A Short History of "PRIMES is in P"

Manindra Agrawal

IIT Kanpur

ICALP 2006

Overview

(1) August 1998: A Question
(2) August 1998 - January 1999: Primality Testing as Identity Testing
(3) February 1999: A Conjecture
(4) March 1999 - July 2000: Failed Attempts at Proof
(5) August 2000 - December 2002: Experiments
(6) January 2002 - July 2002: Another Attempt at Proof

Outline

(1) August 1998: A Question

(2) August 1998 - January 1999: Primality Testing as Identity Testing
(3) February 1999: A Conjecture
© March 1999 - July 2000: Failed Attempts at Proof
© August 2000 - December 2002: Experiments
(C) January 2002 - July 2002: Another Attempt at Proof

An Intriguing Identity Test

- Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a degree n polynomial over \mathbb{Q} given as an arithmetic circuit.
- Chen and Kao (1997) showed that there exist, easily computable, irrational numbers $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
P=0 \Leftrightarrow P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0
$$

- They also showed that
- This yields a novel time-error tradeoff.

An Intriguing Identity Test

- Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a degree n polynomial over \mathbb{Q} given as an arithmetic circuit.
- Chen and Kao (1997) showed that there exist, easily computable, irrational numbers $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
P=0 \Leftrightarrow P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0
$$

- They also showed that
- A random rational approximation to α_{i} 's works with high probability.
- This yields a novel time-error tradeoff.

An Intriguing Identity Test

- Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a degree n polynomial over \mathbb{Q} given as an arithmetic circuit.
- Chen and Kao (1997) showed that there exist, easily computable, irrational numbers $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
P=0 \Leftrightarrow P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0
$$

- They also showed that
- A random rational approximation to α_{i} 's works with high probability.
- The error can be reduced by increasing the quality of approximation without increasing the number of random bits.

An Intriguing Identity Test

- Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a degree n polynomial over \mathbb{Q} given as an arithmetic circuit.
- Chen and Kao (1997) showed that there exist, easily computable, irrational numbers $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
P=0 \Leftrightarrow P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0
$$

- They also showed that
- A random rational approximation to α_{i} 's works with high probability.
- The error can be reduced by increasing the quality of approximation without increasing the number of random bits.
- This yields a novel time-error tradeoff.

An Intriguing Identity Test

Somenath Biswas: Professor at IITK

- Lewis and Vadhan (1998) designed a similar test for identities over finite fields.
- Instead of irrational numbers, they used square roots of irreducible polynomials.

A Question

Question. Are there other problems that admit similar time-error tradeoff?

In particular, what about primality testing?

A Question

Question. Are there other problems that admit similar time-error tradeoff?

In particular, what about primality testing?

Outline

(1) August 1998: A Question
(2) August 1998 - January 1999: Primality Testing as Identity Testing
(3) February 1999: A Conjecture
(4) March 1999 - July 2000: Failed Attempts at Proof
(5) August 2000 - December 2002: Experiments
(6) January 2002 - July 2002: Another Attempt at Proof

From Primality Testing to Identity Testing

A reduction of primality testing to identity testing:

n is prime

$$
\begin{gathered}
\text { iff } \\
(x+1)^{n}=x^{n}+1(\bmod n) .
\end{gathered}
$$

Unfortunately, the polynomial above has exponential degree and so Lewis-Vadhan algorithm does not work.

From Primality Testing to Identity Testing

A reduction of primality testing to identity testing:
n is prime

$$
\begin{gathered}
\text { iff } \\
(x+1)^{n}=x^{n}+1(\bmod n) .
\end{gathered}
$$

Unfortunately, the polynomial above has exponential degree and so Lewis-Vadhan algorithm does not work.

A New Identity Testing Algorithm

- Let P be a univariate, degree d polynomial over finite field F_{q}.
- Let r be a prime such that $\operatorname{ord}_{r}(q)>\log d$.
- Let $R(y)=y^{t}+\sum_{i=0}^{\log d} r_{i} \cdot y^{i}$ with $r_{i} \in_{R}\{0,1\}$.

