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Abstract

For any class C closed under NC! reductions, it is shown
that all sets complete for C under logspace-uniform AC°
reductions are isomorphic under logspace-uniform ACO-
computable isomorphisms.

1 Introduction

One of the long-standing conjecture about the struc-
ture of complete sets is the isomorphism conjecture (pro-
posed in [9]) stating that all sets complete for NP under
polynomial-time reductions are polynomial time isomor-
phic. Recently this conjecture was shown to be true in
a restricted setting: all sets complete for NP under (non-
uniform) AC® reductions are (non-uniform) AC® isomor-
phic [2]. As all the well-known NP-complete problems are
also complete under AC° reductions (although there do ex-
ist NP-complete problems that are not complete under AC°
reductions [1]), this result proves that a very natural restate-
ment of the isomorphism conjecture is true. However, the
result is not completely satisfactory in one sense: the iso-
morphism is computable by non-uniform reductions even if
the original reductions are uniform. Although this draw-
back was removed to an extent in [1] who showed that the
same result holds when we replace non-uniform ACP reduc-
tions with p-uniform ACP reductions, there is still a substan-
tial gap: starting with Dlogtime-uniform (widely accepted
as the “right” notion of uniformity for AC? circuits because
of equivalences with first-order and alternation TM charac-
terizations) AC® reductions, one gets p-uniform AC? iso-
morphisms. Ideally, one would like to have the same uni-
formity condition to hold for the isomorphisms as for the
reductions.

In this paper, we close this gap, though not completely.
We construct AC? isomorphisms that are logspace-uniform
(even NC'-uniform) instead of p-uniform. Our approach
also suggests possible ways to close the gap completely.

The next section provides an outline of our proof. Sec-
tion 3 contains definitions, and the subsequent sections are
devoted to proving the result. We end with discussing pos-
sibilities for improvement.

2 Proof Outline

The isomorphism result of [2] is proved in following
three steps:

Gap Theorem: This shows that all complete sets under
AC? reductions (under any notion of uniformity) are
also complete under non-uniform NC° reductions.
This step is non-uniform.

Superprojection Construction: This proves that all com-
plete sets under NC° reductions are also complete un-
der a special kind of reductions called superprojec-
tions. This step is is p-uniform, i.e., if one starts with
uniform NCO reductions then the resulting superpro-
jections are p-uniform.

Isomorphism Construction: This provesthat all complete
sets under superprojections are isomorphic under AC°
isomorphisms. This step is Dlogtime-uniform: start-
ing with Dlogtime-uniform superprojections, one gets
Dlogtime-uniform AC® isomorphisms.

The proof of Gap Theorem uses the Switching Lemma
of [12] in the construction of NC° reductions and is the
reason for its non-uniformity. In [1], using the method
of conditional probabilities, the Switching Lemma of [12]
was derandomized to make the construction p-uniform.
The Superprojection Construction of [2] uses the Sunflower
Lemma of [11]. Clearly, the uniformity of both these steps
needs to be improved to obtain better results. It is useful to
note here that the Gap Theorem cannot be made Dlogtime-
uniform [2]. However, for our purposes it is enough if it can
be made AC®-uniform.



We first consider the Gap Theorem. The method of
conditional probability used to derandomize the Switching
Lemma in [1] appears inherently sequential. One possible
way to improve the uniformity is to find a different way
of derandomizing the lemma. There does exist a different
derandomization of the lemma in the literature [10]: they
obtain a pseudo-random generator against the Switching
Lemma of [13] that stretches a seed of length (logn)©(®
to n bits and “fools” the lemma for depth d circuits. How-
ever, it does not serve our purpose since derandomizing the
lemma using this generator would require superpolynomial
sized circuits.

We construct a new pseudo-random generator against the
Swithcing Lemma of [12]. This generator stretches a seed
of length O(log n) to n bits. We can thus derandomize the
lemma by cycling through all the seed values. We show that
the generator construction, and other related computations,
can be performed by logspace TMs thus making the Gap
Theorem logspace-uniform.

