The Isomorphism Conjecture

Manindra Agrawal

IIT Kanpur
CiE, Heidelberg, July 22, 2009

Outline

(1) Formulation

(2) Proving the Conjecture
(3) A Counter Conjecture
© Tsomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time
(5) Back to the Isomorphism Conjecture

The Isomorphism Theorem for c.e. Class

Theorem (Myhill, 1955)
Let A and B be two \leq_{m}-complete sets for c.e.. Then $A \equiv B$.
\leq_{m}-complete : many-one complete
\equiv : isomorphic under computable isomorphisms

Translation to the Class NP

Isomorphism Conjecture (Berman-Hartmanis, 1977)

Let A and B be two \leq_{m}^{p}-comoplete sets for NP. Then $A \equiv^{p} B$.
\leq_{m}^{p}-complete : many-one polynomial-time complete
$\equiv^{p} \quad$: isomorphic under polynomial-time computable and invertible isomorphisms ($\equiv \mathrm{p}$-isomorphic)

Proof of the Isomorphism Theorem for c.e. Class

Proof is in two steps:
Theorem (STEP 1)
$A \leq_{m}$-complete set for c.e. is also \leq_{1}-complete.

\leq_{1}-complete : one-one complete

Proof of the Isomorphism Theorem for c.e. Class

Proof is in two steps:
Theorem (STEP 1)
$A \leq_{m}$-complete set for c.e. is also \leq_{1}-complete.

```
Theorem (Step 2)
Let }A\mathrm{ and }B\mathrm{ be two }\mp@subsup{\leq}{1}{}\mathrm{ -complete sets for c.e.. Then }A\equivB\mathrm{ .
```

\leq_{1}-complete : one-one complete

Translating Steps to NP

- For a 1-1 function $f,|f(x)|$ can sometimes be much smaller than $|x|$.
- So an isomorphism between two \leq_{1}^{p}-complete sets for NP may require large time complexity.
- To avoind this, we need to have $\leq_{1, s i}^{p}$-completeness.
- Then the isomorphism can be computed in NP.
$¡ 2-i \leq_{1, s i}^{p}$-complete : complete under 1-1, size-increasing polynomialtime reductions

Translating Steps to NP

- For a 1-1 function $f,|f(x)|$ can sometimes be much smaller than $|x|$.
- So an isomorphism between two \leq_{1}^{p}-complete sets for NP may require large time complexity.
- To avoind this, we need to have $\leq_{1, s i}^{p}$-completeness.
- Then the isomorphism can be computed in NP.
$¡ 2-i \leq_{1, s i}^{p}$-complete : complete under 1-1, size-increasing polynomialtime reductions

An Alternative Conjecture

Weak Isomorphism Conjecture

Let A and B be two \leq_{m}^{p}-comoplete sets for NP. Then $A \equiv_{w}^{p} B$.
$\equiv_{w}^{p} \quad$: isomorphic under polynomial-time computable and NP-invertible isomorphisms
NP-computable : computed by polynomial-time single-valued NTMs

An Alternative Conjecture

- Sufficient to prove that all \leq_{m}^{p}-complete sets for NP are also $\leq_{1, s i}^{p}$-complete.
- Hence, would be easier to prove.
- Lacks symmetry: one direction of isomorphism is easier to compute than the other.
- For this reason, Isomorphism Conjecture is considered the "right" translation.

An Alternative Conjecture

- Sufficient to prove that all \leq_{m}^{p}-complete sets for NP are also $\leq_{1, s i}^{p}$-complete.
- Hence, would be easier to prove.
- Lacks symmetry: one direction of isomorphism is easier to compute than the other.
- For this reason, Isomorphism Conjecture is considered the "right" translation.

An Alternative Conjecture

- Sufficient to prove that all \leq_{m}^{p}-complete sets for NP are also $\leq_{1, s i}^{p}$-complete.
- Hence, would be easier to prove.
- Lacks symmetry: one direction of isomorphism is easier to compute than the other.
- For this reason, Isomorphism Conjecture is considered the "right" translation.

Outline

© Formulation

(2) Proving the Conjecture

B A Counter Conjecture
(4) Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time
(5) Back to the Isomorphism Conjecture

Partial Results

Theorem (Berman-Hartmanis, 1977)
 Let A and B be two $\leq_{1, s i, i}^{p}-$ complete sets for NP. Then $A \equiv^{p} B$.

Mimics step 2 of Myhill's proof.
$\leq_{1, s i, i}^{p}$-complete : $\begin{gathered}\text { complete under } \\ \text { polynomial-time invertible reductions }\end{gathered} \quad$ size-increasing, and

Partial Results

Theorem (Berman-Hartmanis, 1977)

Let A and B be two $\leq_{1, s i, i}^{p}-$ complete sets for NP. Then $A \equiv^{p} B$.