A New Identity Testing Algorithm

- Let P be a univariate, degree d polynomial over finite field F_{q}.
- Let r be a prime such that $\operatorname{ord}_{r}(q)>\log d$.
- Let $R(y)=y^{t}+\sum_{i=0}^{\log d} r_{i} \cdot y^{i}$ with $r_{i} \in_{R}\{0,1\}$.

A New Identity Testing Algorithm

- Let P be a univariate, degree d polynomial over finite field F_{q}.
- Let r be a prime such that $\operatorname{ord}_{r}(q)>\log d$.
- Let $R(y)=y^{t}+\sum_{i=0}^{\log d} r_{i} \cdot y^{i}$ with $r_{i} \in_{R}\{0,1\}$.

Lemma

If $P(x) \neq 0$ then with probability at most $\frac{1}{t}, P(x)=0\left(\bmod (R(x))^{r}-1\right)$.

Outline

(1) August 1998: A Question
(2) August 1998 - January 1999: Primality Testing as Identity Testing
(3) February 1999: A Conjecture
(1) March 1999 - July 2000: Failed Attempts at Proof
(5) August 2000 - December 2002: Experiments
© January 2002 - July 2002: Another Attempt at Proof

A Conjecture

- Polynomial $y^{r}-1$ proved very useful in reducing randomness.
- Perhaps it can be used to completely derandomize the special identity for primality testing for a small r with $\operatorname{ord}_{r}(n)$ large \ldots
n is prime iff for every $r, 1 \leq r \leq \log n$,

A Conjecture

- Polynomial $y^{r}-1$ proved very useful in reducing randomness.
- Perhaps it can be used to completely derandomize the special identity for primality testing for a small r with $\operatorname{ord}_{r}(n)$ large...

Conjecture. n is prime iff for every $r, 1 \leq r \leq \log n$,

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right) .
$$

Outline

(1) August 1998: A Question
(2) August 1998 - January 1999: Primality Testing as Identity Testing

B February 1999: A Conjecture
(4) March 1999 - July 2000: Failed Attempts at Proof
(3) August 2000 - December 2002: Experiments
© January 2002 - July 2002: Another Attempt at Proof

First Attempt: Using Complex Roots of Unity

- Let $\omega \in \mathbb{C}, \omega=e^{i \frac{2 \pi}{r}}$.
- If $(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)$ then

$$
\left(\omega^{j}+1\right)^{n}=\omega^{j n}+1(\bmod n),
$$

for every $j, 0 \leq j<r$.

- This introduces integer linear dependencies between different powers of ω modulo n.
- Can this be exploited?

First Attempt: Using Complex Roots of Unity

- Let $\omega \in \mathbb{C}, \omega=e^{i \frac{2 \pi}{r}}$.
- If $(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)$ then

$$
\left(\omega^{j}+1\right)^{n}=\omega^{j n}+1(\bmod n)
$$

for every $j, 0 \leq j<r$.

- This introduces integer linear dependencies between different powers u modulo n.
- Can this be exploited?
- Let $\omega \in \mathbb{C}, \omega=e^{i \frac{2 \pi}{r}}$.
- If $(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)$ then

$$
\left(\omega^{j}+1\right)^{n}=\omega^{j n}+1(\bmod n)
$$

for every $j, 0 \leq j<r$.

- This introduces integer linear dependencies between different powers of ω modulo n.
- Can this be exploited?

Second Attempt: Using Derivatives

- Suppose that n is square-free and p is a prime divisor of n.
- Let $m=\frac{n}{p}$.
- If $(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)$ then

$$
(x+1)^{m}=x^{m}+1\left(\bmod p, x^{r}-1\right) .
$$

- Suppose that

- Differentiating both sides, we get

$$
(x+1)^{m-1}=x^{m-1}\left(\bmod p, x^{r}-1\right)
$$

Second Attempt: Using Derivatives

- Suppose that n is square-free and p is a prime divisor of n.
- Let $m=\frac{n}{p}$.
- If $(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)$ then

$$
(x+1)^{m}=x^{m}+1\left(\bmod p, x^{r}-1\right) .
$$

- Suppose that

- Differentiating both sides, we get

$$
(x+1)^{m-1}=x^{m-1}\left(\bmod p, x^{r}-1\right)
$$

Second Attempt: Using Derivatives

- Suppose that n is square-free and p is a prime divisor of n.
- Let $m=\frac{n}{p}$.
- If $(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)$ then

