Hard Sets and Pseudo-Random Generators for
Constant Depth Circuits

Manindra Agrawal

Department of Computer Science
IIT Kanpur
Kanpur 208016, India
manindra@iitk.ac.in

Abstract. It is shown that the existence of a set in E that is hard for
constant depth circuits of subexponential size is equivalent to the exis-
tence of a true pseudo-random generator against constant depth circuits.

1 Introduction

Pseudo-random generators against a class of circuits are functions that take a
random seed as input and output a sequence of bits that cannot be distinguished
from a truly random sequence by any circuit in the class. They play an impor-
tant role in many areas, particularly in cryptography and derandomization (see,
e.g., [BM84,Ya082]). In this paper, we will be interested in derandomization as-
pect of pseudo-random generators, and therefore, will use the following definition
(as given in [NW94]):

Definition 1. For the class of circuits C, function G is called a (£ — n) pseudo-
random generator against C if

— G = {Gn}n>0 with Gy, : {0,1}*™ s {0,1}",
— G, is computable in time 201
— for every n, and for every circuit C € C having n input bits,

S|

| prObme{O,l}" {C(@) =1} - PrObye{o,l}f(n){C(Gn(y)) =1} <

To derandomize a randomized algorithm, one uses a (£ — n) pseudo-random
generator against a class of circuits that include the circuit family coding the
algorithm, and feed the output of the generator as random input bits to the
algorithm for each value of the seed, and then calculate the fraction of ones
in the output. Of course, this modified algorithm takes more time—the time
taken to compute the generator for every seed value times the time to run the
algorithm on every output of the generator. To minimize the time taken, one
needs to reduce £(n): the best that can be achieved is £(n) = O(logn) and then
the increase in time complexity is by a factor of polynomial only. Pseudo-random
generators that achieve this seed size are called true pseudo-random generators:

Definition 2. For the class of circuits C, function G is called a true pseudo-
random generator against C if G is a (£ — n) pseudo-random generator against
C with £(n) = O(logn).

While true pseudo-random generators against specific algorithms (i.e., the
class against which the generator works include circuits for a specific algorithm
only) are known, very few unconditional pseudo-random generators are known
against natural classes of circuits. Perhaps the most notable amongst these are
((logn)°@ s n) pseudo-random generators against the class of depth d and
size n circuits [Nis91].

In a seminal work, Nisan and Wigderson [NW94] exhibited a connection
between pseudo-random generators and hard-to-approximate sets in E:

Definition 3. For a set A and circuit C' with n input bits, let

advo(A4) =| prob,e(o,13-[C(7) = A(#)] — prob,eo,13-[C(x) # A(2)] | -

Here we identify A with its characteristic function. For a size bound s(n) of
circuits, let adv(,)(A) be the mazimum of advc(A) where C varies over all size
s(n) circuits.

Set A € E is hard-to-approximate by circuits of size s(n) if adv,(,)(A) <

1
s(n) "
Nisan and Wigderson showed that:

Nisan-Wigderson Theorem 1. [NW94] There exist (£ — s(£°)) pseudo-random
generators against class of size s(£°) circuits (for some size bound s and con-
stant ¢ > 0) if and only if there exist sets in E that are hard-to-approzimate
by circuits of size s(¢%) (for some constant d > 0).

In fact, the pseudo-random generator of [Nis91] is constructed using the above
theorem and the fact that there exists a set (e.g. PARITY [Has86]) that is hard-

_1
to-approximate by circuits of size 2¢°“ and depth d (the above theorem of
Nisan and Wigderson holds in the presence of depth restriction too).
An interesting special case is that of true pseudo-random generators, i.e.,
when s(£) = 29(9), In that case, [NW94] showed that both the constants ¢ and
d can be set to one, and thus we get:

Nisan-Wigderson Theorem 2. [NW94] There ezist true pseudo-random gen-
erators against class of size 20t circuits for some constant 0 < & < 1 if and
only if there exist sets in E that are hard-to-approximate by circuits of size
2¢ for some constant 0 < e < 1.

One of the major implication of the existence of above true pseudo-random
generators is that BPP = DP. In the following, we restrict our attention to true
pseudo-random generators only as these have the most interesting implications.
So, n = 29 throughout the paper.