Next, we consider the Superprojection Construction.
This uses the Sunflower Lemma which again appears inher-
ently sequential. So we need a different construction here!
We adopt the approach of Gap Theorem: define a random
construction algorithm that suceeds with high probability
and then derandomize it using appropriate pseudo-random
generators. Following it, we obtain a new, and very sim-
ple, (randomized) construction of the superprojections, and
then derandomize it. All the computations is this construc-
tion can also be performed by logspace TMs.

Combining the above constructions togather with the
Isomorphism Construction, we get logspace-uniform AC°-
isomorphisms.

3 Basic Definitions and Preliminaries

We assume familiarity with the basic notions of many-
one reducibility as presented, for example, in [7].

A circuit family is a set {C), : n € N} where each
C), is an acyclic circuit with n Boolean inputs z1, ..., z,
(as well as the constants 0 and 1 allowed as inputs) and
some number of output gates y1,...,y.. {Cn} has size
s(m) if each circuit Cy, has at most s(n) gates; it has depth
d(n) if the length of the longest path from input to output
in Cy, is at most d(n). A family {C,} is uniform if the
function 1™ — C,, is easy to compute in some sense. In
this paper, we will consider various notions of uniformity:
Dlogtime-uniformity [8], AC®-uniformity, NC!-uniformity,
logspace-uniformity, and P-uniformity [3] (in addition to
non-uniform circuit families). We will follow the conven-
tion that whenever the function 1 — C,, is computed by a
circuit family, the circuit family is assumed to be Dlogtime-
uniform. So, for example, NC'-uniform means that the

function can be computed by a Dlogtime-uniform NC! fam-
ily of circuits.

A function f is said to be in AC? if there is a circuit
family {C,,} of size n®") and depth O(1) consisting of un-
bounded fan-in AND and OR and NOT gates such that for
each input z of length n, the output of C,, on input z is
f(x). We will adopt the following specific convention for
interpreting the output of such a circuit: each C,, will have
n* + klog(n) output bits (for some k). The last klog n out-
put bits will be viewed as a binary number r, and the output
produced by the circuit will be binary string contained in
the first » output bits. It is easy to verify that this conven-
tion is ACC-equivalent to any other reasonable convention
that allows for variable sized output, and for us it has the
advantage that only O(log n) output bits are used to encode
the length. It is worth noting that, with this definition, the
class of Dlogtime-uniform AC®-computable functions ad-
mits many alternative characterizations, including express-
ibility in first-order with {+, x, <}, [15, 8] the logspace-
rudimentary reductions of Jones [14, 5], logarithmic-time
alternating Turing machines with O(1) alternations [8] and
others. This lends additional weight to our choice of this
definition.

NC! (NC9) is the class of functions computed in this way
by circuit families of size n°() and depth O(logn) (O(1)),
consisting of fan-in two AND and OR and NOT gates. Note
that for any NC° circuit family, there is some constant ¢
such that each output bit depends on at most ¢ different in-
put bits. An NC° function is a projection if its circuit fam-
ily contains no AND or OR gates. The class of functions in
NCP was considered previously in [18]. The class of pro-
jections is clearly a subclass of NC° and has been studied
by many authors; consult the references in [4].

For a complexity class C, a C-isomorphism is a bijection
f such that both f and £~ are in C. Since only many-one
reductions are considered in this paper, a “C-reduction” is
simply a function in C.

(A language is in a complexity class C if its character-
istic function is in C. This convention allows us to avoid
introducing additional notation such as FAC?, FNC!, etc.
to distinguish between classes of languages and classes of
functions.)

A function is length-increasing if, for all z, lengthz <
lengthf(x); it is C-invertible if there is a function g € C
such that for all z, g(f (z)) = =.

4 Logspace-uniform Gap Theorem

In this section, we construct a pseudo-random generator
for the Switching Lemma. We then show how to use this
generator to construct a logspace-uniform version of Gap
Theorem.



