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The Isomorphism Theorem for c.e. Class

Theorem (Myhill, 1955)

Let A and B be two ≤m-complete sets for c.e.. Then A ≡ B.

≤m-complete : many-one complete
≡ : isomorphic under computable isomorphisms
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Translation to the Class NP

Isomorphism Conjecture (Berman-Hartmanis, 1977)

Let A and B be two ≤p
m-comoplete sets for NP. Then A ≡p B.

≤p
m-complete : many-one polynomial-time complete

≡p : isomorphic under polynomial-time computable and
invertible isomorphisms (≡ p-isomorphic)
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Proof of the Isomorphism Theorem for c.e.
Class

Proof is in two steps:

Theorem (Step 1)

A ≤m-complete set for c.e. is also ≤1-complete.

Theorem (Step 2)

Let A and B be two ≤1-complete sets for c.e.. Then A ≡ B.

≤1-complete : one-one complete
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Translating Steps to NP

For a 1-1 function f , |f (x)| can sometimes be much smaller than |x |.
So an isomorphism between two ≤p

1-complete sets for NP may require
large time complexity.

To avoind this, we need to have ≤p
1,si -completeness.

Then the isomorphism can be computed in NP.

¡2-¿ ≤p
1,si -complete : complete under 1-1, size-increasing polynomial-

time reductions
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An Alternative Conjecture

Weak Isomorphism Conjecture

Let A and B be two ≤p
m-comoplete sets for NP. Then A ≡p

w B.

≡p
w : isomorphic under polynomial-time computable and

NP-invertible isomorphisms
NP-computable : computed by polynomial-time single-valued NTMs
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An Alternative Conjecture

Sufficient to prove that all ≤p
m-complete sets for NP are also

≤p
1,si -complete.

Hence, would be easier to prove.

Lacks symmetry: one direction of isomorphism is easier to compute
than the other.

For this reason, Isomorphism Conjecture is considered the “right”
translation.
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Partial Results

Theorem (Berman-Hartmanis, 1977)

Let A and B be two ≤p
1,si ,i -complete sets for NP. Then A ≡p B.

Mimics step 2 of Myhill’s proof.

≤p
1,si ,i -complete : complete under 1-1, size-increasing, and

polynomial-time invertible reductions
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Partial Results

To Prove

A ≤p
m-complete set for NP is also ≤p

1,si ,i -complete.

(Berman-Hartmanis, 1977) showed that all known ≤p
m-complete sets for

NP at the time were ≤p
1,si ,i -complete.
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Proving is Hard

Observation

If the Isomorphism Conjecture holds then P 6= NP.

Proof Sketch.
If the conjecture holds that all ≤p

m-complete sets are dense and there are
sparse sets in P.

Definition

Set A is dense if there exists an ε > 0 such that for every n: |A|≤n ≥ 2nε .
Set A is sparse if there exists a polynomial p such that for every n:
|A|≤n ≤ p(n).
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Proof Assuming P 6= NP is also Hard

Theorem (Kurtz, 1983)

There is an oracle A such that PA 6= NPA and the Isomorphism Conjecture
is false relative to A.

Theorem (Fenner-Fortnow-Kurtz, 1994)

There is an oracle B such that the Isomorphism Conjecture is true relative
to B.
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Proving A Consequence

At least the following consequence can be proved assuming P 6= NP:

Theorem (Mahaney, 1982)

If P 6= NP then no ≤p
m-complete set for NP is sparse.
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One-Way Functions

Definition

Function g is s(n)-secure one-way function if

g is polynomial-time computable, and

for every probabilistic polynomial-time TM M and for every n:

Pr
x∈R{0,1}n

[f (M(f (x))) = f (x)] <
1

s(n)
.

An s(n)-secure one-way function can be inverted efficiently only on 1
s(n)

fraction of strings of size n.