Although [NW94] provides evidence that true pseudo-random generators ex-
ist, it is not clear that hard-to-approximate sets, as required, do exist in E. On
the other hand, it is easier to believe that there exist sets in E that cannot be
solved by subexponential size circuits—in other words, there is a set in E such
that advyee(A) < 1 for some 0 < € < 1. Therefore, a major line of research in
the last ten years has been to construct true pseudo-random generators from
this weaker assumption. The approach taken was to start with a set A in E
with advyee(4) < 1, and derive another set B € E from A such that B is
hard-to-approximate by 2¢¢ size circuits as required in the above theorem.

The above aim was achieved in three steps. First, [BFNW93] constructed—
starting from a set A! € E with advys«(A') < 1—a set A2 € E such that
advyse (A?) < 1— . Then, in [Imp95], a third set A® was constructed from A?
with advyeee (A%) < 2, and finally in [IW97] a set A* was constructed from A3
with advye (A*) < 527 thus achieving the desired generalization of the Nisan-
Wigderson Theorem 2. In [STV99] two alternative constructions were given for
the same result.

The work in this paper is motivated by the following question: what is
the hardness condition needed for constructing true pseudo-random generators
against classes of circuits more restricted than the class of polynomial-sized cir-
cuits (the class of circuits in the Nisan-Wigderson Theorem 2 is polynomial-sized
in the generator output size, and exponential-sized in the generator input size)?
A natural way of defining such circuits is by restricting their depth. So we can
pose this question for several natural classes of small depth circuits, e.g., ACO,
TCOY NC!, NC, etc. In analogy with the above result, we should perhaps expect
that to construct pseudo-random generators against polynomial-sized circuits of
depth d, we need a hard set against subexponential sized circuits of depth O(d).

We first observe that the constructions given in [BFNW93,Imp95,IW97] have
the following property: starting with a set that is hard to compute by the class
of circuits of size 2°¢¢ and depth d, the constructed set is hard-to-approximate by
circuits of size 2¢¢ and depth d — O(1) (for some €, a > 0) provided the majority
gate is allowed in the original class of circuits. This implies that for all circuit
classes C that include TCP, one can construct true pseudo-random generators
against C using a set in E that is hard to compute by subexponential sized
circuits of the same depth (within a constant factor) as in C.

Therefore, our question is answered for all the well-known circuit classes
except for the class AC?. ACO circuits are polynomial-sized constant depth cir-
cuits and it is known that they cannot compute the majority function [Has86].
Therefore, the construction of [BFNW93,Imp95,IW97] does not give the ex-
pected result. Further, this seems to be a fundamental bottleneck as the other
two constructions given in [STV99] also require at least threshold gates. So we
have a intriguing situation here: even though there exist nearly true pseudo-
random generators against AC? circuits (given by Nisan [Nis91]) that are un-
conditional, we do not seem to get conditional true pseudo-random generators
against AC® under a condition whose stronger forms give true pseudo-random
generators against larger classes of circuits! It is useful to note here that true

pseudo-random generators against ACP circuits are interesting in their own right:
their existence would imply that approximate DNF-counting can be derandom-
ized [KL83].

In this paper, we close this gap in our knowledge to show that:

Theorem 1. There exist true pseudo-random generators against class of size
29t and depth O(d) AC® circuits for some constant 0 < & < 1 if and only if
there exist a set in E that cannot be computed by AC® circuits of size 27* and
depth O(d) for some constant 0 < v < 1.