Mimics step 2 of Myhill's proof.
$\leq_{1, s i, i}^{p}$-complete : $\begin{aligned} & \text { complete under } 1-1 \text {, size-increasing, and } \\ & \text { polynomial-time invertible reductions }\end{aligned}$

Partial Results

To Prove
$\mathrm{A} \leq_{m}^{p}$-complete set for NP is also $\leq_{1, s i, i}^{p}$-complete.
> (Berman-Hartmanis, 1977) showed that all known \leq_{m}^{p}-complete sets for NP at the time were $\leq_{1, s i, i}^{P}$-complete.

Partial Results

To Prove

A \leq_{m}^{p}-complete set for NP is also $\leq_{1, s, i, i}^{p}$-complete.
(Berman-Hartmanis, 1977) showed that all known \leq_{m}^{p}-complete sets for NP at the time were $\leq_{1, s i, i}^{p}-$ complete.

Proving is Hard

Observation
If the Isomorphism Conjecture holds then $\mathrm{P} \neq \mathrm{NP}$.
Proof Sketch.
If the conjecture holds that all \leq_{m}^{p}-complete sets are dense and there are sparse sets in P.

Proving is Hard

ObSERVATION

If the Isomorphism Conjecture holds then $\mathrm{P} \neq \mathrm{NP}$.
Proof Sketch.
If the conjecture holds that all \leq_{m}^{p}-complete sets are dense and there are sparse sets in P.

Definition

Set A is dense if there exists an $\epsilon>0$ such that for every $n:|A|_{\leq n} \geq 2^{n^{\epsilon}}$.
Set A is sparse if there exists a polynomial p such that for every n :
$|A|_{\leq n} \leq p(n)$.

Proof Assuming $\mathrm{P} \neq \mathrm{NP}$ is also Hard

Theorem (Kurtz, 1983)
There is an oracle A such that $P^{A} \neq N P^{A}$ and the Isomorphism Conjecture is false relative to A.

There is an oracle B such that the Isomorphism Conjecture is true relative

Proof Assuming $\mathrm{P} \neq \mathrm{NP}$ is also Hard

Theorem (Kurtz, 1983)

There is an oracle A such that $P^{A} \neq N P^{A}$ and the Isomorphism Conjecture is false relative to A.

Theorem (Fenner-Fortnow-Kurtz, 1994)
There is an oracle B such that the Isomorphism Conjecture is true relative to B.

Proving A Consequence

At least the following consequence can be proved assuming $P \neq N P$:

Theorem (Mahaney, 1982)
If $P \neq N P$ then no \leq_{m}^{p}-complete set for NP is sparse.

Outline

(1) Formulation
(2) Proving the Conjecture
(3) A Counter Conjecture

4 Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time
(5) Back to the Isomorphism Conjecture

One-Way Functions

Definition

Function g is $s(n)$-secure one-way function if

- g is polynomial-time computable, and
- for every probabilistic polynomial-time TM M and for every n :

$$
\operatorname{Pr}_{x \in R\{0,1\}^{n}}[f(M(f(x)))=f(x)]<\frac{1}{s(n)}
$$

One-Way Functions

Definition

Function g is $s(n)$-secure one-way function if

- g is polynomial-time computable, and
- for every probabilistic polynomial-time TM M and for every n :

$$
\operatorname{Pr}_{x \in R\{0,1\}^{n}}[f(M(f(x)))=f(x)]<\frac{1}{s(n)} .
$$

One-Way Functions

Definition

Function g is $s(n)$-secure one-way function if

- g is polynomial-time computable, and
- for every probabilistic polynomial-time TM M and for every n :

$$
\operatorname{Pr}_{x \in R_{R}\{0,1\}^{n}}[f(M(f(x)))=f(x)]<\frac{1}{s(n)} .
$$

An $s(n)$-secure one-way function can be inverted efficiently only on $\frac{1}{s(n)}$ fraction of strings of size n.

Examples of One-Way Functions

Multiplication: $g_{M}(x, y)=x \cdot y$.

- Believed to be $1+\frac{1}{n^{5}}$-secure.

Both are believed to be $1+\frac{1}{n^{\circ(1)}}$-secure even if the inverting TM is allowed $2^{n^{\epsilon}}$ time for some small $\epsilon>0$.

Examples of One-Way Functions

Multiplication: $g_{M}(x, y)=x \cdot y$.

- Believed to be $1+\frac{1}{n^{5}}$-secure.

Exponentiation in a finite field: $g_{E}(e, g, p)=\left(g^{e}(\bmod p), g, p\right)$.

- Believed to be $1+\frac{1}{n^{4}}$-secure.

