
The Satisfiability Problem for

Probabilistic Ordered Branching Programs

Manindra Agrawal ∗

Dept. of Computer Science

Indian Institute of Technology

Kanpur 208016, India

Thomas Thierauf

Abt. Theoretische Informatik

Universität Ulm

89069 Ulm, Germany

Abstract

We show that the satisfiability problem for bounded-error proba-
bilistic ordered branching programs is NP-complete. If the error is
very small, however (more precisely, if the error is bounded by the
reciprocal of the width of the branching program), then we have a
polynomial-time algorithm for the satisfiability problem.

1 Introduction

Branching programs are an interesting computational model to investigate.
One reason for this is the tight relationship of the size of a branching program
to the space needed by (nonuniform) Turing machines [Mas76] (see [BS90]).
Another reason is the use of restricted kinds of branching programs in ap-
plications, as, for example, circuit verification (see [Bry92, MT98, Weg00]
for good overviews).

Definition 1.1 A (deterministic) branching program B in n variables
x1, . . . , xn is a directed acyclic graph with the following type of nodes. There
is a single node of in-degree zero, the initial node of B. All nodes have out-
degree two or zero. A node with out-degree two is an internal node of B and
is labeled with a variable xi, for some i ∈ {1, . . . , n}. One of its outgoing
edges is labeled with 0, the other with 1. A node with out-degree zero is a
final node of B. The final nodes are labeled either with accept or reject.
The size of a branching program is the number of its nodes.

∗Research done in part while visiting the university of Ulm, Germany. Supported in
part by an Alexander von Humboldt fellowship.

1

A branching program B in n variables defines an n-ary boolean func-
tion from {0, 1}n to {0, 1} in the obvious way: for an assignment a =
(a1, . . . , an) ∈ {0, 1}n, we walk through B, starting at the initial node, al-
ways following the (unique) edge labeled ai when the node has label xi, until
we reach a final node. If the final node is an accepting node, we define
B(a) = 1, and B(a) = 0 otherwise.

The restrictions on branching programs often considered bound the num-
ber of times a variable can be tested.

Definition 1.2 A branching program is called read-once, if, on each path
from the initial node to a final node, every variable occurs at most once as
a node label.

Of particular interest are read-once branching program where the vari-
ables are read in a certain fixed order.

Definition 1.3 A ordered branching program (also called ordered binary
decision diagram, OBDD for short) is a read-once branching program such
that there is a permutation π on {1, . . . , n} such that, if a path leads from a
node labeled xi to a node labeled xj, then π(i) < π(j).

An advantage of ordered branching programs is that one can efficiently
manipulate them. For example, given two ordered branching programs (of
the same order), one can easily construct a new one computing the conjunc-
tion of the given ones (viewed as boolean functions on the input variables).
Also, there are fast algorithms (in fact, linear time algorithms) to check the
equivalence of two ordered branching programs.

The main drawback of ordered branching programs is their limited com-
putational power. For example, multiplication requires exponential size or-
dered branching programs [Bry91]. (For more lower bounds see for example
[BRS93, BHR95, Juk89, KMW91, Pon95, Weg88].) It is therefore of great
interest to determine whether there is some less restrictive model in order
to be able to compute more functions within small size, but, at the same
time, to maintain all the nice properties ordered branching programs have.

For example read-once branching programs, in general, do not seem to
be appropriate: not only do many of the lower bound proofs for ordered
branching programs work as well in the read-once model, also, in general,
one cannot combine them according to boolean operations: there are exam-
ples of functions that have small read-once branching programs, but their
conjunction requires exponential size.

2

In the literature one can find many interesting restricted branching pro-
gram models. We refer the interested reader to [MT98, Weg00]. In this
paper we consider probabilistic branching programs introduced by Ablayev
and Karpinski [AK96].

Definition 1.4 Probabilistic branching programs are branching programs
with extra probabilistic nodes that have no variable label and unbounded
fan-out.

On some input, when we reach a probabilistic node, the edge on which
to proceed is chosen under uniform distribution out of all outgoing edges. A
probabilistic branching program accepts its input if the probability of reaching
the accepting node is at least 1/2. Otherwise the input is rejected.

A probabilistic branching program has bounded error if there is an δ > 0
such that the acceptance probability is either at most 1/2 − δ or at least
1/2 + δ on all inputs. The error ε is 1/2 − δ in this case.

The error is one-sided, if, in addition, rejected inputs have acceptance
probability 0.

We use BP-OBDD as a short hand for bounded-error probabilistic or-
dered branching programs.

Ablayev and Karpinski [AK96] exhibit a function f that requires
exponential-size read-once branching programs, whereas f can be computed
by polynomial-size BP-OBDDs.

Another example is Permutation-Matrix, the problem to decide
whether a given n × n 0-1-matrix is a permutation matrix, i.e., whether
there is precisely one 1 in every row and every column. The problem
Permutation-Matrix requires exponential-size nondeterministic read-
once branching programs [Juk89, KMW91], whereas it can be computed
by polynomial-size BP-OBDDs [Sau98].

