THE ISOMORPHISM CONJECTURE

Manindra Agrawal

IIT Kanpur

CiE, Heidelberg, July 22, 2009

MANINDRA AGRAWAL (IITK)

The Isomorphism Conjecture

CIE 2009 1 / 49

OUTLINE

1 FORMULATION

- 2 Proving the Conjecture
- 3 A Counter Conjecture

ISOMORPHISM CONJECTURE IN OTHER SETTINGS

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

5 Back to the Isomorphism Conjecture

THE ISOMORPHISM THEOREM FOR C.E. CLASS

THEOREM (MYHILL, 1955)

Let A and B be two \leq_m -complete sets for c.e.. Then $A \equiv B$.

\leq_m -complete : many-one complete

 \equiv : isomorphic under computable isomorphisms

TRANSLATION TO THE CLASS NP

ISOMORPHISM CONJECTURE (BERMAN-HARTMANIS, 1977) Let A and B be two \leq_m^p -comoplete sets for NP. Then $A \equiv^p B$.

\leq_{m}^{p} -complete : many-one polynomial-time complete

 \equiv^{p} : isomorphic under polynomial-time computable and invertible isomorphisms (\equiv p-isomorphic)

PROOF OF THE ISOMORPHISM THEOREM FOR C.E. CLASS

Proof is in two steps:

THEOREM (STEP 1)

 $A \leq_m$ -complete set for c.e. is also \leq_1 -complete.

Theorem (STEP 2)

Let A and B be two \leq_1 -complete sets for c.e.. Then $A \equiv B$.

 \leq_1 -complete : one-one complete

PROOF OF THE ISOMORPHISM THEOREM FOR C.E. CLASS

Proof is in two steps:

THEOREM (STEP 1)

 $A \leq_m$ -complete set for c.e. is also \leq_1 -complete.

THEOREM (STEP 2)

Let A and B be two \leq_1 -complete sets for c.e.. Then $A \equiv B$.

\leq_1 -complete : one-one complete

TRANSLATING STEPS TO NP

- For a 1-1 function f, |f(x)| can sometimes be much smaller than |x|.
- So an isomorphism between two ≤^p₁-complete sets for NP may require large time complexity.
- To avoind this, we need to have $\leq_{1,si}^{p}$ -completeness.
- Then the isomorphism can be computed in NP.
- $_{1,si}^{2-i} \leq_{1,si}^{p}$ -complete : complete under 1-1, size-increasing polynomial-time reductions

TRANSLATING STEPS TO NP

- For a 1-1 function f, |f(x)| can sometimes be much smaller than |x|.
- So an isomorphism between two ≤^p₁-complete sets for NP may require large time complexity.
- To avoind this, we need to have $\leq_{1,si}^{p}$ -completeness.
- Then the isomorphism can be computed in NP.
- $_{1,si}^{2-i} \leq_{1,si}^{p}$ -complete : complete under 1-1, size-increasing polynomial-time reductions

WEAK ISOMORPHISM CONJECTURE

Let A and B be two \leq_m^p -comoplete sets for NP. Then $A \equiv_w^p B$.

\equiv^{p}_{w} : isomorphic under polynomial-time computable and NP-invertible isomorphisms

NP-computable : computed by polynomial-time single-valued NTMs

- Sufficient to prove that all \leq_m^p -complete sets for NP are also $\leq_{1,si}^p$ -complete.
- Hence, would be easier to prove.
- Lacks symmetry: one direction of isomorphism is easier to compute than the other.
- For this reason, Isomorphism Conjecture is considered the "right" translation.

- Sufficient to prove that all \leq_m^p -complete sets for NP are also $\leq_{1,si}^p$ -complete.
- Hence, would be easier to prove.
- Lacks symmetry: one direction of isomorphism is easier to compute than the other.
- For this reason, Isomorphism Conjecture is considered the "right" translation.

- Sufficient to prove that all \leq_m^p -complete sets for NP are also $\leq_{1,si}^p$ -complete.
- Hence, would be easier to prove.
- Lacks symmetry: one direction of isomorphism is easier to compute than the other.
- For this reason, Isomorphism Conjecture is considered the "right" translation.

OUTLINE

D FORMULATION

2 Proving the Conjecture

3 A Counter Conjecture

Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

5 Back to the Isomorphism Conjecture

THEOREM (BERMAN-HARTMANIS, 1977)

Let A and B be two $\leq_{1,si,i}^{p}$ -complete sets for NP. Then $A \equiv^{p} B$.

Mimics step 2 of Myhill's proof.

 $\leq_{1,si,i}^{p}$ -complete : complete under 1-1, size-increasing, and polynomial-time invertible reductions

(< E) < E) = E</p>

THEOREM (BERMAN-HARTMANIS, 1977)

Let A and B be two $\leq_{1,si,i}^{p}$ -complete sets for NP. Then $A \equiv^{p} B$.