Both are believed to be $1+\frac{1}{n^{(1)}}$-secure even if the inverting TM is allowed $2^{n^{\epsilon}}$ time for some small $\epsilon>0$.

Examples of One-Way Functions

Multiplication: $g_{M}(x, y)=x \cdot y$.

- Believed to be $1+\frac{1}{n^{5}}$-secure.

Exponentiation in A finite field: $g_{E}(e, g, p)=\left(g^{e}(\bmod p), g, p\right)$.

- Believed to be $1+\frac{1}{n^{4}}$-secure.

Both are believed to be $1+\frac{1}{n^{0(1)}}$-secure even if the inverting TM is allowed $2^{n^{\epsilon}}$ time for some small $\epsilon>0$.

Increasing Security

Theorem

Let $g=g_{M}$ or g_{E}. Define

$$
\hat{g}\left(x_{1} x_{2} \cdots x_{m}\right)=g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{m}\right)
$$

where $\left|x_{1}\right|=\left|x_{2}\right|=\cdots=\left|x_{m}\right|=n$ and $m=\left|x_{1}\right|^{2 / \epsilon}$. Then \hat{g} is $2^{n^{\epsilon / 2}}$-secure.

Thus, any probabilistic polynomial-time TM can invert \hat{g} on at most strings of size n.

Increasing Security

Theorem

Let $g=g_{M}$ or g_{E}. Define

$$
\hat{g}\left(x_{1} x_{2} \cdots x_{m}\right)=g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{m}\right)
$$

where $\left|x_{1}\right|=\left|x_{2}\right|=\cdots=\left|x_{m}\right|=n$ and $m=\left|x_{1}\right|^{2 / \epsilon}$. Then \hat{g} is $2^{n^{n / 2}}$-secure.

Thus, any probabilistic polynomial-time TM can invert \hat{g} on at most $\frac{2^{n}}{2^{n^{\epsilon / 2}}}$ strings of size n.

Encrypted NP-complete Set

- Let g be a $1-1$, size-increasing, $2^{n^{\epsilon}}$-secure one-way function.
- Consider set

$$
g(\mathrm{SAT})=\{g(x) \mid x \in \mathrm{SAT}\}
$$

where SAT is the set of all satisfiable boolean formulas.

- Since g is 1-1, and size-increasing, $g(S A T)$ is $\leq_{1, s i-}^{p}$-complete for NP.
- Since g is hard to invert almost everywhere, $g($ SAT $)$ may not be $\leq_{1, s i, i}^{p}$-complete.
- Studied by (Joseph-Young, 1985).

Encrypted NP-complete Set

- Let g be a $1-1$, size-increasing, $2^{n^{\epsilon}}$-secure one-way function.
- Consider set

$$
g(\mathrm{SAT})=\{g(x) \mid x \in \mathrm{SAT}\}
$$

where SAT is the set of all satisfiable boolean formulas.

- Since g is $1-1$, and size-increasing, $g(S A T)$ is $\leq_{1, s i}^{p}$-complete for NP.
- Since g is hard to invert almost everywhere, $g(S A T)$ may not be $\leq_{1, s i, i}^{p}$-complete.
- Studied by (Joseph-Young, 1985).

Encrypted NP-complete Set

- Let g be a $1-1$, size-increasing, $2^{n^{\epsilon}}$-secure one-way function.
- Consider set

$$
g(\mathrm{SAT})=\{g(x) \mid x \in \mathrm{SAT}\}
$$

where SAT is the set of all satisfiable boolean formulas.

- Since g is $1-1$, and size-increasing, $g(S A T)$ is $\leq_{1, s i}^{p}$-complete for NP.
- Since g is hard to invert almost everywhere, $g(S A T)$ may not be $\leq_{1, s i, i}^{p}$ icomplete.

Encrypted NP-complete Set

- Let g be a $1-1$, size-increasing, $2^{n^{\epsilon}}$-secure one-way function.
- Consider set

$$
g(\mathrm{SAT})=\{g(x) \mid x \in \mathrm{SAT}\}
$$

where SAT is the set of all satisfiable boolean formulas.

- Since g is $1-1$, and size-increasing, $g(S A T)$ is $\leq_{1, s i}^{p}$-complete for NP.
- Since g is hard to invert almost everywhere, $g(S A T)$ may not be $\leq_{1, s i, i}^{p}$-complete.
- Studied by (Joseph-Young, 1985).

Encrypted NP-complete Set

Encrypted Complete Set Conjecture (Joseph-Young, 1985)

There exists a $1-1$, size-increasing one-way function g such that $g(\mathrm{SAT})$ is not $\leq_{1, s i, i}^{p}$-complete for NP.

Encrypted NP-complete Set

Encrypted Complete Set Conjecture (Joseph-Young, 1985)

There exists a $1-1$, size-increasing one-way function g such that $g(S A T)$ is not $\leq_{1, s i, i}^{p}$-complete for NP.