4.1 Pseudo-random generator for Switching
Lemma

In this section, we show that the Switching Lemma
(of [12]) can be derandomized completely by constructing
a pseudo-random generator for it that stretches an O(logn)
bit random seed to n bits. For the construction of this
generator, we need to go through the proof of the Switch-
ing Lemma as in [12] and identify the derandomization
pointst. We will follow a simplification of the original proof
of [12]. This proof has been sketched at several places (see,
e.g., [1]), we will sketch it once more with the required pa-
rameter values.

In the proof of the Switching Lemma, a random restric-
tion is applied to the input bits of the circuit a number of
times. Each time an unset input bit is set with certain prob-
ability. Such a random restriction can be viewed as consist-
ing of two stages: in the first stage a subset of unset bits
is identified, and in the next stage all the unset bits not in
the subset are set to 0/1 randomly. With this view, we can
divide the random bits needed in each random restriction
into two types: (1) random bits needed to choose a subset,
and (2) random bits needed to give values to bits not in the
subset. We refer to these two types of random bits as subset
bits and value bits respectively.

We model a random source as a function S : {0,1}" —
{0,1}", where any z, |z| = r is a seed for the source and
S(z) is the output sequence of random bits from the source.

In this subsection, we will denote, by AC(d, w,n) the
class of circuits with AND, OR, and NOT gates (AND and
OR gates having unbounded fanin) of depth d and width w
having n input bits. We now state the lemma in the form
that we need:

Lemma 4.1 There exists a constant Aq(d, k) (depending
on d and & only) such that for large enough n and for any
circuit C in AC(d,n*,n), when a sequence of random re-
strictions is applied to C' with appropriate parameters, C
reduces, with probability at least 1 — Elf to a depth-2 cir-
cuit depending on at most Ag(d, k) of at least n'/40(d:k)
unset bits.

Proof Sketch. Let C' € AC(d,n*,n) be an ACO circuit of
depth d and width n* on n input bits. We can assume, with-
out loss of generality, that C' is arranged into d alternating
levels of AND and ORs of width n* on n% = n unset bits
with its leaves being depth ¢y = 1 decision trees. The proof
proceeds in d steps. After step ¢, the circuit reduces to a
depth d — i circuit of width n* on n% unset bits with leaves
being depth ¢; decision trees. Step i has ¢;  stages. We
now describe a single stage of step .

Lt isinteresting to note that the stronger Switching Lemmaof [13] does
not admit such a construction.

In the first stage of step 4, the bottom layer of the cir-
cuit consists of ANDs or ORs of depth ¢; 1 decision trees.
Assume it is ANDs of decision trees (proof for ORs is iden-
tical). Each subcircuit can be expressed as AND of size
¢;—1 ORs. Denote these by Q1, @2, ..., @, (there will
be at most n* such subcircuits since the width is n*). For
each @;, define set Maxset(( ;) to be the lex-first maximal
set of clauses in @); that are variable disjoint. If these are
more than flogn (the value of f will be indicated later)
then redefine @; to be the lex-first flogn of these clauses.
So each @); contain at most ¢;— f logn variables.

Now use subset bits to choose a random n%:/2 sized sub-
set of unset bits and then use value bits to set the remaining
unset bits. A simple calculation (based on Chernoff bounds
on tail distribution) shows that the probability that a @) ; has

more than ¢’ unset bits is less than (£<=L1798" )¢’ Choos-
ing ¢’ appropriately, we can make this probability less than
# for large enough n assuming that f does not depend
on n (which will turn out to be true later). Summing over
all @;s, the probability that any Maxset(@;) has more than
' unset bits is less than nl—g for large enough n.

