.

[10] Mike Halcrow. ecryptfs: a stacked cryptographic filesystem. Linux J., 2007(156):2, 2007.

[11] Ralf Hlzer. Cryptoloop. http://www.tldp.org/HOWTO/Cryptoloop-HOWTO/, 2004.

[12] LibTomCrypt. http://libtom.org/.

54

[13] Ermelindo Mauriello. Tcfs. Linux J., 1997(40es):3, 1997.

[14] Andrew D. McDonald and Markus G. Kuhn. Stegfs: A steganographic file system for

linux. In Information Hiding, pages 462–477, 1999.

[15] Aleph One, Elias Levy, and Phrack Magazine. Smashing the stack for fun and profit. 8

Nov 1996, issue 49 article 14.

[16] R. Power. Computer crime and security survey. Computer Security Institute, VIII(1):1-

24. www.gocsi.com/press/20020407.html, 2002.

[17] Arun Raghavan. Porting transcrypt from linux kernel 2.6.11 (fedora) to 2.6.20.1 (vanilla).

Technical Report, Indian Institute of Technology Kanpur, Kanpur, 2007.

[18] RSA Data Security, Inc. PKCS #5: Password-Based Encryption Standard, June 1991.

[19] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard, June 2002.

[20] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux netlink as an ip services

protocol. Network Working Group, RFC3549, http://www.ietf.org/rfc/rfc3549.txt.

[21] Satyam Sharma. Transcrypt: Design of a secure and transparent encrypting file system.

M. Tech Thesis, Indian Institute of Technology Kanpur, Kanpur, 2006.

[22] Satyam Sharma, Rajat Moona, and Dheeraj Sanghi. Transcrypt: A secure and trans-

parent encrypting file system for enterprises. In Proceedings of the 8th International

Symposium on Systems and Information Security, SSI 2006, Sao Paulo, Brazil, Novem-

ber 2006.

[23] Deeptanshu Shukla. A daemon for secure smart card support in the encrypted file

system transcrypt. B Tech Project Report, Indian Institute of Technology Kanpur,

Kanpur, 2007.

[24] Varun Suresh, Shibin.K, Anoop.S, and Vivek.K.P. Magikfs. the steganographic filesystem

on linux. http://magikfs.sourceforge.net/index.html.

[25] OpenSSL: The Open Source toolkit for SSL/TLS. http://www.openssl.org/.

55

[26] Sainath S Vellal. Design and implementation of a kernel-userspace communication frame-

work for transcrypt. Technical report, www.security.iitk.ac.in/home/transcrypt, Indian

Institute of Technology Kanpur, Kanpur, 2007.

[27] C. Wright, M. Martino, and E. Zadok. Ncryptfs: A secure and convenient cryptographic

file system, 2003.

[28] XySSL. http://www.xyssl.com.

[29] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A stackable vnode level encryption

file system, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