Manindra Agrawal (IITK) The Isomorphism Conjecture CiE 2009 16 / 49



One-Way Functions

Definition

Function g is s(n)-secure one-way function if

g is polynomial-time computable, and

for every probabilistic polynomial-time TM M and for every n:

Pr
x∈R{0,1}n

[f (M(f (x))) = f (x)] <
1

s(n)
.

An s(n)-secure one-way function can be inverted efficiently only on 1
s(n)

fraction of strings of size n.

Manindra Agrawal (IITK) The Isomorphism Conjecture CiE 2009 16 / 49



One-Way Functions

Definition

Function g is s(n)-secure one-way function if

g is polynomial-time computable, and

for every probabilistic polynomial-time TM M and for every n:

Pr
x∈R{0,1}n

[f (M(f (x))) = f (x)] <
1

s(n)
.

An s(n)-secure one-way function can be inverted efficiently only on 1
s(n)

fraction of strings of size n.

Manindra Agrawal (IITK) The Isomorphism Conjecture CiE 2009 16 / 49



Examples of One-Way Functions

Multiplication: gM(x , y) = x · y .

Believed to be 1 + 1
n5 -secure.

Exponentiation in a finite field: gE (e, g , p) = (g e (mod p), g , p).

Believed to be 1 + 1
n4 -secure.

Both are believed to be 1 + 1
nO(1) -secure even if the inverting TM is

allowed 2nε time for some small ε > 0.
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Increasing Security

Theorem

Let g = gM or gE . Define

ĝ(x1x2 · · · xm) = g(x1)g(x2) · · · g(xm)

where |x1| = |x2| = · · · = |xm| = n and m = |x1|2/ε. Then ĝ is

2nε/2-secure.

Thus, any probabilistic polynomial-time TM can invert ĝ on at most 2n

2nε/2

strings of size n.
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Encrypted NP-complete Set

Let g be a 1-1, size-increasing, 2nε-secure one-way function.

Consider set
g(SAT) = {g(x) | x ∈ SAT}

where SAT is the set of all satisfiable boolean formulas.

Since g is 1-1, and size-increasing, g(SAT) is ≤p
1,si -complete for NP.

Since g is hard to invert almost everywhere, g(SAT) may not be
≤p

1,si ,i -complete.

Studied by (Joseph-Young, 1985).
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Encrypted NP-complete Set

Encrypted Complete Set Conjecture (Joseph-Young,
1985)

There exists a 1-1, size-increasing one-way function g such that g(SAT) is
not ≤p

1,si ,i -complete for NP.

If the conjecture is true then the Isomorphism Conjecture is false.
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Scrambling Functions

Definition

Function g is a scrambling function if

g is 1-1, size-increasing and polynomial-time computable, and

there is no dense polynomial-time subset of range(g).

Observation

Scrambling functions are 2n−no(1)
-secure one-way functions if we restrict to

invertibility by deterministic polynomial-time TMs.
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Scrambling Functions

Theorem (Kurtz-Mahaney-Royer, 1989)

If scrambling functions exist then the Encrypted Complete Set Conjecture
is true.

Proof Sketch.
If SAT ≤p

1,si ,i g(SAT) via h then h(X ) is a dense polynomial-time subset of
range(g) for X a dense set in SAT ∩ P.
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Evidence for Scrambling Functions

Theorem (Kurtz-Mahaney-Royer, 1989)

Scrambling functions exist relative to a random oracle.

Theorefore, the Isomorphism Conjecture is false relative to a random
oracle.

However, it is not clear if scrambling functions exist in the real world.
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EXP

Theorem (Berman, 1977)

All ≤p
m-complete sets for EXP are also ≤p

1,si -complete.

Hence, the Weak Isomorphism Conjecture is true for EXP.

Similar for higher deterministic classes.
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NEXP

Theorem (Ganesan-Homer, 1989)

All ≤p
m-complete sets for NEXP are also ≤p

1-complete.

Similar for higher deterministic classes.
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An Isomorphic Degree

Theorem (Kurtz-Mahaney-Royer 1988)

There is a many-one degree inside 2-tt-complete degree of EXP such that
all sets in the degree are p-isomorphic to each other.