Consider now those @;s for which |Maxset(Q;)| =
flogn. By the above calculation, most of the restrictions
will have at most ¢’ unset bits in it. We consider such re-
strictions only. Drop the (at most) ¢’ ORs that have an unset
bit from the set. As the set input variables take random val-
ues, the probability that a particular OR in the set will have
the value 1 is at most 1 — 1. And since the ORSs in the
set are disjoint, the probability that all of them will have
value 1 is at most (1 — 5= )/ 1°8™=¢", Choosing the value
of f appropriately and independent of n, we can make this
less than # for large enough n. Summing over all @;s,
the probability that some Q; with [Maxset(Q;)| = flogn
survives the restriction is less than # for large enough n.

We can now replace every surviving @; with a decision
tree of depth ¢’ whose leaves are ANDs of ORs of size at
most ¢;_1 — 1. This finishes stage 1 of step <. Repeating this
¢;—1 times will reduce the circuit to depth d — 4 circuit of
the kind mentioned above with suitable values of ¢; and 6;.
Further, this will happen with probability at least 1 — O ()
for large enough n. After d steps, the circuit will be simply
a depth ¢4 decision tree thus depending on at most 2¢¢ unset
bits out of at least n% for large enough n. Moreover, this

event will occur with probability at least 1-O () > 1—-5

for large enough n. Choosing Ag(d, k) = max{2°, 5}
completes the proof. ]

we now proceed with the derandomization. Notice the
following three crucial points about any particular stage of
the above proof:

1. In any stage, we have argued about properties of sets
of input bits of size at most ¢4 f log n.



2. The property of subset bits used is that given any sub-
set of size at most ¢4 f log n of a set of m > n1/A0(d:k)
elements, the probability that a random subset of size
m'/2 chosen from the subset space intersects the given
subset with cardinality more than ¢’ is at most #

3. The property of value bits used is that given any AND
of disjoint ORs, with AND of fanin at least flogn —
cq and ORs of fanin at most ¢4, the probability that a
random assignment to the inputs chosen from the value
space makes the AND output a 1 is at most —.

Therefore, if we take random restrictions from any sub-
set and value spaces satisfying the above conditions, the
proof will still go through. Of course, for each stage we
need to generate a fresh set of random bits independent from
the previous stages.

We can easily derandomize the construction of such
spaces, in fact, they already exist in the literature. \We now
describe these derandomizations.

4.1.1 Derandomizing value bits

This is straightforward: we need to use any ¢4 f log n-wise
independent source. However, such sources have seed size
of at least (logn)?. So, instead, we use a cq f log n-wise in-
dependent n,}+3 -biased source [16]. Efficient constructions
of such sources are known [16, 6]. We describe one of these
(given in [6]).

Let F' be the field of 2™ elements. The seeds for the
source are all pairs (z,r), z,r € F. Given (z,r), the i** bit
of the source is defined as z# - where “-” is the inner product
operation. The source provides up to 23™/4 bits and, if ¢ bits
are taken from it, they are 7t -wise independent with a bias
of at most z47z. We refer to this source as V(m).

4.1.2 Derandomizing subset bits

Here we use designs defined in [17]:

Definition 4.2 A (k, ¢, d)-design is a segeunce of sets S,
con S with |S;| = £and S; C {1,2,...,d}, such that for
everyi # j: |S; N S;| < k.

The construction of designs in [17] shows the following:

Lemma4.3 [17] For every ¢ > 0, there exists a
(¢,n'/?,n)-design with at least n¢/? sets. Further, any el-
ement of any set of this design can be computed in time
polynomial in logn and c.

Proof Sketch. Letm = 8" Leta = (ao,...,ac)
with a; € Fym, the field of 2™ elements. For polynomial
Pa(z) =30, ai - 2" let

Sa = {(z, Pa(2)) | v € Fom}.

It is straightforward to see that two such sets have intersec-
tion of size at most ¢ and there are n°/2 such sets. Comput-
ing an element of any set of this sequence is can clearly be
done in time polynomial in logn and c. ]

The seeds for our source will consist of all choices of
a for an appropriately chosen value of ¢. This source will
provide n¢/? subsets of size n'/? that are precisely the set
sequence of the (c,n'/2,n)-design above. Call this source
S(c,n).