If the conjecture is true then the Isomorphism Conjecture is false.

Scrambling Functions

Definition

Function g is a scrambling function if

- g is 1-1, size-increasing and polynomial-time computable, and
- there is no dense polynomial-time subset of range(g).
\square
Observation
Scrambling functions are $2^{n-n^{o(1)}}$-secure one-way functions if we restrict to invertibility by deterministic polynomial-time TMs.

Scrambling Functions

Definition

Function g is a scrambling function if

- g is 1-1, size-increasing and polynomial-time computable, and
- there is no dense polynomial-time subset of range (g).

Scrambling functions are $2^{n-n^{o(1)}}$-secure one-way functions if we restrict to invertibility by deterministic polynomial-time TMs.

Scrambling Functions

Definition

Function g is a scrambling function if

- g is $1-1$, size-increasing and polynomial-time computable, and
- there is no dense polynomial-time subset of range (g).

Observation

Scrambling functions are $2^{n-n^{\circ(1)}}$-secure one-way functions if we restrict to invertibility by deterministic polynomial-time TMs.

Scrambling Functions

Theorem (Kurtz-Mahaney-Royer, 1989)

If scrambling functions exist then the Encrypted Complete Set Conjecture is true.

Proof Sketch.

If SAT $\leq_{1, s i, i}^{p} g($ SAT $)$ via h then $h(X)$ is a dense polynomial-time subset of range (g) for X a dense set in SAT $\cap P$.

Evidence for Scrambling Functions

Theorem (Kurtz-Mahaney-Royer, 1989)

Scrambling functions exist relative to a random oracle.

- Theorefore, the Isomorphism Conjecture is false relative to a random oracle.
- However, it is not clear if scrambling functions exist in the real world.

Evidence for Scrambling Functions

Theorem (Kurtz-Mahaney-Royer, 1989)
 Scrambling functions exist relative to a random oracle.

- Theorefore, the Isomorphism Conjecture is false relative to a random oracle.
- However, it is not clear if scrambling functions exist in the real world.

Evidence for Scrambling Functions

Theorem (Kurtz-Mahaney-Royer, 1989)

Scrambling functions exist relative to a random oracle.

- Theorefore, the Isomorphism Conjecture is false relative to a random oracle.
- However, it is not clear if scrambling functions exist in the real world.

Outline

(1) Formulation
(2) Proving the Conjecture
(3) A Counter Conjecture

4 Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time
(5) Back to the Isomorphism Conjecture

Outline

(1) Formulation
(2) Proving the Conjecture
(3) A Counter Conjecture

4 Isomorphism Conjecture in Other Settings - For Classes other than NP

- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

(5) Back to the Isomorphism Conjecture

EXP

Theorem (Berman, 1977)
 All \leq_{m}^{p}-complete sets for EXP are also $\leq_{1, s i}^{p}$-complete.

- Hence, the Weak Isomorphism Conjecture is true for EXP.
- Similar for higher deterministic classes.

EXP

```
Theorem (Berman, 1977)
All }\mp@subsup{\leq}{m}{p}\mathrm{ -complete sets for EXP are also }\mp@subsup{\leq}{1,si}{p}\mathrm{ -complete.
```

- Hence, the Weak Isomorphism Conjecture is true for EXP.
- Similar for higher deterministic classes.

NEXP

Theorem (Ganesan-Homer, 1989)
 All \leq_{m}^{p}-complete sets for NEXP are also \leq_{1}^{p}-complete.

Similar for higher deterministic classes.

Outline

(1) Formulation
(2) Proving the Conjecture
(3) A Counter Conjecture

4 Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time

(5) Back to the Isomorphism Conjecture

An Isomorphic Degree

Theorem (Kurtz-Mahaney-Royer 1988)

There is a many-one degree inside 2-tt-complete degree of EXP such that all sets in the degree are p-isomorphic to each other.

2-tt complete degree : class of complete sets under truth-table reductions that make at most 2 queries.

A Non-isomorphic Degree

```
Theorem(Ko-Long-Du 1987)
If P}\not=U|\mathrm{ then there is a 1-1, size-increasing degree inside 2-tt-complete degree of EXP containing two sets that are not p-isomorphic to each other.
```

- UP is the class of sets accepted by polynomial-time NTMs that have at most one accepting path on any input.

A Non-isomorphic Degree

```
Theorem(Ko-Long-Du 1987)
If P}\not=U|\mathrm{ then there is a 1-1, size-increasing degree inside 2-tt-complete degree of EXP containing two sets that are not p-isomorphic to each other.
```

- UP is the class of sets accepted by polynomial-time NTMs that have at most one accepting path on any input.
- $P \neq U P$ iff there exist $1-1$, size-increasing, 1-secure one-way functions.