2-tt complete degree : class of complete sets under truth-table re-
ductions that make at most 2 queries.
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A Non-isomorphic Degree

Theorem (Ko-Long-Du 1987)

If P 6= UP then there is a 1-1, size-increasing degree inside 2-tt-complete
degree of EXP containing two sets that are not p-isomorphic to each other.

UP is the class of sets accepted by polynomial-time NTMs that have
at most one accepting path on any input.

P 6= UP iff there exist 1-1, size-increasing, 1-secure one-way functions.
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A Charecterization

Corollary (Ko-Long-Du 1987)

P 6= UP iff there is a 1-1, size-increasing degree that is not a p-isomorphic
degree.
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1-NL Functions

Definition

Function f is a 1-NL function if there exists a NTM with a one-way input
tape and work tape space bounded by O(log n) that computes f .

Theorem (A 1994)

Let A and B be two ≤1−NL
m -complete sets for NP. Then A ≡1−NL B.
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AC0 Functions

Definition

Function f is a AC0 function if there exists a (uniform) polynomial-size,
constant depth circuit family that computes f .

Theorem (AAR 1996, AAIPR 1997, A 2000, A 2001)

Let A and B be two ≤AC0

m -complete sets for NP. Then A ≡AC0
B.

All “natural” ≤p
m-complete sets for NP are also ≤AC0

m -complete.
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Some Observations

Translated to AC0 settings, there exist 2(log n)O(1)
-secure, 1-1,

size-increasing one-way functions.
I Function is computed by uniform AC0 circuit family and is secure

against polynomial-size non-uniform AC0 circuits of depth d (for some
d).

Yet, on a dense subset, these functions can be inverted by a depth
two AC0 circuit.
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Some Observations

The proof of Isomorphism Theorem for AC0 uses pseudorandom
generators, a stronger form of one-way functions.

So the one-way functions here help proving the conjecture!
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Using One-way Functions

Theorem (A 2003, A-Watanabe 2009)

Suppose there exist 2nε-secure, 1-1, size-increasing one-way functions.

Then ≤p
m-complete sets for NP are also ≤P/poly

1,si -complete.

≤P/poly
1,si -complete : computable by polynomial-time TMs that have

polynomial-sized advice available.
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Proof Idea

Use one-way function to construct a 1-1, size-increasing
pseudorandom generator, say h.

Let A be any ≤p
m-complete set for NP.

Let h(SAT× {0, 1}∗) reduce to A via g .

g must be 1-1 and size-increasing on most inputs otherwise it
contradicts pseudorandomness of h.

Now define a reduction f of SAT to SAT× {0, 1}∗ as: f (x) = (x ,R)
where R is a random string, |R| a large polynomial in |x |.
For most of R, g ◦h ◦ f is a 1-1, size-increasing reduction of SAT to A.

Fixing an appropriate R for each length gives the result.
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One-way Functions with Easy Cylinders

Definition

Let f be a 1-1, size-increasing, P/poly-computable function. Function f
has an easy cylinder if

There is a P/poly-computable embedding function e computable by
circuits of size q(n) on inputs of size n,

There exist polynomial `(n) with `(n) ≥ q(n),

For every n, for every u, |u| = `(n), there exists P/poly-computable
function gu such that

gu(f (u, e(x))) = x

for all x , |x | = n.
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One-way Functions with Easy Cylinders

A function f with an an easy cylinder has parameterized (by u)
p-invertible subsets.

Given n and u of length `(n), the embedding function e maps {0, 1}n
to u · {0, 1}≤q(n) such that f is invertible on u · e({0, 1}n).

The embedding function e is independent of u but the inverting
function gu is allowed to depend on u.

The definition can be generalized to allow e also to be (moderately)
dependent on u.

Manindra Agrawal (IITK) The Isomorphism Conjecture CiE 2009 41 / 49



One-way Functions with Easy Cylinders

A function f with an an easy cylinder has parameterized (by u)
p-invertible subsets.