$$
(x+1)^{m}=x^{m}+1\left(\bmod p, x^{r}-1\right)
$$

- Suppose that

$$
(x+1)^{m}=x^{m}+1\left(\bmod p,\left(x^{r}-1\right)^{2}\right)
$$

- Differentiating both sides, we get

Second Attempt: Using Derivatives

- Suppose that n is square-free and p is a prime divisor of n.
- Let $m=\frac{n}{p}$.
- If $(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)$ then

$$
(x+1)^{m}=x^{m}+1\left(\bmod p, x^{r}-1\right) .
$$

- Suppose that

$$
(x+1)^{m}=x^{m}+1\left(\bmod p,\left(x^{r}-1\right)^{2}\right)
$$

- Differentiating both sides, we get

$$
(x+1)^{m-1}=x^{m-1}\left(\bmod p, x^{r}-1\right)
$$

Second Attempt: Using Derivatives

- Since the coefficient of x^{0} and x^{m-1} must be the same modulo $x^{r}-1$, it follows that r divides $m-1$.
- Since $m<n$, one of the first $\log n$ numbers will not divide $m-1$.
- This is precisely what we need!
- Unfortunately, it is not clear how to test if

$$
(x+1)^{m}=x^{m}+1\left(\bmod p,\left(x^{r}-1\right)^{2}\right) .
$$

- Testing

$$
(x+1)^{n}=x^{n}+1\left(\bmod n,\left(x^{r}-1\right)^{2}\right)
$$

only implies

$$
(x+1)^{n}=x^{n}+1\left(\bmod p, x^{r}-1\right)!
$$

Second Attempt: Using Derivatives

- Since the coefficient of x^{0} and x^{m-1} must be the same modulo $x^{r}-1$, it follows that r divides $m-1$.
- Since $m<n$, one of the first $\log n$ numbers will not divide $m-1$.
- This is precisely what we need!
- Unfortunately, it is not clear how to test if

$$
(x+1)^{m}=x^{m}+1\left(\bmod p,\left(x^{r}-1\right)^{2}\right) .
$$

- Testing

$$
(x+1)^{n}=x^{n}+1\left(\bmod n,\left(x^{r}-1\right)^{2}\right)
$$

only implies

$$
(x+1)^{n}=x^{n}+1\left(\bmod p, x^{r}-1\right)!
$$

Second Attempt: Using Derivatives

- Since the coefficient of x^{0} and x^{m-1} must be the same modulo $x^{r}-1$, it follows that r divides $m-1$.
- Since $m<n$, one of the first $\log n$ numbers will not divide $m-1$.
- This is precisely what we need!
- Unfortunately, it is not clear how to test if

$$
(x+1)^{m}=x^{m}+1\left(\bmod p,\left(x^{r}-1\right)^{2}\right) .
$$

- Testing

$$
(x+1)^{n}=x^{n}+1\left(\bmod n,\left(x^{r}-1\right)^{2}\right)
$$

only implies

Second Attempt: Using Derivatives

- Since the coefficient of x^{0} and x^{m-1} must be the same modulo $x^{r}-1$, it follows that r divides $m-1$.
- Since $m<n$, one of the first $\log n$ numbers will not divide $m-1$.
- This is precisely what we need!
- Unfortunately, it is not clear how to test if

$$
(x+1)^{m}=x^{m}+1\left(\bmod p,\left(x^{r}-1\right)^{2}\right)
$$

- Testing

$$
(x+1)^{n}=x^{n}+1\left(\bmod n,\left(x^{r}-1\right)^{2}\right)
$$

only implies

$$
(x+1)^{n}=x^{n}+1\left(\bmod p, x^{r}-1\right)!
$$

Third Attempt: Increasing Moduli Power

- Suppose one can prove that if

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r_{1}}-1\right)
$$

and

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r_{2}}-1\right)
$$

then

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{\operatorname{lcm}\left(r_{1}, r_{2}\right)}-1\right)
$$

- Then, the equation holding for $1<r \leq \log n$ implies that
since $\operatorname{lcm}(1,2, \ldots, \log n)>n$.
- Can one prove the above product property of exponents?