The idea is to exploit the unconditional pseudo-random generators of Nisan.
The generator of Nisan stretches a seed of size (logn)°(4 to n bits and works
against depth d, size n ACP circuits. Moreover, every output bit of the gener-
ator is simply a parity of a subset of seed bits. Now the crucial observation is
that parity of poly(logn) bits can be computed by AC® circuits, and so if we
compose the Nisan generator with any given circuit C' of depth d and size n,
we get another ACP circuit of a (slightly) larger depth and size that has only
poly(logn) input bits (as opposed to n in C) and yet the circuit accepts roughly
the same fraction of inputs as C. A careful observation of the constructions
of [BENW93,Imp95,NW94, NW94] yields that if the pseudo-random generator
constructed through them needs to stretch a seed of £ bits to only poly(£) bits
(instead of 2¢¢ bits), then we need to start from a set in E that is hard to com-
pute by circuits of size 29"t depth d that have majority gates over only poly ()
bits (instead of over 29() bits). Such majority gates can be replaced by AC®
circuits of size 2°(9). Therefore, we only require sets in E that are hard to com-
pute by size 2°°¢ and depth d’ AC? circuits! A minor drawback of the result is
that the true pseudo-random generators that we obtain approximate the fraction
of inputs accepted by a circuit C' within m as opposed to % in all the
other cases. However, for many applications, e.g., derandomizing approximate
DNF-counting, this weaker approximation is sufficient.

The organization of the paper is as follows: in the next section we analyze
the existing constructions and in Section 3 we give our construction.

2 Depth increase in existing constructions

The construction in [BENW93,Imp95,IW97,NW94] can be divided into five stages:

Stage 1. Given a set A; in E such that advye,¢(A;) < 1, construct a function
f ={f:} in E such that for any €; < €, and for any circuit C of size 2¢/¢,
the fraction of inputs on which C can compute f; correctly is at most 1 — 13%
This construction was given in [BFNW93].

Stage 2. From the function f construct a set Ay € E such that for any s < ey,
advgee(A4g) <1 — l% This construction was given in [GL89].

Stage 3. From the set As construct a set Az € E such that for any €5 < €3,
advyee(As) < 1o. This construction was given in [Imp95].

Stage 4. From the set Az construct a set A4 € E such that for any €4 < €3,
advyese (As) < 5i7. This construction was given in [TW97).

Stage 5. using the set A4, construct a true pseudo-random generator G = {G,, }
with G, : {0,1}°0%8") s {0, 1}" against circuits of size n. This, of course,

was given in [NW94].

We now describe each of these constructions. The correctness of all the con-
structions is shown using the contrapositive argument: given a circuit family
that solves the constructed set (or function) with the specified advantage, we
construct a circuit family that solves the original set (or function) with an ad-
vantage that contradicts the hardness assumption about the set. For our pur-
poses, the crucial part in these arguments would be the depth and size increase
in the constructed circuit family over the given circuit family. We do not need
to worry about the complexity of the constructing the new set from the original
one—this is an important to keep in mind as often this complexity is very high
(e.g., in Stage 1 and Stage 4).

Several times in the constructions below, we make use of the following (folk-
lore) fact about computing parity or majority of £ bits:

Proposition 1. The parity or majority of £ bits can be computed by ACO circuits
of size 0(21) and depth d.

Hastad [Has86] provided a (fairly tight) corresponding lower bound:
Lemma 1. The parity or majority of £ bits cannot be computed by AC® circuits
of size 21ﬁ and depth d.

2.1 Stage 1: Analyzing Babai-Fortnow-Nisan-Wigderson’s
construction

Construction of f Function f is an small degree, multi-variate polynomial
extension of the set A; over a suitable finite extension field of F5. More specifi-
cally, function f(x), |z| = ¢, is defined as follows (we assume £ to be a power to
two for convenience):

Fix field F = Fj2. Let k = £~ Define polynomial P(y1,ys,.-.,yx)

2logt”
over F' as:
k
P(yi,yo,--yp) = > o > Ai(vvsop) - [] 6w wa),
v1:|vy|=log £ vg:|vg |=log £ i=1
where

Hv:lv\:log LAVFY; (yz - U)
Hv:|v\=log LAvHY; (vi - ’U)
Let = 122 - - -, with |z;| = 2log¥. Then,

f(z) = P(x1,2a,...,2k).

215@ variables and each variable has degree at most

6’1}1’ (yz) =

Polynomial P has k =

Correctness of construction Suppose that a family of circuits {C;} of size
2¢7¢ exists such that for every ¢, Cy can correctly compute f on more than 1 — e%
fraction of inputs. We use this circuit family to construct a circuit family that
correctly decides f, and therefore A, everywhere.