Given n and u of length `(n), the embedding function e maps {0, 1}n
to u · {0, 1}≤q(n) such that f is invertible on u · e({0, 1}n).

The embedding function e is independent of u but the inverting
function gu is allowed to depend on u.

The definition can be generalized to allow e also to be (moderately)
dependent on u.

Manindra Agrawal (IITK) The Isomorphism Conjecture CiE 2009 41 / 49



One-way Functions with Easy Cylinders

A function f with an an easy cylinder has parameterized (by u)
p-invertible subsets.

Given n and u of length `(n), the embedding function e maps {0, 1}n
to u · {0, 1}≤q(n) such that f is invertible on u · e({0, 1}n).

The embedding function e is independent of u but the inverting
function gu is allowed to depend on u.

The definition can be generalized to allow e also to be (moderately)
dependent on u.

Manindra Agrawal (IITK) The Isomorphism Conjecture CiE 2009 41 / 49



One-way Functions with Easy Cylinders

A function f with an an easy cylinder has parameterized (by u)
p-invertible subsets.

Given n and u of length `(n), the embedding function e maps {0, 1}n
to u · {0, 1}≤q(n) such that f is invertible on u · e({0, 1}n).

The embedding function e is independent of u but the inverting
function gu is allowed to depend on u.

The definition can be generalized to allow e also to be (moderately)
dependent on u.

Manindra Agrawal (IITK) The Isomorphism Conjecture CiE 2009 41 / 49



One-way Functions with Easy Cylinders

Theorem (A-Watanabe 2009)

Let f be a 1-1, size-increasing, P/poly-computable function with an easy
cylinder. Then K ≡P/poly f (K ).

K : a special set with K ≡p SAT

≡P/poly : isomorphic via P/poly-computable and invertible
isomorphisms
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Some Functions with Easy Cylinders:
Multiplication

gM(xy) = x · y , |x | = |y |.

Let `(n) = n, e(y) = y .

Fixing a u, |u| = n = |y |, gM becomes gu
M(y) = u · y .

This is easily invertible.
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Some Functions with Easy Cylinders:
Exponentiation

gE (egp) = (g e (mod p), g , p).

Let `(n) = 2n, e(y) = y .

Fixing a u = eg , |u| = 2n = 2|y |, gE becomes
gu
E (y) = (g e (mod y), g , y).

This is easily invertible.
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Some Functions with Easy Cylinders:
Concatenation

Let gC (x1x2 · · · xm) = g(x1)g(x2) · · · g(xm) for |x1| = |x2| = · · · = |xm| and
g a function with easy cylinder.

Concatenation increases security.

Let `(n) = (m − 1)n, e(y) = y .

Fixing a u = x1x2 · · · xm−1, |u| = (m − 1)n = (m − 1)|y |, gC becomes
gu
C (y) = g(x1)g(x2) · · · g(xm−1)g(y).

Now use the easy cylinder property of g .
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A Conjecture

Easy Cylinder Conjecture

Every 1-1, size-increasing, P/poly-computable function has an easy
cylinder.

Implies that all ≤P/poly
m -complete sets for NP are P/poly-isomorphic.
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Is It True?

For most of the known one-way functions, it is easy to show they
have easy cylinder.

For P/poly-computable one-way functions, it is more involved.

If g has an easy cylinder, how about gn? For example, gn
M?
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Eliminating Nonuniformity?

Transforming ≤p
m-compleness to ≤P/poly

1,si -completeness, the
nonuniformity is due to choice of R in the function f (x) = (x ,R).

A random choice works with high probability.

Can one find a deterministic way to choose R?

Transforming ≤p
1,si -compleness to ≤P/poly

1,si ,i -completeness, the
nonuniformity is due to:

I choice of e, and
I choice of gu.

If e is uniform and there is a polynomial-time mapping from u to gu,
this step becomes uniform.
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Thank You!
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