We add a further example to this list: the Clique-Only function.
This was independently observed by M. Sauerhoff (personal communica-
tion). Given the adjacency matrix of a graph G with n nodes and a k ≤ n.
One has to determine whether G has a k-clique and the clique edges are the
only edges of G. Clique-Only requires exponential-size nondeterministic
read-once branching programs [BRS93]. We show that it can be computed
by polynomial-size BP-OBDDs.

On the other hand, the Indirect-Storage-Access and the Hidden-

Weighted-Bit function require exponential-size BP-OBDDs [Sau97]
(see [Abl97, Sau98] for more lower bounds).

It is easy to see that bounded-error probabilistic ordered branching pro-
gram are closed under boolean combinations. So the most interesting open

3

question with respect to this model is to ask for efficient satisfiability- or
equivalence tests. In this paper, we solve this open problem. However, we
give a negative answer with respect to the most interesting cases in Section 4:
the satisfiability problem for bounded-error probabilistic ordered branching
programs is NP-complete. Only if the error of the branching program is
bounded by the reciprocal of its width we have a polynomial-time algorithm
for the satisfiability problem. This is shown in Section 5. Because the equiv-
alence problem is reducible to the satisfiability problem, this also provides an
efficient equivalence test for probabilistic ordered branching program with
small error.

We start by providing some basic facts about probabilistic branching
programs in the next section.

2 Basic Properties

Ordered branching programs, OBDDs, are somehow similar to finite au-
tomata, with the difference that branching programs are a nonuniform
model and that the input might be read in a different order than just
from left to right. Many of the construction, however, done with finite au-
tomata can be adapted to ordered branching programs. For example they
have a canonical form [Bry86]: for any ordered branching program there is
a uniquely determined minimal equivalent one with respect to this order.
Since the minimization process can be carried out efficiently, this also pro-
vides a polynomial-time equivalence test. Another example is the construc-
tion of the cross product of two such programs that obey the same order.
This essentially allows to combine ordered branching programs according to
boolean operations [Bry86, Bry92].

We sketch the construction for two BP-OBDDs B0 and B1 that obey
the same order. Assume that B0 and B1 are layered such that there are
alternating probabilistic and deterministic nodes, and that furthermore all
variables appear on every path, so that the same variable is tested in every
deterministic layer. Edges go only from one level to the next. This can
easily be achieved by introducing redundant nodes. These are nodes which,
in case of a deterministic node, have both its edges going to the same node.
In case of a probabilistic node there is only one edge that goes to some
node with probability 1. Now we define program B: it has the same layers
as B0 and B1, the nodes of each layer are the cross product of the nodes
of B0 and B1 at the corresponding layer. Edges are defined such that B
simulates B0 and B1 in parallel. That is, there is an edge from node (u, v)

4

to (u′, v′) in succeeding levels of B if there is an edge from u to u′ in B0

and from v to v′ in B1. The size of B is bounded by |B0||B1| and the
number of paths that reach a node multiply: if some input x is accepted
by B0 with probability p0 and by B1 with probability p1, then B on input x
reaches the (accept,accept)-node with probability p0p1, the (accept,reject)-
node with probability p0(1 − p1), the (reject,accept)-node with probability
(1 − p0)p1, and the (reject,reject)-node with probability (1 − p0)(1 − p1).

Using the cross product, one can achieve probability amplification for
BP-OBDDs. Let B be such a program in n variables that computes some
function f with error 1/2 − δ. That is,

Prob[B(x) = f(x)] ≥ 1/2 + δ.

We apply the above cross product construction t times with B = B0 =
B1. This yields program Bt that consists of t factors B. The acceptance
of Bt is defined according to a majority vote on its t factors. The size
of Bt is bounded by |B|t. Since t is in the exponent, we have to choose t
constant in order to keep Bt within size polynomial in |B|. Therefore, by
standard arguments (for example using Chernoff-bounds), we can amplify
the correctness of B from 1

2 + δ to 1 − ε, for any constant 0 < ε < 1/2.

Lemma 2.1 ([Sau98]) Let B be a BP-OBDD that computes some func-
tion f with error 1/2 − δ and let 0 < ε < 1/2. Then there is a BP-OBDD
of size polynomial in |B| that computes f with error ε.

As a first application we show that BP-OBDDs can be combined accord-
ing to boolean operations.

Lemma 2.2 BP-OBDDs (with the same order) can be combined in polyno-
mial time according to any boolean operation.

Proof. BP-OBDDs can be complemented by exchanging accepting and
rejecting states. Therefore it remains to show how to construct the conjunc-
tion of two BP-OBDDs B0 and B1 with n variables. By Lemma 2.1, we can
assume that the error of each is at most 1/4.

The idea for constructing a BP-OBDD that computes B0 ∧ B1 is the
same as for deterministic OBDDs: assume that B0 and B1 are layered such
that deterministic and probabilistic node alternate and that all variables
occur on every path. Then we can build the cross product B = B0×B1 and
define the (accept,accept) node as the accepting node of B and the other
leafs as rejecting nodes.

5

Let a ∈ Σn. If a is accepted by both, B0 and B1, then B accepts a with
probability at least (3/4) (3/4) = 9/16. On the other hand, if a is rejected
by B0 or B1, then B accepts a with probability at most 1/4. �

3 The Computational Power

As already mentioned, there are some functions that can be computed by
small BP-OBDDs but require exponential size ordered (in fact, read-once)
branching programs. In this section we give some examples to demonstrate
how branching programs can use randomization.