Mimics step 2 of Myhill's proof.

 $\leq_{1,si,i}^{p}$ -complete : complete under 1-1, size-increasing, and polynomial-time invertible reductions

TO PROVE

A \leq_{m}^{p} -complete set for NP is also $\leq_{1,si,i}^{p}$ -complete.

(Berman-Hartmanis, 1977) showed that all known \leq_{m}^{p} -complete sets for NP at the time were $\leq_{1,si,i}^{p}$ -complete.

• 3 • 4 3

TO PROVE

A \leq_{m}^{p} -complete set for NP is also $\leq_{1,s_{i},i}^{p}$ -complete.

(Berman-Hartmanis, 1977) showed that all known \leq_m^p -complete sets for NP at the time were $\leq_{1,si,i}^p$ -complete.

PROVING IS HARD

OBSERVATION

If the Isomorphism Conjecture holds then $P \neq NP$.

PROOF SKETCH.

If the conjecture holds that all \leq_m^p -complete sets are dense and there are sparse sets in P.

DEFINITION

Set A is dense if there exists an $\epsilon > 0$ such that for every n: $|A| \le n \ge 2^{n^{\epsilon}}$. Set A is sparse if there exists a polynomial p such that for every n: $|A| \le n \le p(n)$.

PROVING IS HARD

OBSERVATION

```
If the Isomorphism Conjecture holds then P \neq NP.
```

PROOF SKETCH.

If the conjecture holds that all \leq_m^p -complete sets are dense and there are sparse sets in P.

DEFINITION

Set A is dense if there exists an $\epsilon > 0$ such that for every n: $|A|_{\leq n} \geq 2^{n^{\epsilon}}$. Set A is sparse if there exists a polynomial p such that for every n: $|A|_{\leq n} \leq p(n)$.

Proof Assuming $P \neq NP$ is also Hard

THEOREM (KURTZ, 1983)

There is an oracle A such that $P^A \neq NP^A$ and the Isomorphism Conjecture is false relative to A.

THEOREM (FENNER-FORTNOW-KURTZ, 1994)

There is an oracle B such that the Isomorphism Conjecture is true relative to B.

Proof Assuming $P \neq NP$ is also Hard

THEOREM (KURTZ, 1983)

There is an oracle A such that $P^A \neq NP^A$ and the Isomorphism Conjecture is false relative to A.

THEOREM (FENNER-FORTNOW-KURTZ, 1994)

There is an oracle B such that the Isomorphism Conjecture is true relative to B.

At least the following consequence can be proved assuming $P \neq NP$:

THEOREM (MAHANEY, 1982)

If $P \neq NP$ then no \leq_{m}^{p} -complete set for NP is sparse.

OUTLINE

1 FORMULATION

2 Proving the Conjecture

3 A Counter Conjecture

Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

5 Back to the Isomorphism Conjecture

ONE-WAY FUNCTIONS

DEFINITION Function g is s(n)-secure one-way function if • g is polynomial-time computable, and • for every probabilistic polynomial-time TM M and for every n: $\Pr_{x \in R\{0,1\}^n} [f(M(f(x))) = f(x)] < \frac{1}{s(n)}.$

An s(n)-secure one-way function can be inverted efficiently only on $\frac{1}{s(n)}$ fraction of strings of size n.

ONE-WAY FUNCTIONS

DEFINITION

Function g is s(n)-secure one-way function if

- g is polynomial-time computable, and
- for every probabilistic polynomial-time TM M and for every n:

$$\Pr_{x \in_R\{0,1\}^n}[f(M(f(x))) = f(x)] < \frac{1}{s(n)}.$$

An s(n)-secure one-way function can be inverted efficiently only on $\frac{1}{s(n)}$ fraction of strings of size n.

ONE-WAY FUNCTIONS

DEFINITION

Function g is s(n)-secure one-way function if

- g is polynomial-time computable, and
- for every probabilistic polynomial-time TM M and for every n:

$$\Pr_{x \in_R\{0,1\}^n}[f(M(f(x))) = f(x)] < \frac{1}{s(n)}.$$

An s(n)-secure one-way function can be inverted efficiently only on $\frac{1}{s(n)}$ fraction of strings of size n.

EXAMPLES OF ONE-WAY FUNCTIONS

MULTIPLICATION: $g_M(x, y) = x \cdot y$. • Believed to be $1 + \frac{1}{n^5}$ -secure. EXPONENTIATION IN A FINITE FIELD: $g_E(e, g, p) = (g^e \pmod{p}, g, p)$. • Believed to be $1 + \frac{1}{n^5}$ -secure.