A Charecterization

Corollary (Ko-Long-Du 1987)

$P \neq U P$ iff there is a 1-1, size-increasing degree that is not a p-isomorphic degree.

Outline

(1) Formulation
(2) Proving the Conjecture
(3) A Counter Conjecture

4 Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time
(5) Back to the Isomorphism Conjecture

1-NL Functions

Definition

Function f is a 1-NL function if there exists a NTM with a one-way input tape and work tape space bounded by $O(\log n)$ that computes f.

1-NL Functions

Definition

Function f is a 1-NL function if there exists a NTM with a one-way input tape and work tape space bounded by $O(\log n)$ that computes f.

Theorem (A 1994)

Let A and B be two $\leq_{m}^{1-N L}$-complete sets for $N P$. Then $A \equiv^{1-N L} B$.

AC^{0} Functions

Definition

Function f is a AC^{0} function if there exists a (uniform) polynomial-size, constant depth circuit family that computes f.

AC^{0} Functions

DEfinition

Function f is a AC^{0} function if there exists a (uniform) polynomial-size, constant depth circuit family that computes f.

$$
\begin{aligned}
& \text { THEOREM (AAR 1996, AAIPR 1997, A 2000, A 2001) } \\
& \text { Let } A \text { and } B \text { be two } \leq_{m}^{A C^{0}} \text {-complete sets for NP. Then } A \equiv{ }^{A C^{0}} B \text {. }
\end{aligned}
$$

AC^{0} Functions

DEfinition

Function f is a AC^{0} function if there exists a (uniform) polynomial-size, constant depth circuit family that computes f.

Theorem (AAR 1996, AAIPR 1997, A 2000, A 2001)
 Let A and B be two $\leq_{m}^{A C^{0}}$-complete sets for NP. Then $A \equiv A C^{0} B$.

All "natural" \leq_{m}^{p}-complete sets for NP are also $\leq_{m}^{A C^{0}}$-complete.

Some Observations

- Translated to AC^{0} settings, there exist $2^{(\log n)^{O(1)}}$-secure, $1-1$, size-increasing one-way functions.
- Function is computed by uniform AC^{0} circuit family and is secure against polynomial-size non-uniform AC^{0} circuits of depth d (for some d).
- Yet, on a dense subset, these functions can be inverted by a depth two AC^{0} circuit.

Some Observations

- Translated to AC^{0} settings, there exist $2^{(\log n)^{O(1)}}$-secure, $1-1$, size-increasing one-way functions.
- Function is computed by uniform AC^{0} circuit family and is secure against polynomial-size non-uniform AC^{0} circuits of depth d (for some d).
- Yet, on a dense subset, these functions can be inverted by a depth two AC^{0} circuit.

Some Observations

- The proof of Isomorphism Theorem for AC^{0} uses pseudorandom generators, a stronger form of one-way functions.
- So the one-way functions here help proving the conjecture!

Some Observations

- The proof of Isomorphism Theorem for AC^{0} uses pseudorandom generators, a stronger form of one-way functions.
- So the one-way functions here help proving the conjecture!

Outline

(1) Formulation
(2) Proving the Conjecture
(3) A Counter Conjecture

4 Isomorphism Conjecture in Other Settings

- For Classes other than NP
- For Degrees other than Complete Degree
- For Reducibilities other than Polynomial-time
(5) Back to the Isomorphism Conjecture

Using One-way Functions

Theorem (A 2003, A-Watanabe 2009)

Suppose there exist $2^{n^{\epsilon}}$-secure, 1-1, size-increasing one-way functions. Then \leq_{m}^{p}-complete sets for NP are also $\leq_{1, s i}^{P / \text { poly }}$-complete.
$\leq_{1, s i}^{P / \text { poly }}$-complete : computable by polynomial-time TMs that have polynomial-sized advice available.

Proof Idea

- Use one-way function to construct a $1-1$, size-increasing pseudorandom generator, say h.
- Let A be any \leq_{m}^{P}-complete set for NP.
- Let $h\left(\right.$ SAT $\left.\times\{0,1\}^{*}\right)$ reduce to A via g.
- g must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of h.
- Now define a reduction f of SAT to SAT $\times\{0,1\}^{*}$ as: $f(x)=(x, R)$ where R is a random string, $|R|$ a large polynomial in $|x|$.
- For most of $R, g \circ h \circ f$ is a $1-1$, size-increasing reduction of SAT to A.
- Fixing an appropriate R for each length gives the result.