Although polynomial size BP-OBDDs cannot multiply [AK98] they can
nevertheless verify multiplication. That is, given x, y, and z they can check
whether xy = z.

Theorem 3.1 BP-OBDDs can verify multiplication with one-sided error
and within polynomial-size.

Proof. Given n-bit numbers x and y and 2n-bit number z. Small branching
programs cannot handle such numbers. Instead, we do computations modulo
some small prime p.

For example it is easy to construct an ordered branching program that
computes (x mod p) in the sense that there are p final nodes numbered
0, . . . , p − 1 such that the program ends up in node (x mod p). Based on
this, we construct an ordered branching program Bp(x, y, z) that checks
whether

xy ≡ z (mod p).

Program Bp starts by computing (x mod p). It then reads the bits of y =
yn−1 · · · y0. Since

(x mod p) y ≡
n−1∑

i=0

(x mod p) 2iyi (mod p),

it can also compute (xy mod p). Now it remains to compute (z mod p) and
to compare it with (xy mod p). The size of Bp is O(p2n). Note that Bp is
ordered.

If indeed xy = z, then Bp will accept for all p. On the other hand, if
xy 6= z then B can accept anyway for some prime p, because we could still
have that xy ≡ z (mod p) in this case. Since these numbers are bounded
by 22n, there are at most 2n primes where our test can fail.

6

Our final program B therefore probabilistically branches to pro-
grams Bp1 , . . . , Bp4n , where p1, . . . , p4n are the first 4n prime numbers.
Each of those checks whether xy ≡ z (mod pi). If xy = z, then
Prob[B(x, y, z) accepts] = 1. Otherwise Prob[B(x, y, z) accepts] ≤ 1/2.

By the Prime Number Theorem p4n is polynomially bounded in n.
Therefore B has polynomial size. �

Another example is provided by the Clique-Only function, which was
independently observed by M. Sauerhoff 1 (personal communication). Recall
that on input of a graph G and a k, we have to decide whether G has a k-
clique and no other edges outside the clique.

Theorem 3.2 Clique-Only has polynomial-size BP-OBDDs with one-
sided error.

Proof. Let A be an adjacency matrix of a graph G with n nodes, and
k ≤ n. Graph G consists only of a k-clique iff

(i) there exist k rows such that each contains precisely k−1 ones and the
remaining rows are all zero, and

(ii) any two nonzero rows must be identical except for the positions where
they intersect the main diagonal.

Condition (i) is easy to check, even for deterministic OBDDs. The vari-
able order is row-wise, i.e., x1,1 < x1,2 < · · · < xn,n−1 < xn,n. Therefore it
remains to check condition (ii) with an BP-OBDD that has the same order,
and then apply Lemma 2.2.

Suppose we add a 1 at the diagonal positions of the nonzero rows of A.
Then condition (ii) says that the resulting nonzero rows must be identical.
Let r1, . . . , rn denote the rows of A and interpret them as binary numbers.
Introducing a one at the diagonal position of nonzero row rj corresponds to
adding 2n−j to rj . Therefore it suffices to check that for any two consecutive
nonzero rows, say rj and rk, we have

rj + 2n−j = rk + 2n−k. (1)

We construct a deterministic OBDD Bp that verifies equation (1) modulo
some small prime p. Program Bp looks for the first nonzero row, say j and
computes s = (xj + 2n−j mod p) by doing a binary count modulo p as in

1In fact, Sauerhoff considers the slightly more tricky case that only the upper triangular
part of the (symmetric) adjacency matrix is given as input.

7

the previous theorem. Then Bp checks for each forthcoming nonzero row k
that xk + 2n−k = s. (again by counting modulo p to determine the value
(xk + 2n−k mod p)). The size of Bp is O(n2p2).

Now we can again use the same technique as in Theorem 3.1 to obtain
a polynomial-size BP-OBDD that checks condition (ii). �

4 NP-Complete Satisfiability Problems

In this paper we are mainly interested in satisfiability and equivalence prob-
lems. Note that the satisfiability problem is at most as hard as the equiv-
alence problem, since satisfiability asks for (not) being equivalent with the
all-zero function.

Consider a read-once branching program. Here, the satisfiability problem
is trivial since it is enough to check that there is a path from the initial to
the accepting node. It is well known that already for the extension to read-
twice branching programs, the satisfiability problem is NP-complete. Only
in the restricted case that there are a constant number of layers of ordered
branching programs, all respecting the same order (so called k-OBDDs), the
satisfiability problem stays in P [BSSW98].

The above reachability argument still works for nondeterministic read-
once branching programs. (Also the argument in [BSSW98] for k-OBDDs
goes through.) However, this is not clear for probabilistic read-once branch-
ing programs, not even for ordered ones. The task here is to find an input
that is accepted with high probability by such a program B. What we can
do is the following: for every given input a ∈ {0, 1}n we can determine how
many paths in B lead to the accepting node, respectively, to the rejecting
node. That is, we can compute Prob[B accepts a] in polynomial time. The
satisfiability problem for probabilistic read-once branching programs (with
unbounded error) can be stated as

∃a : Prob[B accepts a] ≥ 1/2.