Both are believed to be $1 + \frac{1}{n^{O(1)}}$ -secure even if the inverting TM is allowed $2^{n^{\epsilon}}$ time for some small $\epsilon > 0$.

EXAMPLES OF ONE-WAY FUNCTIONS

MULTIPLICATION: $g_M(x, y) = x \cdot y$. • Believed to be $1 + \frac{1}{n^5}$ -secure. EXPONENTIATION IN A FINITE FIELD: $g_E(e, g, p) = (g^e \pmod{p}, g, p)$.

• Believed to be $1 + \frac{1}{n^4}$ -secure.

Both are believed to be $1 + \frac{1}{n^{O(1)}}$ -secure even if the inverting TM is allowed $2^{n^{\epsilon}}$ time for some small $\epsilon > 0$.

EXAMPLES OF ONE-WAY FUNCTIONS

MULTIPLICATION: $g_M(x, y) = x \cdot y$. • Believed to be $1 + \frac{1}{n^5}$ -secure. EXPONENTIATION IN A FINITE FIELD: $g_E(e, g, p) = (g^e \pmod{p}, g, p)$.

• Believed to be $1 + \frac{1}{n^4}$ -secure.

Both are believed to be $1 + \frac{1}{n^{O(1)}}$ -secure even if the inverting TM is allowed $2^{n^{\epsilon}}$ time for some small $\epsilon > 0$.

INCREASING SECURITY

THEOREM

Let $g = g_M$ or g_E . Define

$$\hat{g}(x_1x_2\cdots x_m) = g(x_1)g(x_2)\cdots g(x_m)$$

where $|x_1| = |x_2| = \cdots = |x_m| = n$ and $m = |x_1|^{2/\epsilon}$. Then \hat{g} is $2^{n^{\epsilon/2}}$ -secure.

Thus, any probabilistic polynomial-time TM can invert \hat{g} on at most $\frac{2^{n}}{2^{n^{\epsilon/2}}}$ strings of size *n*.

• • = • • = •

INCREASING SECURITY

THEOREM

Let $g = g_M$ or g_E . Define

$$\hat{g}(x_1x_2\cdots x_m) = g(x_1)g(x_2)\cdots g(x_m)$$

where
$$|x_1| = |x_2| = \cdots = |x_m| = n$$
 and $m = |x_1|^{2/\epsilon}$. Then \hat{g} is $2^{n^{\epsilon/2}}$ -secure.

Thus, any probabilistic polynomial-time TM can invert \hat{g} on at most $\frac{2^n}{2^{n^{\epsilon/2}}}$ strings of size *n*.

- A I I A I I A I I A

- Let g be a 1-1, size-increasing, $2^{n^{\epsilon}}$ -secure one-way function.
- Consider set

$$g(\mathsf{SAT}) = \{g(x) \mid x \in \mathsf{SAT}\}$$

- Since g is 1-1, and size-increasing, g(SAT) is $\leq_{1,si}^{p}$ -complete for NP.
- Since g is hard to invert almost everywhere, g(SAT) may not be $\leq_{1,si,i}^{p}$ complete.
- Studied by (Joseph-Young, 1985).

- Let g be a 1-1, size-increasing, $2^{n^{\epsilon}}$ -secure one-way function.
- Consider set

$$g(\mathsf{SAT}) = \{g(x) \mid x \in \mathsf{SAT}\}$$

- Since g is 1-1, and size-increasing, g(SAT) is $\leq_{1,si}^{p}$ -complete for NP.
- Since g is hard to invert almost everywhere, g(SAT) may not be ≤^p_{1,si,i}-complete.
- Studied by (Joseph-Young, 1985).

- Let g be a 1-1, size-increasing, $2^{n^{\epsilon}}$ -secure one-way function.
- Consider set

$$g(\mathsf{SAT}) = \{g(x) \mid x \in \mathsf{SAT}\}$$

- Since g is 1-1, and size-increasing, g(SAT) is $\leq_{1,si}^{p}$ -complete for NP.
- Since g is hard to invert almost everywhere, g(SAT) may not be $\leq_{1,s_{i},i}^{p}$ -complete.
- Studied by (Joseph-Young, 1985).

- Let g be a 1-1, size-increasing, $2^{n^{\epsilon}}$ -secure one-way function.
- Consider set

$$g(\mathsf{SAT}) = \{g(x) \mid x \in \mathsf{SAT}\}$$

- Since g is 1-1, and size-increasing, g(SAT) is $\leq_{1,si}^{p}$ -complete for NP.
- Since g is hard to invert almost everywhere, g(SAT) may not be $\leq_{1,si,i}^{p}$ -complete.
- Studied by (Joseph-Young, 1985).

ENCRYPTED COMPLETE SET CONJECTURE (JOSEPH-YOUNG, 1985)

There exists a 1-1, size-increasing one-way function g such that g(SAT) is not $\leq_{1,si,i}^{p}$ -complete for NP.