The following lemma shows that this source is sufficient
to derandomize the subset bits.

Lemma4.4 Let X be any subset of {1,2,...,n}, and
|X| =t < ¢+ 1. Then exactly n(ct1=1)/2 sets from the
source S(c,n) contain X .

Proof. Set X gives rise to a system of ¢ linearly indepen-
dent equations with ¢+ 1 unknowns over the field Fy= . This
has exactly n{ct1=t/2 solutions. [

Corollary 4.5 Any set Y of k bits intersects with at most
2% sets from S(c, n) at more than ¢ bits.

Proof. For any subset of Y of more then ¢ bits, at most
one set from the source contains it. Therefore, there are less
than 2% sets of this kind. ]

Corollary 4.6 In the analyzed stage of the proof of 4.1,
choosing subsets from the source S(c’,n%) for appropri-
ately chosen ¢’ suffices.

4.1.3 The pseudo-random generator

It is now clear how to derandomize the Switching Lemma:
the proof of the lemma has a constant number of stages, and
each stage uses a random restriction on n® unset input bits
to leave n%/2 bits unset. For this stage, we use subset bits
from a S(c’,n®) source (for appropriately chosen ¢') and
use value bits from the source V(cqf logn). It is useful to
observe here that the size of the seed of the source S(c', n’)
keeps increasing across the stages: from one stage to next,
the number of unset bits gets square rooted, but the number
of bits in the set Maxset(( ;) increases (as it depends on the
constant ¢;) and so ¢’ has to be a much larger constant than
the one in previous stage.

So, given any circuit from AC(d,n*,n), a pseudo-
random generator against the Switching Lemma for these
circuits is obtained by a hybrid source #, that uses
A(d, k) pairs of sources—one for each stage—with ‘"
pair being (V(A(d, k) - logn), S(B(d,i),n'/2 ")) for an
appropriately chosen sequence of constants B(d, 1), ...,



B(d, A(d, k)). For the sake of simplicity, we will hence-
forth refer to the pair used for it stage as (V;, S;).

Givenaseed ((v1,81),---, (Va(d,k), Sa(d,k))) OF the hy-
brid source H,, the jt* bit of the source is calculated as
follows:

Test if the subset s1 contains number j = (5, p).
If not, then output the 5% bit of the value specified
by v;. Otherwise, repeat the algorithm for s, with
j = 7' and so on. If none of the subsets set the
4t bit then it remains unset.

By the arguments above, the derandomization of the
Switching Lemma follows:

Lemma 4.7 There exists a constant A(d, k) > 2 (depend-
ing on d and k only) such that for large enough n, and for
any circuit C' in AC(d,n*,n), when the input to C is set
using the restriction output by the hybrid source Hq, C re-

duces, with probability at least 1 — # to a depth-2 circuit

depending on at most A(d, k) of n/2*“" unset bits.

An interesting feature of using this source for obtaining
random restrictions is that all the restrictions set all except

.. . 1——1 _ . .
one bit in every successive block of n~ 24(@.* bits—this
. . i—1
follows since sources S(B(d, i),n'/?"" ") leave exactly one

unset bit in successive blocks of n1/2’ (so far unset) bits.
This feature will be very useful in our uniform construction.

4.2 Making Gap Theorem uniform

Theorem 4.8 LetC be any class closed under uniform-NC*
reductions. The sets hard for C under logspace-uniform
ACP reductions are also hard under logspace-uniform NC°
reductions.

Proof Sketch.

We first outline the proof of the Gap Theorem in [2] and
then mention the changes to be made. Given a set A that is
hard for the class C under AC° reductions and an arbitrary
set B inC, first an intermediate set B’ is constructed that is a
simple encoding of B in the following way: corresponding
to every z € B, B' contains several strings; string = can be
obtained by splitting any such string into equal sized blocks,
computing number of ones modulo 3 for each block, ignor-
ing a block if this value is 2, and concatenating the (one bit)
values obtained for remaining blocks. The set B’ reduces to
B via a Dlogtime-uniform NC! reduction, and so belongs
toC.