Therefore it is in NP. It is also NP-complete:

Proposition 4.1 The satisfiability problem for probabilistic ordered branch-
ing programs (with unbounded error) is NP-complete.

Proof. We provide a reduction from CNF-Sat. Let F =
∧m

i=1 Ci be
a CNF-formula with m clauses C1, . . . , Cm. We construct a probabilistic
ordered branching program BF such that

F ∈ Sat ⇐⇒ ∃a : Prob[BF accepts a] ≥ 1/2.

8

Let Bi be a deterministic ordered branching program that accepts if
clause Ci is satisfied on a given input. Program BF is constructed as follows.
The initial node of BF is a probabilistic node that branches 2m times. Of
the 2m edges, m lead to the initial nodes of programs Bi. The remaining m
edges go directly to the rejecting node.

It follows that BF accepts input a if and only if all the programs Bi

accept (recall that these are deterministic), which is only possible when a

satisfies F . �

When considering the case of bounded error , there is a subtlety on how
to define the satisfiability problem precisely: let B be a probabilistic ordered
branching program and fix the error to ε = 1/4. Then B accepts an input a,
iff Prob[B accepts a] ≥ 3/4. Additionally we also would have to check that,
in fact, B has bounded error on all inputs. However, already this latter
problem is coNP-complete.

Proposition 4.2 Given a probabilistic ordered branching program B and
an ε > 0. The problem to decide whether B is of bounded error ε is coNP-
complete.

Proof. The argument is essentially the same as for Proposition 4.1. Con-
sider the case ε = 1/4. Construct BF as above but with 4m−4 edges leaving
the initial node and 3m − 4 of them going directly to the rejecting node.
Then we have

F ∈ Sat ⇐⇒ ∃a : 1/4 < Prob[BF accepts a] < 3/4.

�

Hence, efficient satisfiability algorithms can only exist for the promise
version of the problem: given B and δ > 0, we take as a promise that B is in
fact a probabilistic ordered branching program with acceptance probability
bounded away from 1/2 by δ. With this assumption we want to decide
whether there exists an input a such that Prob[B accepts a] ≥ 1/2 + δ. If
the promise is not true, then we can give an arbitrary answer.

However, (unfortunately, from a practical point of view) even the promise
version of the satisfiability problem for BP-OBDDs is NP-complete.

Theorem 4.3 The satisfiability problem for BP-OBDDs is NP-complete.

Proof. Manders and Adleman [MA78] have shown that some specific Dio-
phantine equations so called binary quadratics, are NP-complete. More pre-
cisely, the following set Q defined over the natural numbers is NP-complete:

Q = { (a, b, c) | ∃x, y : ax2 + by = c }.

9

As a slight generalization of Theorem 3.1, BP-OBDDs can verify such
binary quadratics. That is, the set

Q′ = { (a, b, c, x, y) | ax2 + by = c }

can be accepted by a polynomial-size BP-OBDD, call it B.
For fixed a, b, c, we can construct a BP-OBDD Babc from B that com-

putes the subfunction of B with a, b, and c plugged in as constants. Recall
that B is deterministic except for the root node. Therefore we can ob-
tain Babc by reducing B appropriately. For example, to fix variable x1 to a1

in B, we construct Bx1=a1 as follows: eliminate all nodes labeled x1 in B
and redirect edges to such a node w to the node that follows the a1-edge
of w.

For all natural numbers a, b, c, we have that

(a, b, c) ∈ Q ⇐⇒ Babc is satisfiable.

This proves the theorem. �

Corollary 4.4 The equivalence problem for BP-OBDDs is coNP-complete.

5 An Efficient Satisfiability Test for BP-OBDDs

with Small Error

Ordered branching programs can be layered : by introducing redundant
nodes we can achieve that every variable occurs on every path of the pro-
gram. Then all nodes that test the same variable have the same distance to
the root, they form a layer of the program. The maximum number of nodes
in a layer is called the width of the program.

We can extend these notions to BP-OBDDs: here we also have proba-
bilistic layers that contain probabilistic nodes only. Then we require that
deterministic and probabilistic layers alternate. The width is again the max-
imum size of a layer.

The main result in this section is an efficient satisfiability test for BP-
OBDDs that have small error, namely, error bounded by 1/(width + 2).
That is, we consider the following problem:

Bounded-Width-BP-OBDD-Sat

Given a BP-OBDD B with error ε and width W such that ε < 1/(W +2).
Decide whether B is satisfiable.

10

Theorem 5.1 Bounded-Width-BP-OBDD-Sat ∈ P.

Proof. Let B be some BP-OBDD with n variables x1, . . . , xn, width W
and error ε < 1/(W + 2).

The Model. As described above, we can assume that B is layered, so
that probabilistic and deterministic layers alternate. We number the layers
according to their distance to the root. The root layer (which is a single
node) has number 0.

We will modify B and thereby change the probabilities a probabilistic
node branches to its successors. In the beginning, all probabilities have the
form 1/p if a node has p successors. Since we will also get other rational
numbers as probabilities, we generalize the BP-OBDD model and write the
probabilities on the edges, for example as pairs of integers in binary repre-
sentation.