Third Attempt: Increasing Moduli Power

- Suppose one can prove that if

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r_{1}}-1\right)
$$

and

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r_{2}}-1\right)
$$

then

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{\operatorname{lcm}\left(r_{1}, r_{2}\right)}-1\right)
$$

- Then, the equation holding for $1<r \leq \log n$ implies that

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{\operatorname{lcm}(1,2, \ldots, \log n)}-1\right)=x^{n}+1(\bmod n)
$$

since $\operatorname{lcm}(1,2, \ldots, \log n)>n$.

- Can one prove the above product property of exponents?

Third Attempt: Increasing Moduli Power

- Suppose one can prove that if

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r_{1}}-1\right)
$$

and

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r_{2}}-1\right)
$$

then

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{\operatorname{lcm}\left(r_{1}, r_{2}\right)}-1\right)
$$

- Then, the equation holding for $1<r \leq \log n$ implies that

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{\operatorname{lcm}(1,2, \ldots, \log n)}-1\right)=x^{n}+1(\bmod n)
$$

since $\operatorname{Icm}(1,2, \ldots, \log n)>n$.

- Can one prove the above product property of exponents?

Outline

© August 1998: A Question
C2 August 1998 - January 1999: Primality Testing as Identity Testing
(3) February 1999: A Conjecture
© March 1999 - July 2000: Failed Attempts at Proof
(5) August 2000 - December 2002: Experiments
© January 2002 - July 2002: Another Attempt at Proof

Aug'00-Apr'01: Experiments on the Conjecture

Rajat Bhattacharjee: Doing PhD at Stanford

- Rajat Bhattacharjee tested the equation

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)
$$

for all $n \leq 10^{8}$ and $r \leq 100$.

- He found that for composite n, all r 's that satisfy the equation satisfy $n^{2}=1(\bmod r)$.

Aug'00-Apr'01: Experiments on the Conjecture

Rajat Bhattacharjee: Doing PhD at Stanford

- Rajat Bhattacharjee tested the equation

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)
$$

for all $n \leq 10^{8}$ and $r \leq 100$.

- He found that for composite n, all r 's that satisfy the equation satisfy

$$
n^{2}=1(\bmod r)
$$

Aug'01-Dec'01: Experiments on the Conjecture

Neeraj Kayal and Nitin Saxena: Finishing PhD at IITK

- Neeraj Kayal and Nitin Saxena continued with the experiments.
- They went up to $n \leq 10^{10}$ and found the same property.

Aug'01-Dec'01: Experiments on the Conjecture

Neeraj Kayal and Nitin Saxena: Finishing PhD at IITK

- Neeraj Kayal and Nitin Saxena continued with the experiments.
- They went up to $n \leq 10^{10}$ and found the same property.

Outline

(1) August 1998: A Question
(2) August 1998 - January 1999: Primality Testing as Identity Testing
(3) February 1999: A Conjecture
(4) March 1999 - July 2000: Failed Attempts at Proof
(5) August 2000 - December 2002: Experiments
(6) January 2002 - July 2002: Another Attempt at Proof

Jan’02: Studying Exponents Satisfying the Equation

- Let p be a prime divisor of n.
- Let I be the set of numbers m satisfying

$$
(x+1)^{m}=x^{m}+1\left(\bmod p, x^{r}-1\right) .
$$

- Let d be the order of p in F_{r}^{*}.
- Let O be the order of $x+1$ in the group $\left[F_{p}[x] /\left(x^{r}-1\right)\right]^{*}$ Let $m_{1}, m_{2} \in 1$. Then $m_{1}=m_{2}(\bmod r)$ iff $m_{1}=m_{2}(\bmod O)$.

Jan’02: Studying Exponents Satisfying the Equation

- Let p be a prime divisor of n.
- Let $/$ be the set of numbers m satisfying

$$
(x+1)^{m}=x^{m}+1\left(\bmod p, x^{r}-1\right) .
$$

- Let d be the order of p in F_{r}^{*}.
- Let O be the order of $x+1$ in the group $\left[F_{p}[x] /\left(x^{r}-1\right)\right]^{*}$.