If the conjecture is true then the Isomorphism Conjecture is false.
ENCRYPTED NP-COMPLETE SET

ENCRYPTED COMPLETE SET CONJECTURE (JOSEPH-YOUNG, 1985)

There exists a 1-1, size-increasing one-way function g such that g(SAT) is not $\leq_{1,si,i}^{p}$ -complete for NP.

If the conjecture is true then the Isomorphism Conjecture is false.

SCRAMBLING FUNCTIONS

DEFINITION

Function g is a scrambling function if

• g is 1-1, size-increasing and polynomial-time computable, and

• there is no dense polynomial-time subset of range(g).

OBSERVATION

Scrambling functions are $2^{n-n^{o(1)}}$ -secure one-way functions if we restrict to invertibility by deterministic polynomial-time TMs.

SCRAMBLING FUNCTIONS

DEFINITION

Function g is a scrambling function if

- $\bullet~g$ is 1-1, size-increasing and polynomial-time computable, and
- there is no dense polynomial-time subset of range(g).

OBSERVATION

Scrambling functions are $2^{n-n^{o(1)}}$ -secure one-way functions if we restrict to invertibility by deterministic polynomial-time TMs.

SCRAMBLING FUNCTIONS

DEFINITION

Function g is a scrambling function if

- $\bullet~g$ is 1-1, size-increasing and polynomial-time computable, and
- there is no dense polynomial-time subset of range(g).

OBSERVATION

Scrambling functions are $2^{n-n^{o(1)}}$ -secure one-way functions if we restrict to invertibility by deterministic polynomial-time TMs.

THEOREM (KURTZ-MAHANEY-ROYER, 1989)

If scrambling functions exist then the Encrypted Complete Set Conjecture is true.

PROOF SKETCH. If SAT $\leq_{1,si,i}^{p} g(SAT)$ via *h* then h(X) is a dense polynomial-time subset of range(g) for X a dense set in SAT $\cap P$.

EVIDENCE FOR SCRAMBLING FUNCTIONS

THEOREM (KURTZ-MAHANEY-ROYER, 1989)

Scrambling functions exist relative to a random oracle.

- Theorefore, the Isomorphism Conjecture is false relative to a random oracle.
- However, it is not clear if scrambling functions exist in the real world.

EVIDENCE FOR SCRAMBLING FUNCTIONS

THEOREM (KURTZ-MAHANEY-ROYER, 1989)

Scrambling functions exist relative to a random oracle.

• Theorefore, the Isomorphism Conjecture is false relative to a random oracle.

• However, it is not clear if scrambling functions exist in the real world.

EVIDENCE FOR SCRAMBLING FUNCTIONS

THEOREM (KURTZ-MAHANEY-ROYER, 1989)

Scrambling functions exist relative to a random oracle.

- Theorefore, the Isomorphism Conjecture is false relative to a random oracle.
- However, it is not clear if scrambling functions exist in the real world.

OUTLINE

1 FORMULATION

- 2 Proving the Conjecture
- 3 A Counter Conjecture

Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

5 Back to the Isomorphism Conjecture

OUTLINE

1 FORMULATION

- 2 Proving the Conjecture
- 3 A Counter Conjecture

Isomorphism Conjecture in Other Settings

For Classes other than NP

- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

6 Back to the Isomorphism Conjecture

THEOREM (BERMAN, 1977)

All \leq_{m}^{p} -complete sets for EXP are also $\leq_{1,si}^{p}$ -complete.

• Hence, the Weak Isomorphism Conjecture is true for EXP.

• Similar for higher deterministic classes.

THEOREM (BERMAN, 1977)

All \leq_{m}^{p} -complete sets for EXP are also $\leq_{1.si}^{p}$ -complete.

- Hence, the Weak Isomorphism Conjecture is true for EXP.
- Similar for higher deterministic classes.

THEOREM (GANESAN-HOMER, 1989)

All \leq_m^p -complete sets for NEXP are also \leq_1^p -complete.

Similar for higher deterministic classes.

< 注) < 注

OUTLINE

1 FORMULATION

- **2** Proving the Conjecture
- 3 A Counter Conjecture

Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

6 Back to the Isomorphism Conjecture

AN ISOMORPHIC DEGREE

THEOREM (KURTZ-MAHANEY-ROYER 1988)

There is a many-one degree inside 2-tt-complete degree of EXP such that all sets in the degree are p-isomorphic to each other.

2-tt complete degree : class of complete sets under truth-table reductions that make at most 2 queries.

A Non-isomorphic Degree

THEOREM (KO-LONG-DU 1987)

If $P \neq UP$ then there is a 1-1, size-increasing degree inside 2-tt-complete degree of EXP containing two sets that are not p-isomorphic to each other.