Outline of the Algorithm. We want to find out whether B is satisfiable,
i.e., whether there exists an input such that B accepts with probability
greater than 1 − ε. We transform B layer by layer, starting at the initial
node, i.e. with layer ` = 0 and B0 = B. Suppose we have reached layer ` ≥ 0
and let B` denote the branching program constructed so far. Program B`

has the following properties which are invariants of our construction:

(I1) B` is deterministic up to layer `−1, and identical to B from layer `+1
downwards,

(I2) the error of B` is bounded by ε,

(I3) the width of B` is at most W + 1, and

(I4) B` is satisfiable iff B is satisfiable.

In general, B` accepts only a subset of the strings accepted by B. Nev-
ertheless, we ensure property (I4) which is enough to check the satisfiability
of B. In particular, the resulting branching program, after we have processed
the last level, is a deterministic ordered branching program. Since the sat-
isfiability problem for ordered branching programs is simply a reachability
problem on a directed graph, this will prove our theorem.

11

probabilistic

probabilistic

pW+1,W

vW

wW

p1,1 p1,W pW+1,1

1 0 10

uW+1

w1

v1

u1

test xt

Figure 1: Three consecutive layers of B`.

The Transformation of Layer `. We now describe how to process
layer ` ≥ 0. If layer ` is deterministic then define B`+1 = Bl and pro-
ceed to the next layer. So let layer ` be a probabilistic layer of B`. We
consider three consecutive layers as shown in figure 1. Let each layer have
the maximum number of nodes.2

Layer ` consists of probabilistic nodes u1, u2, . . . , uW+1. We can induc-
tively assume that the part of Bl from the initial node to the u-nodes
is deterministic.

Layer ` + 1 consists of deterministic nodes v1, v2, . . ., vW which all query
the same variable, say xt, for some t.

Layer ` + 2 consists of probabilistic nodes w1, w2, . . ., wW .

These nodes are connected as follows.

2If there are fewer nodes in some layer, we can add dummy nodes that lead to rejection
with probability 1.

12

probabilistic

probabilistic

probabilistic

probabilistic

test xt

test xt vb
i

ui

wk

(b)

b

qb,i,k =
s∑

l=1

pi,jl

vjs

b b b

pi,jspi,j2

ui

wk

vj2vj1

pi,j1

(a)

Figure 2: (a) All possible ways of getting from ui to wk in B` when variable xt

has value b. (b) In the modified program, node ui is deterministic and leads
to the new node vb

i if xt has value b. From vb
i we get to wk with probability

qb,i,k =
∑s

l=1 pi,jl
, which is precisely the probability to reach wk from ui

in B`. Therefore the modified program is equivalent to B`.

u-nodes with v-nodes: each node ui is connected to all the nodes vj with
the edge between them having probability pi,j (in case ui is not con-
nected to some node vj , we take the probability pi,j to be zero). We
have

∑
j pi,j = 1 for each 1 ≤ i ≤ W + 1.

v-nodes with w-nodes: the deterministic node vj is connected to
nodes we(j,0) and we(j,1) via edges labeled 0 and 1 respectively.

Now we modify the u- and v-nodes and the edges going out from them.
Figure 2 shows the changes at a fragment of B`.

Changing u-Nodes. Our first step is to make the nodes
u1, u2, . . . , uW+1 deterministic. For this we introduce 2(W + 1) new nodes
at layer ` + 1, call them v0

1 , v1
1 , v0

2 , v1
2 , . . ., v0

W+1, v1
W+1 (these nodes will

be probabilistic) that replace the old v-nodes. The u-nodes get label xt, the

13

variable queried by the old v-nodes, and we put the b-edge of ui to node vb
i ,

for b ∈ {0, 1}.

Changing v-Nodes. Next, we introduce an edge from node vb
i to the

node wk in layer ` + 2 and assign probability qb,i,k to it such that qb,i,k is
precisely the probability to reach wk from ui in B` if variable xt has value b.
This is achieved by summing over all probabilities pi,j such that node vj

leads to node wk for xt = b, i.e.,

qb,i,k =
∑

j
we(j,b)=wk

pi,j. (2)

Finally, delete all the old v-nodes and edges adjacent to them.
The branching program constructed so far is equivalent to B`: the prob-

ability to reach a node wk has not changed and, in particular, the error
probability is the same as in B`, i.e., at most ε.

Merging v-Nodes and w-Nodes. Now we have two consecutive lay-
ers of probabilistic nodes. We can merge the layer of w-nodes into the
v-nodes and change the probabilities on the edges going out from v-nodes
appropriately such that the previous probabilities to reach a node in the
layer below the w-nodes is not altered. Then we still have 2(W +1) v-nodes
and no more w-nodes. Let B ′

` be the branching program constructed so far.

A Problem and its Solution. If we would just use this process to
eliminate all the probabilistic nodes from B`, we might end up with an
exponential number of nodes in the final branching program. So we have
to reduce the number of v-nodes in B ′

`. More precisely, we promised to
maintain property (I3) which does not hold for B ′

`.
The idea now is to use the fact that we only want to know whether B`

is satisfiable: we can throw out some v-nodes from B ′

` as long as we can
guarantee that the reduced branching program is still satisfiable if B ′

` is
satisfiable.