Jan’02: Studying Exponents Satisfying the Equation

- Let p be a prime divisor of n.
- Let I be the set of numbers m satisfying

$$
(x+1)^{m}=x^{m}+1\left(\bmod p, x^{r}-1\right) .
$$

- Let d be the order of p in F_{r}^{*}.
- Let O be the order of $x+1$ in the group $\left[F_{p}[x] /\left(x^{r}-1\right)\right]^{*}$.

Lemma

Let $m_{1}, m_{2} \in I$. Then $m_{1}=m_{2}(\bmod r)$ iff $m_{1}=m_{2}(\bmod O)$.

JAn'02: Studying Exponents Satisfying The EQUATION

- So there exist at most r numbers in I modulo O.
- Some of these are 1, p, p^{2}
- If n satisfies the equation, then n, n^{2}, n^{3}, \ldots also belong to l.

Jan’02: Studying Exponents Satisfying the Equation

- So there exist at most r numbers in I modulo O.
- Some of these are $1, p, p^{2}, \ldots, p^{d-1}$.
- If n satisfies the equation, then n, n^{2}, n^{3}, \ldots also belong to $/$.

Jan’02: Studying Exponents Satisfying the Equation

- So there exist at most r numbers in $/$ modulo O.
- Some of these are $1, p, p^{2}, \ldots, p^{d-1}$.
- If n satisfies the equation, then n, n^{2}, n^{3}, \ldots also belong to I.

Feb'02: If Only...

- Suppose that $d=r-1$ for r prime, $r>\log n$.
- And $O>p^{r-2}$
- Now,

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)
$$

implies that

$$
n=p^{j}(\bmod O)
$$

for some $j<r-1$.

- This gives

Feb'02: If Only...

- Suppose that $d=r-1$ for r prime, $r>\log n$.
- And $O>p^{r-2}$.
- Now,

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)
$$

implies that

$$
n=p^{j}(\bmod O)
$$

for some $j<r-1$.

- This gives

Feb'02: If Only...

- Suppose that $d=r-1$ for r prime, $r>\log n$.
- And $O>p^{r-2}$.
- Now,

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)
$$

implies that

$$
n=p^{j}(\bmod O)
$$

for some $j<r-1$.

Feb'02: If Only...

- Suppose that $d=r-1$ for r prime, $r>\log n$.
- And $O>p^{r-2}$.
- Now,

$$
(x+1)^{n}=x^{n}+1\left(\bmod n, x^{r}-1\right)
$$

implies that

$$
n=p^{j}(\bmod O)
$$

for some $j<r-1$.

- This gives

$$
n=p^{j}!
$$

Feb'02: If Only...

- How can one ensure both the properties?
- To make $d=r-1, p$ must be a generator for F_{r}^{*}.
- To make $O>p^{r-2}, p$ must be a generator for F_{r}^{*} and order of $x+1$ in $\left[F_{p}[x] /\left(1+x+\cdots+x^{r-1}\right)\right]^{*}$ must be nearly maximum.

Feb’02: If Only ...

- How can one ensure both the properties?
- To make $d=r-1, p$ must be a generator for F_{r}^{*}.
- Artin's conjecture implies that there are several small r 's for which this is the case.

Feb’02: If Only ...

- How can one ensure both the properties?
- To make $d=r-1, p$ must be a generator for F_{r}^{*}.
- Artin's conjecture implies that there are several small r 's for which this is the case.
- However, proving it appears very difficult.

Feb’02: If Only...

- How can one ensure both the properties?
- To make $d=r-1, p$ must be a generator for F_{r}^{*}.
- Artin's conjecture implies that there are several small r 's for which this is the case.
- However, proving it appears very difficult.
- To make $O>p^{r-2}, p$ must be a generator for F_{r}^{*} and order of $x+1$ in $\left[F_{p}[x] /\left(1+x+\cdots+x^{r-1}\right)\right]^{*}$ must be nearly maximum.
- This is even harder to prove!

Mar'02-Apr'02: How Large d Can One Provably Get?