- UP is the class of sets accepted by polynomial-time NTMs that have at most one accepting path on any input.
- $P \neq UP$ iff there exist 1-1, size-increasing, 1-secure one-way functions.

A Non-isomorphic Degree

THEOREM (KO-LONG-DU 1987)

If $P \neq UP$ then there is a 1-1, size-increasing degree inside 2-tt-complete degree of EXP containing two sets that are not p-isomorphic to each other.

- UP is the class of sets accepted by polynomial-time NTMs that have at most one accepting path on any input.
- $P \neq UP$ iff there exist 1-1, size-increasing, 1-secure one-way functions.

A CHARECTERIZATION

COROLLARY (KO-LONG-DU 1987)

 $P \neq UP$ iff there is a 1-1, size-increasing degree that is not a p-isomorphic degree.

4 E > 4

OUTLINE

1 FORMULATION

- 2 Proving the Conjecture
- 3 A Counter Conjecture

Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

5 Back to the Isomorphism Conjecture

1-NL FUNCTIONS

DEFINITION

Function f is a 1-NL function if there exists a NTM with a one-way input tape and work tape space bounded by $O(\log n)$ that computes f.

Theorem (A 1994)

Let A and B be two \leq_m^{1-NL} -complete sets for NP. Then A $\equiv^{1-NL} B$

1-NL FUNCTIONS

DEFINITION

Function f is a 1-NL function if there exists a NTM with a one-way input tape and work tape space bounded by $O(\log n)$ that computes f.

THEOREM (A 1994)

Let A and B be two \leq_m^{1-NL} -complete sets for NP. Then $A \equiv^{1-NL} B$.

AC⁰ FUNCTIONS

DEFINITION

Function f is a AC⁰ function if there exists a (uniform) polynomial-size, constant depth circuit family that computes f.

THEOREM (AAR 1996, AAIPR 1997, A 2000, A 2001) Let A and B be two $\leq_m^{AC^0}$ -complete sets for NP. Then $A \equiv^{AC^0} B$.

All "natural" \leq^p_m -complete sets for NP are also $\leq^{AC^0}_m$ -complete.

AC⁰ FUNCTIONS

DEFINITION

Function f is a AC⁰ function if there exists a (uniform) polynomial-size, constant depth circuit family that computes f.

THEOREM (AAR 1996, AAIPR 1997, A 2000, A 2001) Let A and B be two $\leq_m^{AC^0}$ -complete sets for NP. Then $A \equiv^{AC^0} B$.

All "natural" \leq^p_m -complete sets for NP are also $\leq^{AC^0}_m$ -complete.

Manindra Agrawal (IITK)

(日本) (日本) (日本)

AC^0 Functions

DEFINITION

Function f is a AC⁰ function if there exists a (uniform) polynomial-size, constant depth circuit family that computes f.

THEOREM (AAR 1996, AAIPR 1997, A 2000, A 2001) Let A and B be two $\leq_m^{AC^0}$ -complete sets for NP. Then $A \equiv^{AC^0} B$.

All "natural" \leq_m^p -complete sets for NP are also $\leq_m^{AC^0}$ -complete.

Some Observations

- Translated to AC⁰ settings, there exist 2^{(log n)^{O(1)}}-secure, 1-1, size-increasing one-way functions.
 - Function is computed by uniform AC⁰ circuit family and is secure against polynomial-size non-uniform AC⁰ circuits of depth *d* (for some *d*).
- Yet, on a dense subset, these functions can be inverted by a depth two AC⁰ circuit.

Some Observations

- Translated to AC⁰ settings, there exist 2^{(log n)^{O(1)}}-secure, 1-1, size-increasing one-way functions.
 - Function is computed by uniform AC⁰ circuit family and is secure against polynomial-size non-uniform AC⁰ circuits of depth *d* (for some *d*).
- Yet, on a dense subset, these functions can be inverted by a depth two AC⁰ circuit.

Some Observations

- The proof of Isomorphism Theorem for AC⁰ uses pseudorandom generators, a stronger form of one-way functions.
- So the one-way functions here help proving the conjecture!

- The proof of Isomorphism Theorem for AC⁰ uses pseudorandom generators, a stronger form of one-way functions.
- So the one-way functions here help proving the conjecture!

OUTLINE

1 FORMULATION

- **2** PROVING THE CONJECTURE
- 3 A Counter Conjecture

Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

5 Back to the Isomorphism Conjecture

USING ONE-WAY FUNCTIONS

THEOREM (A 2003, A-WATANABE 2009)

Suppose there exist $2^{n^{\epsilon}}$ -secure, 1-1, size-increasing one-way functions. Then \leq_{m}^{p} -complete sets for NP are also $\leq_{1,si}^{P/poly}$ -complete.