We show that we can reduce the number of v-nodes to at most
W + 1. Then the resulting branching program, B`+1, fulfills the invariants
(I1), . . . , (I4) given in the outline of the construction above. In particular,
the width of B`+1 is bounded by W +1. Hence this completes the description
of the algorithm.

14

y1 yW

= acceptance probabilities for b

v2(W+1)v1 vi

qi,1 qi,W

a

Figure 3: Program B ′

` on input ab. Part a leads to vi, which branches to
the nodes in the next level with probabilities qi,1, . . . , qi,W , respectively. The
latter nodes accept b with probabilities y1, . . . , yW , respectively. Therefore
ab is accepted by B ′

` with probability
∑W

j=1 qi,jyj.

Reducing the Number of v-Nodes. Let us rename the v-nodes
back to v1, . . . , v2(W+1). Recall that there are no probabilistic nodes above
the v-nodes. Therefore, B ′

` is satisfiable iff there is a v-node vi such that
the acceptance probability of vi on some input is at least 1 − ε. Also, each
v-node has acceptance probability of either at least 1 − ε or at most ε on
any input.

For node vi, let qi,k be the probability to reach the k-th node in the
next layer (note that qi,k is independent of the input) as shown in figure 3.
We interpret these probabilities as a point qi = (qi,1, . . . , qi,W)T in the W -
dimensional vector space over the rationals, QW .

Any input for the probabilistic OBDD B ′

` can be split into two parts ab.
The first part a is used in the upper deterministic part, until some v-node is
reached, say vi. Consequently, the second part b is used below the v-nodes.
Now, let yb = (y1, . . . , yW)T ∈ QW be the acceptance probabilities of b

when starting at the nodes in the layer below the v-nodes. Then, with a

leading to node vi, we have

Prob[B′

` accepts ab] = qi · yb.

15

Therefore B ′

` is satisfiable iff there exist i and b such that q i · yb ≥ 1 − ε.
To see this, note that we can take any a that leads to such a node vi. Then
ab is accepted by B ′

`.
Suppose now that there are two v-nodes vi and vj such that qi ·yb ≥ 1−ε

and qj · yb′ ≥ 1 − ε, for some b and b′. Then there are at least two inputs
that are accepted by B ′

`, one via vi and one via vj. In this case we can delete
one of vi or vj from B′

`
3, and still maintain the property that the resulting

branching program is satisfiable if and only if B ′

` is.
If we were able to efficiently detect this case, then we could delete all but

one of the v-nodes. Unfortunately we don’t know how to do so. Instead,
we tighten the condition to delete a v-node. This will lead to the linear
programming problem (4) below that can be solved efficiently. Thereby we
end up with more than one remaining v-node, but, as we will show, with at
most W + 1 however.

Instead of tightening the above condition for deleting a v-node, we do
two relaxation steps of its negation: we keep node vi if vi accepts some b

and all other vj reject every b′.
The first relaxation is to change the universal quantifier for b′ into an

existential one, and to unify b and b′. That is, we keep node vi if vi accepts
some b that is rejected by all other v-nodes.

Criterion to keep a node vi: there exists a yb such that vi is
the only v-node that has acceptance probability q i · yb ≥ 1 − ε.

In other words, we keep vi if the following system of inequalities has a
solution yb for some b:

qi · yb ≥ 1 − ε, (3)

qj · yb ≤ ε, for j 6= i.

The second relaxation step is to make the above condition accessible for
linear programming: instead of probability vectors yb, that are associated
with some b, we consider vectors y ∈ (Q ∩ [0, 1])W . That is, we consider
products qi ·y that we call pseudo-acceptance probabilities, because y might
not occur as a probability vector yb for any b. But clearly, the range of y

includes all the actually appearing probabilities yb.
We relax inequalities (3) and get a linear program: a v-node vi is the

only one with pseudo-acceptance probability 1− ε if the following system of

3deleting , say, vi means to redirect the incoming edges of vi to the rejecting node, and
to cancel vi and its outgoing edges from B

′

`.

16

linear inequalities has a solution y = (y1, . . . , yW) ∈ QW :

qi · y ≥ 1 − ε,

qj · y ≤ ε, for j 6= i, and (4)

0 ≤ yk ≤ 1, for 1 ≤ k ≤ W.

After deleting a v-node for which the system (4) has no solution, we
repeat the above process again for the remaining v-nodes, until system (4)
has a solution for every remaining v-node. We show next that the number
of remaining v-nodes can be at most W + 1.

Bounding the Number of the Remaining v-Nodes. Let
v1, v2, . . . , vr be the v-nodes that remain after the above procedure, where
r ≤ 2(W + 1). Let q1, q2, . . . , qr be the associated probability vectors, and,
furthermore, let yi be a vector that satisfies the above system of inequali-
ties (4) for vi.

Consider the set Q = {q1, q2, . . . , qr}. We claim that Q is affinely inde-
pendent in QW , that is, the points in Q span a (r−1)-dimensional subspace
of QW (see [Grü67] for a reference). Since there can be at most W + 1
affinely independent points in QW , it follows that r ≤ W + 1.