- Consider primes r with $r-1$ containing a prime factor $q_{r} \geq \sqrt{r}$.
- If q_{r} divides $\operatorname{ord}_{r}(n)$ then q_{r} will divide at least one of $\operatorname{ord}_{r}(p)$ for prime divisors p of n.
- In addition, there are not many r's for which q_{r} does not divide ord $_{r}(n)$.
- Easy estimates on prime densities show that there exists an $r=\log ^{O(1)} n$ and a prime divisor p of n such that $d=\operatorname{ord}_{r}(p) \geq \sqrt{r}$.

Mar'02-Apr'02: How Large d Can One

 Provably Get?- Consider primes r with $r-1$ containing a prime factor $q_{r} \geq \sqrt{r}$.
- If q_{r} divides $\operatorname{ord}_{r}(n)$ then q_{r} will divide at least one of $\operatorname{ord}_{r}(p)$ for prime divisors p of n.
- In addition, there are not many r 's for which q_{r} does not divide $\operatorname{ord}_{r}(n)$.
- Easy estimates on prime densities show that there exists an

Mar'02-Apr'02: How Large d Can One

 Provably Get?- Consider primes r with $r-1$ containing a prime factor $q_{r} \geq \sqrt{r}$.
- If q_{r} divides $\operatorname{ord}_{r}(n)$ then q_{r} will divide at least one of $\operatorname{ord}_{r}(p)$ for prime divisors p of n.
- In addition, there are not many r 's for which q_{r} does not divide $\operatorname{ord}_{r}(n)$.
- Easy estimates on prime densities show that there exists an $r=\log ^{O(1)} n$ and a prime divisor p of n such that $d=\operatorname{ord}_{r}(p) \geq \sqrt{r}$.

May'02: How Large O Can One Provably Get?

- Obtaining any reasonable lower bound on O appears hard.
- It becomes easy if one changes the view slightly:
- A similar equation will now hold for all products of $x+a$'s as well!

May'02: How Large O Can One Provably Get?

- Obtaining any reasonable lower bound on O appears hard.
- It becomes easy if one changes the view slightly:
- Instead of testing the equation only for $x+1$, test it for $x+a$ for several a's.
- A similar equation will now hold for all products of $x+a$'s as well!

May'02: How Large O Can One Provably Get?

- Obtaining any reasonable lower bound on O appears hard.
- It becomes easy if one changes the view slightly:
- Instead of testing the equation only for $x+1$, test it for $x+a$ for several a's.
- A similar equation will now hold for all products of $x+a$'s as well!

May'02: How Large O Can One Provably Get?

- Let $F=F_{p}[x] /(h(x))$ where $h(x)$ is an irreducible factor of $1+x+\cdots+x^{r-1}$.
- Since $\operatorname{ord}_{r}(p)=d$, degree of h equals d.
- All $d-1$ products of $x+$ a's are therefore distinct in F.
- The numbers of these products is at least 2^{d} provided at least d $x+a$'s are used.
- The product group is cyclic in F^{*} and so there is a generator $g(x)$.
- Redefine O to be the order of $g(x)$ instead of $x+1$
- Then, $O \geq 2^{d}$.

May'02: How Large O Can One Provably Get?

- Let $F=F_{p}[x] /(h(x))$ where $h(x)$ is an irreducible factor of $1+x+\cdots+x^{r-1}$.
- Since $\operatorname{ord}_{r}(p)=d$, degree of h equals d.
- All $d-1$ products of $x+$ a's are therefore distinct in F.
- The numbers of these products is at least 2^{d} provided at least d $x+a$'s are used.
- The product group is cyclic in F^{*} and so there is a generator $g(x)$.

May'02: How Large O Can One Provably Get?

- Let $F=F_{p}[x] /(h(x))$ where $h(x)$ is an irreducible factor of $1+x+\cdots+x^{r-1}$.
- Since $\operatorname{ord}_{r}(p)=d$, degree of h equals d.
- All $d-1$ products of $x+$ a's are therefore distinct in F.
- The numbers of these products is at least 2^{d} provided at least d $x+a$'s are used.
- The product group is cyclic in F^{*} and so there is a generator $g(x)$.