Proof Idea

- Use one-way function to construct a $1-1$, size-increasing pseudorandom generator, say h.
- Let A be any \leq_{m}^{p}-complete set for NP.
- Let $h\left(\right.$ SAT $\left.\times\{0,1\}^{*}\right)$ reduce to A via g.
- g must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of h.
- Now define a reduction f of SAT to SAT $\times\{0,1\}^{*}$ as: $f(x)=(x, R)$ where R is a random string, $|R|$ a large polynomial in $|x|$
- For most of $R, g \circ h \circ f$ is a $1-1$, size-increasing reduction of SAT to A.
- Fixing an appropriate R for each length gives the result.

Proof Idea

- Use one-way function to construct a $1-1$, size-increasing pseudorandom generator, say h.
- Let A be any \leq_{m}^{p}-complete set for NP.
- Let $h\left(\right.$ SAT $\left.\times\{0,1\}^{*}\right)$ reduce to A via g.
- g must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of h.
- Now define a reduction f of SAT to SAT $\times\{0,1\}^{*}$ as: $f(x)=(x, R)$ where R is a random string, $|R|$ a large polynomial in $|x|$
- For most of $R, g \circ h \circ f$ is a 1-1, size-increasing reduction of SAT to A.
- Fixing an appropriate R for each length gives the result.

Proof Idea

- Use one-way function to construct a $1-1$, size-increasing pseudorandom generator, say h.
- Let A be any \leq_{m}^{p}-complete set for NP.
- Let $h\left(\right.$ SAT $\left.\times\{0,1\}^{*}\right)$ reduce to A via g.
- g must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of h.
- Now define a reduction f of SAT to SAT $\times\{0,1\}^{*}$ as: $f(x)=(x, R)$ where R is a random string, $|R|$ a large polynomial in $|x|$.
- For most of $R, g \circ h \circ f$ is a 1-1, size-increasing reduction of SAT to A.
- Fixing an appropriate R for each length gives the result.

Proof Idea

- Use one-way function to construct a $1-1$, size-increasing pseudorandom generator, say h.
- Let A be any \leq_{m}^{p}-complete set for NP.
- Let $h\left(\right.$ SAT $\left.\times\{0,1\}^{*}\right)$ reduce to A via g.
- g must be 1-1 and size-increasing on most inputs otherwise it contradicts pseudorandomness of h.
- Now define a reduction f of SAT to SAT $\times\{0,1\}^{*}$ as: $f(x)=(x, R)$ where R is a random string, $|R|$ a large polynomial in $|x|$.
- For most of $R, g \circ h \circ f$ is a $1-1$, size-increasing reduction of SAT to A.
- Fixing an appropriate R for each length gives the result.

One-way Functions with Easy Cylinders

DEfinition

Let f be a 1-1, size-increasing, $\mathrm{P} /$ poly-computable function. Function f has an easy cylinder if

- There is a $\mathrm{P} /$ poly-computable embedding function e computable by circuits of size $q(n)$ on inputs of size n,
- There exist polynomial $\ell(n)$ with $\ell(n) \geq q(n)$,
- For every n, for every $u,|u|=\ell(n)$, there exists $\mathrm{P} /$ poly-computable function g_{u} such that

One-way Functions with Easy Cylinders

DEFINITION

Let f be a 1-1, size-increasing, $\mathrm{P} /$ poly-computable function. Function f has an easy cylinder if

- There is a $P /$ poly-computable embedding function e computable by circuits of size $q(n)$ on inputs of size n,
- There exist polynomial $\ell(n)$ with $\ell(n) \geq q(n)$,
- For every n, for every $u,|u|=\ell(n)$, there exists $P /$ poly-computable function g_{u} such that

One-way Functions with Easy Cylinders

DEFINITION

Let f be a 1-1, size-increasing, $\mathrm{P} /$ poly-computable function. Function f has an easy cylinder if

- There is a $P /$ poly-computable embedding function e computable by circuits of size $q(n)$ on inputs of size n,
- There exist polynomial $\ell(n)$ with $\ell(n) \geq q(n)$,
- For every n, for every $u,|u|=\ell(n)$, there exists $P /$ poly-computable function g_{u} such that

$$
g_{u}(f(u, e(x)))=x
$$

for all $x,|x|=n$.

One-way Functions with Easy Cylinders

- A function f with an an easy cylinder has parameterized (by u) p-invertible subsets.
- Given n and u of length $\ell(n)$, the embedding function e maps $\{0,1\}^{n}$ to $u \cdot\{0,1\} \leq q(n)$ such that f is invertible on $u \cdot e\left(\{0,1\}^{n}\right)$.
- The embedding function e is independent of u but the inverting function g_{u} is allowed to depend on u.
- The definition can be generalized to allow e also to be (moderately) dependent on u.