Now fix an ACP reduction of B’ to A given by circuit
family {C,}. According to the Switching Lemma, when
a random reduction on circuit C), is applied, it reduces to
an NCP circuit with high probability. Fix a restriction that
achieves this, as well as leaves at least three bits unset in

each block of input (input is an instance of B’ and it can
be shown that a random restriction will leave at least three
unset bits in each block with high probability provided the
size of block is large enough). Call such a restriction a good
restriction. Set all the input bits that feed into that part of
the circuit that determines the last O(logn) bits of the out-
put specifying the output length. Since the circuit has re-
duced to an NC? circuit, there would be only O(log n) such
bits. Set these bits and if needed, O(log n) additional bits,
to ensure that all the blocks in which these bits occur have
number of ones equal to two modulo 3.

Now define a reduction of B to B’ as follows: map i**
bit of input string z to a bit position corresponding to the
first unset bit in the i** block that contains unset bits setting
the remaining unset bits of the block such that the number of
ones in the block modulo 3 equals the value of it* bit of z.
The remaining output bits of the reduction are set according
to the settings given above. A composition of this reduction
with the reduction from B’ to A yields an NC° reduction
from B to A.

In this proof, the uniformity of the final reduction is de-
termined by the effort needed to identify a good restriction.
Other steps can be computed by Dlogtime-uniform NC! cir-
cuits. We use the derandomized Switching Lemma to iden-
tify a good restriction using a logspace TM. In fact, it would
be easier to explain the construction in terms of circuits, and
we show that a Dlogtime-uniform NC* circuit can compute
the restriction. This circuit has an ACP circuit (computing
a function) as input and needs to (1) find out a “good” seed
for the hybrid source constructed in the previous subsec-
tion, and (2) compute the good restriction using this seed.
The seed is good if the restriction generated by it succeeds
in all the stages as mentioned in the proof of 4.1 as well as
leaves at least three bits unset in every block of n!=¢ bits
for some e. The later property holds for all the seeds as
noted at the end of previous subsection. So we only need
to find a seed that succeeds at all the stages. As different
parts of the seed are used in different stages, it is enough
if an NC! circuit can verify if a given value of a particular
segment of the seed is good for a particular stage and then
output the (reduced) circuit after the application of the gen-
erated restriction. Since there are constant number of stages
and only polynomially many possible values of the seed, the
overall circuit would still be an NC! circuit.

Let us now concentrate on stage 1 of step ¢ of the proof
of 4.1. The bottom layer of the circuit given is an AND of
fanin ¢; 1 ORs. A good restriction will allow to tranform
this layer to constant depth decision trees whose leaves are
ANDs of fanin ¢;_; —1 ORs. One can test if a given restric-
tion is good by handling each AND gate seperately: guess
the constant number of unset bits that should go in the de-
cision tree, go through all possible settings of these bits and
see if these settings combined with the bits set by the re-



striction either set the AND gate output to 0 or reduce fanin
of each feeding OR by at least one. If yes, then we get a
transformation of this AND gate for the next stage as well.
The Lemma 4.7 guarantees that there will always exist such
a good restriction. This verification (and the transforma-
tion of the circuit for the next stage) can be easily done by
even a Dlogtime-uniform AC? circuit. The place where we
need an NC! circuit is in computing the restriction from the
seed segment. While the subset bits can be computed by
a Dlogtime-uniform ACP circuit (these need constant num-
ber of multiplications in a field of size poly(n)), the value
bits require computation of z* in a field of size poly(n) for
i up to n. This requires a Dlogtime-uniform NC! circuit
(although it may be possible to improve on this—see the
concluding section). ]

5 Logspace-uniform Superprojection Con-
struction

We start with the definition of a superprojection [2].