May'02: How Large O Can One Provably Get?

- Let $F=F_{p}[x] /(h(x))$ where $h(x)$ is an irreducible factor of $1+x+\cdots+x^{r-1}$.
- Since $\operatorname{ord}_{r}(p)=d$, degree of h equals d.
- All $d-1$ products of $x+$ a's are therefore distinct in F.
- The numbers of these products is at least 2^{d} provided at least d $x+a$'s are used.
- The product group is cyclic in F^{*} and so there is a generator $g(x)$.
- Redefine O to be the order of $g(x)$ instead of $x+1$.
- Then, $O \geq 2^{d}$.

Jun'02: What Now?

- One can get $d \geq \sqrt{r}$ and $O \geq 2^{d} \geq 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
- One type of relationship is $n=p^{j}(\bmod r)$ for some j.
- This holds provided $d=r-1$, and we then need $O>\max \left\{n, p^{\prime}\right\}$ and j can be $r-2$.
- Is there a way to keep the numbers small?

Jun'02: What Now?

- One can get $d \geq \sqrt{r}$ and $O \geq 2^{d} \geq 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
- This translates to a relationship modulo O.
- If the numbers involved are smaller than O, one gets a relationship over integers.
- One type of relationship is $n=p^{j}(\bmod r)$ for some j.
- This holds nrovided $d=r-1$, and we then need $O>\max \left\{n, p^{j}\right\}$ and j can be $r-2$.
- Is there a way to keep the numbers small?

Jun'02: What Now?

- One can get $d \geq \sqrt{r}$ and $O \geq 2^{d} \geq 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
- This translates to a relationship modulo O.
- If the numbers involved are smaller than O, one gets a relationship over integers.
- One type of relationship is $n=p^{\prime}(\bmod r)$ for some j.
- This holds provided $d=r-1$, and we then need $O>\max \left\{n, p^{j}\right\}$ and j can be $r-2$.
- Is there a way to keep the numbers small?

Jun'02: What Now?

- One can get $d \geq \sqrt{r}$ and $O \geq 2^{d} \geq 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
- This translates to a relationship modulo O.
- If the numbers involved are smaller than O, one gets a relationship over integers.
- One type of relationship is $n=p^{\prime}(\bmod r)$ for some j.
- This holds provided $d=r-1$, and we then need $O>\max \left\{n, p^{j}\right\}$ and
- Is there a way to keep the numbers small?

Jun'02: What Now?

- One can get $d \geq \sqrt{r}$ and $O \geq 2^{d} \geq 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
- This translates to a relationship modulo O.
- If the numbers involved are smaller than O, one gets a relationship over integers.
- One type of relationship is $n=p^{j}(\bmod r)$ for some j.
- This holds provided $d=r-1$, and we then need $O>\max \left\{n, p^{j}\right\}$ and j can be $r-2$.
- Is there a way to keep the numbers small?

Jun'02: What Now?

- One can get $d \geq \sqrt{r}$ and $O \geq 2^{d} \geq 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
- This translates to a relationship modulo O.
- If the numbers involved are smaller than O, one gets a relationship over integers.
- One type of relationship is $n=p^{j}(\bmod r)$ for some j.
- This holds provided $d=r-1$, and we then need $O>\max \left\{n, p^{j}\right\}$ and j can be $r-2$.
- Is there a way to keep the numbers small?

July'02: Yes, There Is!

- Consider products of the form $n^{i} p^{j}$ for $0 \leq i, j \leq \sqrt{r}$.
- Two of these are equal modulo r, and the maximum value is at most
- Therefore, if $O>n^{2 \sqrt{ } r}$, we are done.
- The bound on O is: $O>2^{d}>2^{\sqrt{r}}$ since $d \geq \sqrt{r}$.
- However, if one can prove $d \geq r^{\frac{1}{2}+\epsilon}$ for any $\epsilon>0$ then:

provided one chooses $r>\log ^{\frac{1}{\epsilon}} n$.

July'02: Yes, There Is!