By Lemma 5.2 below, to prove our claim that Q is affinely independent,
it suffices to show that for any S ⊆ Q there exists an affine plane that
separates S from Q − S (i.e., the points in S lie on one side of the plane
whereas the points in Q−S lie on the other). We can assume that |S| ≤ r/2
(otherwise replace S by Q − S).

The affine plane can be defined as the set of points x ∈ QW that fulfill
the equation

hS · x = 1 −
1

W + 2
, where

hS =
∑

qj∈S

yj .

For any point qi ∈ S we have:

hS · qi ≥ yi · qi ≥ 1 − ε > 1 −
1

W + 2
.

17

For any point qi ∈ Q − S we have:

hS · qi =
∑

qj∈S

yj · qi

≤ ε |S|

≤ ε
r

2
≤ ε (W + 1)

<
W + 1

W + 2

= 1 −
1

W + 2
.

This proves our claim.

The Running Time. To see that our algorithm runs in polynomial
time, we note that the system (4) of linear inequalities can be solved in
polynomial-time using Khachian’s algorithm [Kha79].

A more subtle point we have to take care of is the size of the probabil-
ity numbers that we write on the edges of our branching programs: they
should be represented with only polynomially many bits (in the size of BP-
OBDD B).

Because all numbers are between zero and one, it suffices to bound the
denominators. In the beginning, in the given BP-OBDD, all probabilities
are of the form 1/m, where m ≤ W . Let p1, . . . , pt be all primes up to W .
If prime pi occurs in the prime factorization of an m as above, then its
exponent is bounded by logpi

W . We show that in the prime factorization of
the denominators at the end of the construction, the exponent of prime pi

is bounded by 2n logpi
W . Since we consider only t ≤ W primes, it follows

that the denominators are bounded by W 2nW , which can be represented
with polynomially many bits.

In each round, there are two steps where we change the probabilities:

1. in the sum in equation (2). The new denominator is the least common
multiple of all the denominators in that sum. Considering its prime
factorization, the upper bound on the exponent of each prime remains
the same as before.

2. when we merge the v-nodes and the w-nodes, we have to multiply two
probabilities and add, maybe several. Just as before, addition doesn’t
matter. For a multiplication, one factor is a probability from a v-node

18

to a w-node which we have already changed, the other factor comes
from the branching probability of a w-node which is still from the
input branching program B. Hence, a multiplication may add another
logpi

W to the current exponent of prime pi.

Since B has depth 2n, we have up to 2n rounds of this construction. There-
fore, the exponent of prime pi is bounded by 2n logpi

W as claimed above.
We conclude that our algorithm runs in polynomial time.

Now Lemma 5.2 below completes the proof of the theorem. �

Lemma 5.2 Let Q ⊆ Qm such that for every S ⊆ Q there is an affine
plane hS that separates S from Q − S. Then Q is affinely independent.

Proof. Let Q = {q1, . . . , qr}. By definition, Q is affinely dependent if
there exist λ1, . . . , λr that are not all zero, such that

∑r
i=1 λi qi = 0 and∑r

i=1 λi = 0.
We embed Q in Qm+1 by mapping qi to q′

i = (qi, 1). Let Q′ denote the
embedding of Q in Qm+1. Then we have that Q is affinely dependent iff Q′

linearly dependent.
Corresponding to an affine plane that separates S from Q − S, we now

have a hyperplane that separates S ′ from Q′ − S′. Namely, for the affine
plane hS · x = d, where x ∈ Qm, we take the hyperplane (hS ,−d) · x = 0,
where x ∈ Qm+1.

Now, suppose that Q′ is linearly dependent. This implies that there are
λ1, . . . , λr ∈ Q such that not all of them are zero and

r∑

i=1

λi q′

i = 0. (5)

Let S′ be the set of those q′

i such that λi ≥ 0 and let hS′ be the hyperplane
that separates S ′ from Q′ − S′. By equation (5) we have

0 = hS′ · (
r∑

i=1

λi q′

i) (6)

=

r∑

i=1

λi (hS′ · q′

i) (7)

Now observe that each term in equation (7) is non-negative and at least
one term is non-zero. To see this note that if λi ≥ 0 then q′

i ∈ S′ and
hence hS′ · q′

i > 0. On the other hand, if λi < 0 then q′

i ∈ Q′ − S′ and

19

hence hS′ · q′

i < 0. Therefore this latter sum cannot be zero and we have a
contradiction. We conclude that Q must be affinely independent. �

Note that we cannot push a BP-OBDD with too large error into the range
of Theorem 5.1 by the standard amplification technique. This is because
there we use the cross-product construction which increases the width of
the resulting BP-OBDD. In the specific BP-OBDDs presented in Section 3
and Theorem 4.3 there is an alternative way of amplification: we could
choose more primes. But again this increases the width of the resulting BP-
OBDD. More precisely, consider the BP-OBDDs that verify multiplication
or binary quadratics. For each prime p, the sub-OBDD that verifies the
equation modulo p has width p2. So if we verify equations modulo the first
k primes p1, . . . , pk, then the width of the resulting BP-OBDD is

W =
k∑

i=1

p2
i ≥ k3.

The error ε can be as large as Θ(n/k). Hence we get

ε ≥ n/W 1/3 > 1/W 1/3 > 1/(W + 2).