Definition 5.1 An NC° reduction {C,,} is a superprojec-
tion if the circuit that results by deleting zero or more of the
output bits in each C,, is a projection wherein each input bit
(or its negation) is mapped to some output.

In [2], for any given NCP° circuit on n inputs, a restric-
tion was constructed that left at least n¢ bits unset (for some
€ > 0) and the resulting circuit became a superprojection.
This construction is, however, p-uniform as it uses the Sun-
flower Lemma of [11]. In this section, we give a different
construction for the required restriction. The construction is
a randomized one that can be derandomized easily to yield
better uniformity conditions.

Let C be an NCP° circuit with n input bits, m output bits,
and of size n*. C can be easily transformed (by a Dlogtime-
uniform AC? circuit) into a circuit such that:

e each output bit of the circuit is an OR of ANDs of input
bits or their negations,

o the fanin of every gate of bounded by some constant ¢,
and

e for every output bit and for every input bit that feeds
into the circuit computing the output bit, there is some
setting of remaining input bits such that the output bit
value depends on the input bit value.

Now define a random restriction p of C' as follows: for
each input bit, leave it unset with probablllty =, set it to one
or zero with probability 7 €ach. Consider an |nput bit of C.
Say that it is good under the restriction p if it remains unset
and at least one of the output bits of C' now depends only on

this bit. An unset input bit will be good if for some output
bit whose circuit takes it as input, all the other feeding input
bits are set to values such that the output bit depends only
on this bit. By the above transformation, we have ensured
that an input bit that influences at least one output bit will

be good with probability at least 2 - °~ ' L

Since we can ensure (see Iater) that a large fractlon of in-
put bits of circuit C' influence some output bit, we have that
the expected number of good bits in a random restriction
are large. Non-uniformly fixing a restriction that has at least
these many good bits and also fixing all unset input bits that
are not good to arbitrary values, we get a restriction such
that the resulting circuit becomes a superprojection. This
will allow us to get a non-uniform version of the Super-
projection Construction. It can be made uniform provided
we can derandomize this construction. And derandomizing
this is easy! The only place we have used independence
of randomly assigned values is in deriving a lower bound
on the probability that a given input bit is good. The ar-
gument there actually needs only c-wise independence. So
if we use restrictions whose values are c-wise independent,
we can still find a restriction that given the Superprojection
Construction. And to get c-wise independent restriction val-
ues, it is enough to sample from a 2c¢-wise independent dis-
tribution. Such distributions with polynomial sized sample
spaces are well known (see for example []). We can now
prove the logspace-uniform version of the Superprojection
Construction:

Theorem 5.2 For every class C closed under Dlogtime-
uniform NC! reductions, every set hard for C under
logspace-uniform NC° reductions is hard under logspace-
uniform one-one, length-increasing superprojections.

Proof. Again we start by providing a brief sketch of the
construction as given in [2] and then mention the modifica-
tions. Let A be hard for C under NCP reductions. Take any
set B in C and define a new set C' accepted by the following
procedure (the definition of this set is slightly different from
the one used in [2]):

On input y, let y = 1%02. If k does not divide ||,
then reject. Otherwise, break z into blocks of k&
consecutive bits each. Let these be wjuous ... up
Accept if thereisani, 1 < ¢ < p, such that u; =
1¥. Otherwise, reject if there isan4, 1 < i < p,
such that u; = 0. Otherwise, for each i, 1 <
1 < p, label u; as null if the number of ones in it
is 2 modulo 3; as zero if the number of ones in it
is 0 modulo 3; and as one otherwise. Letv; = €
if u; is null, 0 if u; is zero, and 1 otherwise. Let
x = vivs - - - Up, and accept iff z € B.

This definition is almost same as the one of set B’ in the
previous proof. The difference being in the behaviour when



a block is all ones or all zeroes. We need this to ensure that
at least one bit in each block of input bits influences some
output bit.