 $\leq_{1,si}^{P/poly}$ -complete : computable by polynomial-time TMs that have polynomial-sized advice available.

- Use one-way function to construct a 1-1, size-increasing pseudorandom generator, say *h*.
- Let A be any \leq_m^p -complete set for NP.
- Let $h(SAT \times \{0,1\}^*)$ reduce to A via g.
- *g* must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of *h*.
- Now define a reduction f of SAT to SAT × {0,1}* as: f(x) = (x, R) where R is a random string, |R| a large polynomial in |x|.
- For most of R, $g \circ h \circ f$ is a 1-1, size-increasing reduction of SAT to A.
- Fixing an appropriate *R* for each length gives the result.

- Use one-way function to construct a 1-1, size-increasing pseudorandom generator, say *h*.
- Let A be any \leq_{m}^{p} -complete set for NP.
- Let $h(SAT \times \{0,1\}^*)$ reduce to A via g.
- g must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of h.
- Now define a reduction f of SAT to SAT $\times \{0,1\}^*$ as: f(x) = (x, R) where R is a random string, |R| a large polynomial in |x|.
- For most of R, $g \circ h \circ f$ is a 1-1, size-increasing reduction of SAT to A.
- Fixing an appropriate *R* for each length gives the result.

- Use one-way function to construct a 1-1, size-increasing pseudorandom generator, say *h*.
- Let A be any \leq_m^p -complete set for NP.
- Let $h(SAT \times \{0,1\}^*)$ reduce to A via g.
- *g* must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of *h*.
- Now define a reduction f of SAT to SAT $\times \{0,1\}^*$ as: f(x) = (x, R) where R is a random string, |R| a large polynomial in |x|.
- For most of R, $g \circ h \circ f$ is a 1-1, size-increasing reduction of SAT to A.
- Fixing an appropriate *R* for each length gives the result.

A B M A B M

- Use one-way function to construct a 1-1, size-increasing pseudorandom generator, say *h*.
- Let A be any \leq_{m}^{p} -complete set for NP.
- Let $h(SAT \times \{0,1\}^*)$ reduce to A via g.
- *g* must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of *h*.
- Now define a reduction f of SAT to SAT $\times \{0,1\}^*$ as: f(x) = (x, R) where R is a random string, |R| a large polynomial in |x|.
- For most of R, $g \circ h \circ f$ is a 1-1, size-increasing reduction of SAT to A.
- Fixing an appropriate *R* for each length gives the result.

A B M A B M

- Use one-way function to construct a 1-1, size-increasing pseudorandom generator, say *h*.
- Let A be any \leq_m^p -complete set for NP.
- Let $h(SAT \times \{0,1\}^*)$ reduce to A via g.
- *g* must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of *h*.
- Now define a reduction f of SAT to SAT $\times \{0,1\}^*$ as: f(x) = (x, R) where R is a random string, |R| a large polynomial in |x|.
- For most of R, $g \circ h \circ f$ is a 1-1, size-increasing reduction of SAT to A.
- Fixing an appropriate *R* for each length gives the result.

A B N A B N

ONE-WAY FUNCTIONS WITH EASY CYLINDERS

DEFINITION

Let f be a 1-1, size-increasing, P/poly-computable function. Function f has an easy cylinder if

- There is a P/poly-computable embedding function e computable by circuits of size q(n) on inputs of size n,
- There exist polynomial $\ell(n)$ with $\ell(n) \ge q(n)$,
- For every *n*, for every *u*, $|u| = \ell(n)$, there exists P/poly-computable function g_u such that

$$g_u(f(u,e(x))) = x$$

for all x, |x| = n.

4 E 6 4 E 6
DEFINITION

Let f be a 1-1, size-increasing, P/poly-computable function. Function f has an easy cylinder if

- There is a P/poly-computable embedding function e computable by circuits of size q(n) on inputs of size n,
- There exist polynomial $\ell(n)$ with $\ell(n) \ge q(n)$,
- For every *n*, for every *u*, $|u| = \ell(n)$, there exists P/poly-computable function g_u such that

$$g_u(f(u,e(x))) = x$$

for all x, |x| = n.

DEFINITION

Let f be a 1-1, size-increasing, P/poly-computable function. Function f has an easy cylinder if

- There is a P/poly-computable embedding function e computable by circuits of size q(n) on inputs of size n,
- There exist polynomial $\ell(n)$ with $\ell(n) \ge q(n)$,
- For every *n*, for every *u*, $|u| = \ell(n)$, there exists P/poly-computable function g_u such that

$$g_u(f(u,e(x))) = x$$

for all x, |x| = n.