This shows that neither the above polynomial-time algorithm can be gen-
eralized to significantly larger error bounds, nor can the NP-completeness
proof be generalized to significantly smaller errors, unless P = NP. It re-
mains an open question to settle the satisfiability problem for errors in the
range O(1

W 1/3) ∩ ω(1
W).

The equivalence problem for BP-OBDDs can be reduced to the satis-
fiability problem: let B0 and B1 be two BP-OBDDs, then B0 6≡ B1 iff
B = B0 ⊕ B1 is satisfiable. Program B can be constructed by Lemma 2.2.
Therefore we also get an efficient algorithm for (the promise version of) the
equivalence problem for BP-OBDDs of small error. Note that the width
of B is bounded by the product of the widths of B0 and B1 and the errors
sum up.

Corollary 5.3 The equivalence problem for BP-OBDDs of width W with
error ε is in P, provided that 2ε < 1/(W 2 + 2).

Acknowledgments

We would like to thank Somenath Biswas, Harry Buhrman, Lance Fortnow,
Jochen Messner, Jacobo Toran, and Klaus Wagner for helpful discussions.

20

References

[Abl97] F. Ablayev. Randomization and nondeterminism are incompa-
rable for ordered read-once branching programs. In 24rd In-
ternational Colloquium on Automata Languages and Program-
ming, Lecture Notes in Computer Science 1256, pages 195–202.
Springer-Verlag, 1997.

[AK96] F. Ablayev and M. Karpinski. On the power of randomized
branching programs. In 23rd International Colloquium on Au-
tomata Languages and Programming, Lecture Notes in Computer
Science 1099, pages 348–356. Springer-Verlag, 1996.

[AK98] F. Ablayev and M. Karpinski. A lower bound for integer multi-
plication on randomized read-once branching programs. Techni-
cal Report TR98-011, Electronic Colloquium on Computational
Complexity, http://www.eccc.uni-trier.de/eccc/, 1998.

[BHR95] Y. Breitbart, H. Hunt, and D. Rosenkrantz. On the size of binary
decision diagrams representing Boolean functions. Theoretical
Computer Science, 145:45–69, 1995.

[BRS93] A. Borodin, A. Razborov, and R. Smolensky. On lower bounds
for read-k-times branching programs. Computational Complex-
ity, 3:1–18, 1993.

[Bry86] R. Bryant. Graph-based algorithms for Boolean function manip-
ulation. IEEE Transaction on Computers, 35(6):677–691, 1986.

[Bry91] R. Bryant. On the complexity of VLSI implementations and
graph representation of Boolean functions with applications
to integer multiplication. IEEE Transaction on Computers,
40(2):205–213, 1991.

[Bry92] R. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318,
1992.

[BS90] R. Boppana and M. Sipser. The complexity of finite functions.
In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science. The MIT Press and Elsevier, 1990.

21

[BSSW98] B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener. Hierarchy
theorems for k-OBDDs and k-IBDDs. Theoretical Computer Sci-
ence, 205:45–60, 1998.

[Grü67] B. Grünbaum. Convex Polytopes. Interscience Publishers (John
Wiley & Sons), 1967.

[Juk89] S. Jukna. The effect of null-chains on the complexity of contact
schemes. In 7th Fundamentals of Computation Theory, Lecture
Notes in Computer Science 380, pages 246–256. Springer-Verlag,
1989.

[Kha79] L. Khachian. A polynomial algorithm in linear programming.
Russian Academy of Sciences Doklady. Mathematics (formerly
Soviet Mathematics–Doklady), 20:191–194, 1979.

[KMW91] M. Krause, C. Meinel, and S. Waack. Separating the eraser
Turing machine classes Le, NLe, and Pe. Theoretical Computer
Science, 86:267–275, 1991.

[MA78] K. Manders and L. Adleman. NP-complete decision problems for
binary quadratics. Journal of Computer and System Sciences,
16:168–184, 1978.

[Mas76] W. Masek. A fast algorithm for the string editing problem and
decision graphs complexity. Master’s thesis, Massachusetts In-
stitute of Technology, 1976.

[MT98] C. Meinel and T. Theobald. Algorithms and Data Structures in
VLSI Design: OBDD - Foundations and Applications. Springer-
Verlag, 1998.

[Pon95] S. Ponzio. Restricted Branching Programs and Hardware Verifi-
cation. PhD thesis, Massachusetts Institute of Technology, 1995.

[Sau97] M. Sauerhoff. Lower bounds for randomized read-k-times branch-
ing programs. Technical Report TR97-019, Electronic Col-
loquium on Computational Complexity, http://www.eccc.uni-
trier.de/eccc/, 1997.

[Sau98] M. Sauerhoff. Lower bounds for randomized read-k-times branch-
ing programs. In 15th Symposium on Theoretical Aspects of Com-
puter Science, Lecture Notes in Computer Science 1373, pages
105–115. Springer-Verlag, 1998.

22

[Weg88] I. Wegener. On the complexity of branching programs and deci-
sion trees for clique functions. Journal of the ACM, 35:461–471,
1988.

[Weg00] I. Wegener. Branching Programs and Binary Decision Diagrams-
Theory and Applications. SIAM Monographs in Discrete and
Applied Mathematics and its Applications. SIAM, 2000.

23