It is straightforward to see that C' reduces to B via a
Dlogtime-uniform NC* reduction. Therefore, C' € C by the
closure properties of C. Since A is NC°-hard for C, there
exists an NC° reduction of C' to A. Let this be given by
the family of circuits {D,,}. In the construction of [2], Sun-
flower Lemma [11] is used to identify n¢ (for some € > 0)
good input bits in D,, and then a projection reduction is
constructed of B to C that maps input bits to the good bits
ensuring that the instance of C' thus obtained encodes the
input instance of B.

Instead of Sunflower Lemma, we now use the derandom-
ized construction described above. Notice that we need to
ensure that the restriction that we construct should not set
bits in any block to all zeroes or all ones. We ensure this
by making the block size ©(logn) bits long and choosing
restrictions from a O(log n)-wise independent, —-biased
source instead of a 2c-wise independent one. This ensures
that when a restriction is chosen from this source, then with
high probability no block gets all zeroes or ones. It also
ensures that every block will have at least three unset bits
with high probability. To identify a restriction that satisfies
these conditions and contains a large number of good bits,
we only need a Dlogtime-uniform NC? circuit, and once the
restriction is identified, a projection reduction can be con-
structed that maps bits of instance of B to good bits. While
constructing the projection, we need to ensure that (1) none
of the blocks get all zeroes or all ones, (2) when an input
bit is mapped to a good bit in a block, all the other bits in
the block are set such that the number of ones equals zero
modulo 3, and (3) all the input bits can be mapped in this
way to good bits.

(3) is ensured automatically since there are Q(n) good
bits and therefore Q(ﬁ) blocks containing good bits.
(1) is ensured by the choice of restriction, and (2) is en-
sured by setting the remaining unset bits (there will be at
least two) so that the number of ones is zero modulo 3 (as
in the previous proof). It is easy to see that all this can be
done by a Dlogtime-uniform NC! circuit. ]

6 Dlogtime-uniform Isomorphisms?

The ultimate goal of this direction of work is to obtain a
completely uniform version of the AC® Isomorphism The-
orem. This now looks possible. We have developed tech-
niques to bring down the uniformity condition of [1] from
polynomial-time to Dlogtime-uniform NC!. If we notice
carefully, the steps in our construction that require unifor-
mity weaker than Dlogtime-uniform AC? are:

1. To compute a bit from the hybrid source defined in sec-
tion 4.1.3, we need to compute z¢ fori < n in a field of
size poly(n). The current best way of uniformly com-
puting this is via a NC! circuit. However, it may be
possible to compute it by a Dlogtime-uniform AC° cir-
cuit. Another way of getting around this problem is to
use a different e-biased O(log n)-independent source.
For example, if we use a different source from [6] that
is based on distribution of quadratic residues in a finite
field, its bits can be computed by a Dlogtime-uniform
AC? circuit.

2. To ensure that the number of ones in a block of n!~¢
bits equals zero modulo 3 in the proof of Gap Theo-
rem of section 4.2. Not only does this step require an
NC! circuit, it cannot be done by even a non-uniform
ACO circuit in general. It seems essential to use blocks
of size n'~¢ since the Switching Lemma only leaves
n® bits unset. One way to get around this obstacle is
to use a derandomized version of Hastad’s Switching
Lemma [13]: this lemma leaves n/(logn) ") bits un-
set, and so the block size need be only (logn)?™).
Addition of these many bits can be easily done by
Dlogtime-uniform ACP circuits.

3. To ensure that there are a large number of good bits in
the chosen restriction in the proof of Theorem 5.2, one
needs to count the number of good bits under the re-
striction. This requires at least a TC circuit. Similarly,
during the construction of the projection, the 4t* input
bit needs to be mapped to the i** good bit and to iden-
tify the i** good bit we need to count the number of
good bits to the “left” of any given bit, again requiring
a TCPY circuit. It seems that we need to have a different
construction in order to improve the uniformity condi-
tion here. However, the underlying philosophy should
be the same (get a randomized construction and then
derandomize) as this seems best suited for obtaining
high degree of uniformity.
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