- A function *f* with an an easy cylinder has parameterized (by *u*) p-invertible subsets.
- Given n and u of length l(n), the embedding function e maps {0,1}ⁿ to u ⋅ {0,1}^{≤q(n)} such that f is invertible on u ⋅ e({0,1}ⁿ).
- The embedding function e is independent of u but the inverting function g_u is allowed to depend on u.
- The definition can be generalized to allow *e* also to be (moderately) dependent on *u*.

- A function *f* with an an easy cylinder has parameterized (by *u*) p-invertible subsets.
- Given n and u of length ℓ(n), the embedding function e maps {0,1}ⁿ to u ⋅ {0,1}^{≤q(n)} such that f is invertible on u ⋅ e({0,1}ⁿ).
- The embedding function e is independent of u but the inverting function g_u is allowed to depend on u.
- The definition can be generalized to allow *e* also to be (moderately) dependent on *u*.

- A function *f* with an an easy cylinder has parameterized (by *u*) p-invertible subsets.
- Given n and u of length ℓ(n), the embedding function e maps {0,1}ⁿ to u ⋅ {0,1}^{≤q(n)} such that f is invertible on u ⋅ e({0,1}ⁿ).
- The embedding function e is independent of u but the inverting function g_u is allowed to depend on u.
- The definition can be generalized to allow *e* also to be (moderately) dependent on *u*.

- A function *f* with an an easy cylinder has parameterized (by *u*) p-invertible subsets.
- Given n and u of length ℓ(n), the embedding function e maps {0,1}ⁿ to u ⋅ {0,1}^{≤q(n)} such that f is invertible on u ⋅ e({0,1}ⁿ).
- The embedding function e is independent of u but the inverting function g_u is allowed to depend on u.
- The definition can be generalized to allow *e* also to be (moderately) dependent on *u*.

THEOREM (A-WATANABE 2009)

Let f be a 1-1, size-increasing, P/poly-computable function with an easy cylinder. Then $K \equiv^{P/poly} f(K)$.

- K : a special set with $K \equiv^{p} SAT$

 $\equiv P/poly$: isomorphic via P/poly-computable and invertible isomorphisms

Some Functions with Easy Cylinders: Multiplication

$g_M(xy) = x \cdot y, \ |x| = |y|.$

- Let $\ell(n) = n$, e(y) = y.
- Fixing a u, |u| = n = |y|, g_M becomes $g_M^u(y) = u \cdot y$.
- This is easily invertible.

4 B 🕨 4

Some Functions with Easy Cylinders: Multiplication

$$g_M(xy) = x \cdot y, \ |x| = |y|.$$

• Let
$$\ell(n) = n$$
, $e(y) = y$.

• Fixing a u, |u| = n = |y|, g_M becomes $g_M^u(y) = u \cdot y$.

• This is easily invertible.

4 B 🕨 4

Some Functions with Easy Cylinders: Multiplication

 $g_M(xy) = x \cdot y, \ |x| = |y|.$

- Let $\ell(n) = n$, e(y) = y.
- Fixing a u, |u| = n = |y|, g_M becomes $g_M^u(y) = u \cdot y$.
- This is easily invertible.

$g_E(egp) = (g^e \pmod{p}, g, p).$

- Let $\ell(n) = 2n$, e(y) = y.
- Fixing a u = eg, |u| = 2n = 2|y|, g_E becomes $g_E^u(y) = (g^e \pmod{y}, g, y)$.
- This is easily invertible.

• 3 • 4 3

 $g_E(egp) = (g^e \pmod{p}, g, p).$

- Let $\ell(n) = 2n$, e(y) = y.
- Fixing a u = eg, |u| = 2n = 2|y|, g_E becomes $g_E^u(y) = (g^e \pmod{y}, g, y)$.
- This is easily invertible.

• 3 • 4 3

 $g_E(egp) = (g^e \pmod{p}, g, p).$

- Let $\ell(n) = 2n$, e(y) = y.
- Fixing a u = eg, |u| = 2n = 2|y|, g_E becomes $g_E^u(y) = (g^e \pmod{y}, g, y)$.
- This is easily invertible.

Let $g_C(x_1x_2\cdots x_m) = g(x_1)g(x_2)\cdots g(x_m)$ for $|x_1| = |x_2| = \cdots = |x_m|$ and g a function with easy cylinder.

• Concatenation increases security.

• Let $\ell(n) = (m-1)n$, e(y) = y.

• Fixing a $u = x_1 x_2 \cdots x_{m-1}, |u| = (m-1)n = (m-1)|y|, g_C$ becomes $g_C^u(y) = g(x_1)g(x_2)\cdots g(x_{m-1})g(y).$

• Now use the easy cylinder property of *g*.

Let $g_C(x_1x_2\cdots x_m) = g(x_1)g(x_2)\cdots g(x_m)$ for $|x_1| = |x_2| = \cdots = |x_m|$ and g a function with easy cylinder.