One-way Functions with Easy Cylinders

- A function f with an an easy cylinder has parameterized (by u) p-invertible subsets.
- Given n and u of length $\ell(n)$, the embedding function e maps $\{0,1\}^{n}$ to $u \cdot\{0,1\}^{\leq q(n)}$ such that f is invertible on $u \cdot e\left(\{0,1\}^{n}\right)$.
- The embedding function e is independent of u but the inverting function g_{u} is allowed to depend on u.
- The definition can be generalized to allow e also to be (moderately) dependent on u.

One-way Functions with Easy Cylinders

- A function f with an an easy cylinder has parameterized (by u) p-invertible subsets.
- Given n and u of length $\ell(n)$, the embedding function e maps $\{0,1\}^{n}$ to $u \cdot\{0,1\} \leq q(n)$ such that f is invertible on $u \cdot e\left(\{0,1\}^{n}\right)$.
- The embedding function e is independent of u but the inverting function g_{u} is allowed to depend on u.
- The definition can be generalized to allow e also to be (moderately) dependent on u.

One-way Functions with Easy Cylinders

- A function f with an an easy cylinder has parameterized (by u) p-invertible subsets.
- Given n and u of length $\ell(n)$, the embedding function e maps $\{0,1\}^{n}$ to $u \cdot\{0,1\} \leq q(n)$ such that f is invertible on $u \cdot e\left(\{0,1\}^{n}\right)$.
- The embedding function e is independent of u but the inverting function g_{u} is allowed to depend on u.
- The definition can be generalized to allow e also to be (moderately) dependent on u.

One-way Functions with Easy Cylinders

Theorem (A-Watanabe 2009)

Let f be a 1-1, size-increasing, $P /$ poly-computable function with an easy cylinder. Then $K \equiv^{P / \text { poly }} f(K)$.
K : a special set with $K \equiv^{p}$ SAT
$\equiv^{P / \text { poly }}:$ isomorphic via $\mathrm{P} /$ poly-computable and invertible isomorphisms

Some Functions with Easy Cylinders: Multiplication

$$
g_{M}(x y)=x \cdot y,|x|=|y| .
$$

- Let $\ell(n)=n, e(y)=y$.
- Fixing a $u,|u|=n=|y|, g_{M}$ becomes $g_{M}^{\mu}(y)=u \cdot y$.
- This is easily invertible.

Some Functions with Easy Cylinders: Multiplication

$g_{M}(x y)=x \cdot y,|x|=|y|$.

- Let $\ell(n)=n, e(y)=y$.
- Fixing a $u,|u|=n=|y|, g_{M}$ becomes $g_{M}^{u}(y)=u \cdot y$.
- This is easily invertible.

Some Functions with Easy Cylinders: Multiplication

$g_{M}(x y)=x \cdot y,|x|=|y|$.

- Let $\ell(n)=n, e(y)=y$.
- Fixing a $u,|u|=n=|y|, g_{M}$ becomes $g_{M}^{\mu}(y)=u \cdot y$.
- This is easily invertible.

Some Functions with Easy Cylinders:
 Exponentiation

$g_{E}(e g p)=\left(g^{e}(\bmod p), g, p\right)$.

- Let $\ell(n)=2 n, e(y)=y$.
- Fixing a $u=e g,|u|=2 n=2|y|, g_{E}$ becomes $g_{E}^{u}(y)=\left(g^{e}(\bmod y), g, y\right)$.
- This is easily invertible.

Some Functions with Easy Cylinders: Exponentiation

$$
g_{E}(e g p)=\left(g^{e}(\bmod p), g, p\right) .
$$

- Let $\ell(n)=2 n, e(y)=y$.
- Fixing a $u=e g,|u|=2 n=2|y|, g_{E}$ becomes $g_{E}^{u}(y)=\left(g^{e}(\bmod y), g, y\right)$.
- This is easily invertible.

Some Functions with Easy Cylinders: Exponentiation

$g_{E}(e g p)=\left(g^{e}(\bmod p), g, p\right)$.

- Let $\ell(n)=2 n, e(y)=y$.
- Fixing a $u=e g,|u|=2 n=2|y|, g_{E}$ becomes

$$
g_{E}^{u}(y)=\left(g^{e}(\bmod y), g, y\right)
$$

- This is easily invertible.

Some Functions with Easy Cylinders: Concatenation

Let $g C\left(x_{1} x_{2} \cdots x_{m}\right)=g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{m}\right)$ for $\left|x_{1}\right|=\left|x_{2}\right|=\cdots=\left|x_{m}\right|$ and g a function with easy cylinder.

- Concatenation increases security.
- Fixing a $u=x_{1} x_{2} \cdots x_{m-1},|u|=(m-1) n=(m-1)|y|, g_{C}$ becomes $g_{C}^{u}(y)=g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{m-1}\right) g(y)$.
- Now use the easy cylinder property of g.