- Consider products of the form $n^{i} p^{j}$ for $0 \leq i, j \leq \sqrt{r}$.
- Two of these are equal modulo r, and the maximum value is at most $n^{2 \sqrt{r}}$.
- Therefore, if $O>n^{2} \sqrt{r}$, we are done.
- The bound on O is: $O \geq 2^{d} \geq 2^{\sqrt{r}}$ since $d \geq \sqrt{r}$.
- However, if one can prove $d>r^{\frac{1}{2}+\epsilon}$ for any $\epsilon>0$ then:

provided one chooses $r>\log ^{\frac{1}{\epsilon}} n$.

July'02: Yes, There Is!

- Consider products of the form $n^{i} p^{j}$ for $0 \leq i, j \leq \sqrt{r}$.
- Two of these are equal modulo r, and the maximum value is at most $n^{2 \sqrt{r}}$.
- Therefore, if $O>n^{2 \sqrt{r}}$, we are done.
- The bound on O is: $O \geq 2^{d} \geq 2^{\sqrt{r}}$ since $d \geq \sqrt{r}$.
- However, if one can prove $d \geq r^{\frac{1}{2}+\epsilon}$ for any $\epsilon>0$ then:
provided one chooses $r>\log ^{\frac{1}{\epsilon}} n$.

July'02: Yes, There Is!

- Consider products of the form $n^{i} p^{j}$ for $0 \leq i, j \leq \sqrt{r}$.
- Two of these are equal modulo r, and the maximum value is at most $n^{2 \sqrt{r}}$.
- Therefore, if $O>n^{2 \sqrt{r}}$, we are done.
- The bound on O is: $O \geq 2^{d} \geq 2^{\sqrt{r}}$ since $d \geq \sqrt{r}$.
- However, if one can prove $d \geq r^{\frac{1}{2}+\epsilon}$ for any $\epsilon>0$ then:

$$
O \geq 2^{r^{\frac{1}{2}+\epsilon}}>n^{2 \sqrt{r}}
$$

provided one chooses $r>\log ^{\frac{1}{\epsilon}} n$.

July'02: Fouvry's Theorem

- E. Fouvry (1985) showed that primes r such that $r-1$ has a prime factor $a_{r}>r^{\frac{2}{3}}$ have constant density.
- This implies that d can be made
- So $\epsilon=\frac{1}{6}$ and we need to choose $r>\log ^{6} n$.

July'02: Fouvry's Theorem

- E. Fouvry (1985) showed that primes r such that $r-1$ has a prime factor $q_{r}>r^{\frac{2}{3}}$ have constant density.
- This implies that d can be made $>r^{\frac{2}{3}}$.
- So $\epsilon=\frac{1}{6}$ and we need to choose $r>\log ^{6} n$.

July'02: Fouvry's Theorem

- E. Fouvry (1985) showed that primes r such that $r-1$ has a prime factor $a_{r}>r^{\frac{2}{3}}$ have constant density.
- This implies that d can be made $>r^{\frac{2}{3}}$.
- So $\epsilon=\frac{1}{6}$ and we need to choose $r>\log ^{6} n$.

Observations

- The proof above does not prove the conjecture proposed earlier since $r=\omega(\log n)$ and the equation is tested for several $x+a$'s instead of only $x+1$.
- It can be viewed as a derandomization of the identity test given earlier for the special case of primality identity.

Observations

- The proof above does not prove the conjecture proposed earlier since $r=\omega(\log n)$ and the equation is tested for several $x+a$'s instead of only $x+1$.
- It can be viewed as a derandomization of the identity test given earlier for the special case of primality identity.

Observations

Identity Test With Less Randomness: Test if $P(x)=0$ modulo $(R(x))^{r}-1$ for a small r that gives rise to a large extension field and $R(x)$ nearly random.

Observations

Identity Test With Less Randomness: Test if $P(x)=0$ modulo $(R(x))^{r}-1$ for a small r that gives rise to a large extension field and $R(x)$ nearly random.

Primality Test With No Randomness: Test if
$(x+1)^{n}-x^{n}-1=0$ modulo n and $(R(x))^{r}-1$ for a small r that gives rise to a large extension field and $R(x)=x-a$ for $1 \leq a \leq r$.

Epilogue

- On August 4, 2002 we distributed the paper.
- Due to a clock error in my brain, it was dated August 6!