• Concatenation increases security.

• Let
$$\ell(n) = (m-1)n$$
, $e(y) = y$.

• Fixing a $u = x_1 x_2 \cdots x_{m-1}, |u| = (m-1)n = (m-1)|y|, g_C$ becomes $g_C^u(y) = g(x_1)g(x_2)\cdots g(x_{m-1})g(y).$

• Now use the easy cylinder property of *g*.

4 E 6 4 E 6

Let $g_C(x_1x_2\cdots x_m) = g(x_1)g(x_2)\cdots g(x_m)$ for $|x_1| = |x_2| = \cdots = |x_m|$ and g a function with easy cylinder.

• Concatenation increases security.

• Let $\ell(n) = (m-1)n$, e(y) = y.

• Fixing a $u = x_1 x_2 \cdots x_{m-1}$, |u| = (m-1)n = (m-1)|y|, g_C becomes $g_C^u(y) = g(x_1)g(x_2)\cdots g(x_{m-1})g(y)$.

• Now use the easy cylinder property of g.

A B N A B N

Let $g_C(x_1x_2\cdots x_m) = g(x_1)g(x_2)\cdots g(x_m)$ for $|x_1| = |x_2| = \cdots = |x_m|$ and g a function with easy cylinder.

• Concatenation increases security.

• Let $\ell(n) = (m-1)n$, e(y) = y.

• Fixing a $u = x_1 x_2 \cdots x_{m-1}$, |u| = (m-1)n = (m-1)|y|, g_C becomes $g_C^u(y) = g(x_1)g(x_2)\cdots g(x_{m-1})g(y)$.

• Now use the easy cylinder property of *g*.

A CONJECTURE

EASY CYLINDER CONJECTURE

Every 1-1, size-increasing, P/poly-computable function has an easy cylinder.

Implies that all $\leq_m^{P/poly}$ -complete sets for NP are P/poly-isomorphic.

A CONJECTURE

EASY CYLINDER CONJECTURE

Every 1-1, size-increasing, P/poly-computable function has an easy cylinder.

Implies that all $\leq_m^{P/poly}$ -complete sets for NP are P/poly-isomorphic.

IS IT TRUE?

- For most of the known one-way functions, it is easy to show they have easy cylinder.
- For P/poly-computable one-way functions, it is more involved.
- If g has an easy cylinder, how about g^n ? For example, g_M^n ?

• = • •

IS IT TRUE?

- For most of the known one-way functions, it is easy to show they have easy cylinder.
- For P/poly-computable one-way functions, it is more involved.
- If g has an easy cylinder, how about g^n ? For example, g_M^n ?

IS IT TRUE?

- For most of the known one-way functions, it is easy to show they have easy cylinder.
- For P/poly-computable one-way functions, it is more involved.
- If g has an easy cylinder, how about g^n ? For example, g_M^n ?

Eliminating Nonuniformity?

- Transforming ≤^p_m-compleness to ≤^{P/poly}_{1,si}-completeness, the nonuniformity is due to choice of R in the function f(x) = (x, R).
- A random choice works with high probability.
- Can one find a deterministic way to choose R?
- Transforming ≤^p_{1,si}-compleness to ≤^{P/poly}_{1,si,i}-completeness, the nonuniformity is due to:
 - choice of e, and
 - choice of g_u .
- If *e* is uniform and there is a polynomial-time mapping from *u* to *g_u*, this step becomes uniform.

向下 イヨト イヨト

Eliminating Nonuniformity?

- Transforming ≤^p_m-compleness to ≤^{P/poly}_{1,si}-completeness, the nonuniformity is due to choice of R in the function f(x) = (x, R).
- A random choice works with high probability.
- Can one find a deterministic way to choose R?
- Transforming ≤^p_{1,si}-compleness to ≤^{P/poly}_{1,si,i}-completeness, the nonuniformity is due to:
 - choice of *e*, and
 - choice of g_u.
- If e is uniform and there is a polynomial-time mapping from u to g_u, this step becomes uniform.

Eliminating Nonuniformity?

- Transforming \leq_m^p -compleness to $\leq_{1,si}^{P/poly}$ -completeness, the nonuniformity is due to choice of R in the function f(x) = (x, R).
- A random choice works with high probability.
- Can one find a deterministic way to choose R?
- Transforming ≤^p_{1,si}-compleness to ≤^{P/poly}_{1,si,i}-completeness, the nonuniformity is due to:
 - choice of e, and
 - choice of g_u.
- If e is uniform and there is a polynomial-time mapping from u to g_u , this step becomes uniform.

Thank You!

MANINDRA AGRAWAL (IITK)

The Isomorphism Conjecture

▲ E → A @
CiE 2009 49 / 49

イロン イヨン イヨン イヨ