Some Functions with Easy Cylinders: Concatenation

Let $g C\left(x_{1} x_{2} \cdots x_{m}\right)=g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{m}\right)$ for $\left|x_{1}\right|=\left|x_{2}\right|=\cdots=\left|x_{m}\right|$ and g a function with easy cylinder.

- Concatenation increases security.
- Let $\ell(n)=(m-1) n, e(y)=y$.
- Fixing a $u=x_{1} x_{2} \cdots x_{m-1},|u|=(m-1) n=(m-1)|y|, g_{c}$ becomes
- Now use the easy cylinder property of g.

Some Functions with Easy Cylinders: Concatenation

Let $g_{C}\left(x_{1} x_{2} \cdots x_{m}\right)=g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{m}\right)$ for $\left|x_{1}\right|=\left|x_{2}\right|=\cdots=\left|x_{m}\right|$ and g a function with easy cylinder.

- Concatenation increases security.
- Let $\ell(n)=(m-1) n, e(y)=y$.
- Fixing a $u=x_{1} x_{2} \cdots x_{m-1},|u|=(m-1) n=(m-1)|y|, g_{C}$ becomes $g_{C}^{u}(y)=g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{m-1}\right) g(y)$.

Some Functions with Easy Cylinders: Concatenation

Let $g c\left(x_{1} x_{2} \cdots x_{m}\right)=g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{m}\right)$ for $\left|x_{1}\right|=\left|x_{2}\right|=\cdots=\left|x_{m}\right|$ and g a function with easy cylinder.

- Concatenation increases security.
- Let $\ell(n)=(m-1) n, e(y)=y$.
- Fixing a $u=x_{1} x_{2} \cdots x_{m-1},|u|=(m-1) n=(m-1)|y|, g_{C}$ becomes $g_{C}^{u}(y)=g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{m-1}\right) g(y)$.
- Now use the easy cylinder property of g.

A Conjecture

Easy Cylinder Conjecture

Every 1-1, size-increasing, $\mathrm{P} /$ poly-computable function has an easy cylinder.

A Conjecture

Easy Cylinder Conjecture

Every 1-1, size-increasing, $\mathrm{P} /$ poly-computable function has an easy cylinder.

Implies that all $\leq_{m}^{P / \text { poly }}$-complete sets for NP are $\mathrm{P} /$ poly-isomorphic.

Is It True?

- For most of the known one-way functions, it is easy to show they have easy cylinder.
- For P/poly-computable one-way functions, it is more involved.
- If g has an easy cylinder, how about g^{n} ? For example, g_{M}^{n} ?

Is It True?

- For most of the known one-way functions, it is easy to show they have easy cylinder.
- For $\mathrm{P} /$ poly-computable one-way functions, it is more involved.
- If g has an easy cylinder, how about g^{n} ? For example, g_{M}^{n} ?

Is It True?

- For most of the known one-way functions, it is easy to show they have easy cylinder.
- For $\mathrm{P} /$ poly-computable one-way functions, it is more involved.
- If g has an easy cylinder, how about g^{n} ? For example, g_{M}^{n} ?

Eliminating Nonuniformity?

- Transforming \leq_{m}^{p}-compleness to $\leq_{1, s i}^{P / \text { poly }}$-completeness, the nonuniformity is due to choice of R in the function $f(x)=(x, R)$.
- A random choice works with high probability.
- Can one find a deterministic way to choose R ?
- Transforming $\leq_{1, s i}^{p}$-compleness to $\leq_{1, s i, i}^{P / \text { poly }}$-completeness, the nonuniformity is due to:
this step becomes uniform.

Eliminating Nonuniformity?

- Transforming \leq_{m}^{p}-compleness to $\leq_{1, s i}^{P / \text { poly }}$-completeness, the nonuniformity is due to choice of R in the function $f(x)=(x, R)$.
- A random choice works with high probability.
- Can one find a deterministic way to choose R ?
- Transforming $\leq_{1, s i}^{p}$-compleness to $\leq_{1, s i, i}^{P / \text { poly }}$-completeness, the nonuniformity is due to:
- choice of e, and
- choice of g_{u}.
this step becomes uniform.

Eliminating Nonuniformity?

- Transforming \leq_{m}^{p}-compleness to $\leq_{1, s i}^{P / \text { poly }}$-completeness, the nonuniformity is due to choice of R in the function $f(x)=(x, R)$.
- A random choice works with high probability.
- Can one find a deterministic way to choose R ?
- Transforming $\leq_{1, s i}^{p}$-compleness to $\leq_{1, s i, i}^{P / \text { poly }}$-completeness, the nonuniformity is due to:
- choice of e, and
- choice of g_{u}.
- If e is uniform and there is a polynomial-time mapping from u to g_{u}, this step becomes uniform.

Thank You!