Fix £ and z, |z| = £. String = can be viewed as a point in the k-dimensional
vector space over Fyz. Select a random line passing through z in this space. It is
easily argued that with probability at least %, on such a line, Cp will correctly
compute f on at least 1 — Z% fraction of points. Notice that when restricted to
such a line, polynomial P reduces to a univariate polynomial P’ of degree at
#zge. Randomly select #zge + 1 points on this line and use circuit Cy to
find out the value of f on these. Clearly, with probability at least 1 — @ the
computed value of f would be correct on all the points. Interpolate polynomial P’
using these values and then compute the value of f(z) using P’. The probability
that f(z) is correctly computed is at least 3 - (1 — @) > 2. Repeat the same
computation with different random choices £2 times and take the value occurring
maximum number of times as the value of f(z). The probability that this is
wrong would be less than 2% Finally, fix a setting of random bits that work for
all 2¢ different x’s. The circuit implementing this algorithm correctly computes
f everywhere (the circuit is non-uniform though).

Let us now see what is the size and depth of this circuit, say C’, as compared
to C¢. Once all the random choices are fixed, C' just needs to use Cy on % +1
different inputs (computed by xoring a fixed string to), and then take a linear
combination of the output values!. As there are O(£2) outputs each of size £,
this can be done by a AC? circuit of size 2°(6). Thus the size of the circuit C’ is
at most 2¢1¢ as long as €; > €; contradicting the assumption. Notice that depth
of C' is only a constant more than of Cy and C does not have any majority gate
except those already present in C,.

most

2.2 Stage 2: Analyzing Goldreich-Levin’s construction

Construction of A Set A, is defined as: zr € A, iff || = |r| = £ and
f(x)-r =1 where ‘- is the inner product.

Correctness of the construction Assume that a circuit family {C,} of size
2¢2¢ is given such that advc,(A2) > 1 — %. As we later need this result for
smaller advantages too, we give the construction assuming that adve,(A42) > ¢.
Fix £ and z, |z| = {. Define circuit C" as follows:

! This linear combination is the degree zero coefficient of the interpolated polynomial
P'. Notice that circuit C' does not need to interpolate P’ (which actually may not
be possible to do by subexponential sized constant depth circuit) since the points
at which values of f are given are fixed (once the random choices are fixed) and
therefore, the inverse of the corresponding van der Monde matrix can simply be
hardwired into C’.

Let ¢t = c¢-log/ for a suitable ¢ > 1. Randomly choose ¢ strings r1, . .., r¢
with |r;| = £. For each non-empty subset J of {1,...,t}, let rj = ®icyr;
(these r;’s are pairwise independent and this is exploited in the proof).
Fix s, |s| = t and compute o7 = ®;c;5; where s; is the it? bit of s. Now
compute it" bit of f(z) as the majority of the 2¢ — 1 values (obtained by
varying J) o5 ® Coy(z,7; ® €') where e is an £-bit vector with only the
it? bit one. Finally, output the guess for f(z) thus computed for each of
the 2t — 1 values of s.

It was shown in [GL89] that for at least ¢ fraction of inputs z, f(x) is
present in the list of strings output by the circuit C! with probability close to
one. Now there are two ways to design a circuit C" that outputs f(z) depending
on the value of ¢. If (= sz then C” randomly picks one string output by
C' and outputs it. The probability that it succeeds is close to 571 = 7oy Fix
the internal random bits used by this circuit by averaging. The resulting circuit
correctly outputs f(z) on at least (3 fraction of inputs.

The second way is for ¢ > 2. In this case, C" selects the right string from the
output list of C’ as follows (suggested in [Imp95]): randomly choose O(£) many
strings 7 € {0, 1}* and for each string u output by C’ test if u-r = Cay(z,7) and
output the string u for which the largest number of r’s satisfy the test. It was
shown in [Imp95] that suitably fixing random strings r, if f(z) appears in the
output list then C" would certainly output it. Therefore, the fraction of inputs
on which C" is correct is at least (2.

In either case, the depth of the circuit C" is only a constant more than of
Csy. Although C" uses majority gates, they are only over £(1) many inputs and
so can be replaced by constant depth subexponential ACP size circuits.

Notice that the above two constructions cannot handle ¢ between eo% and

o(1). However, these values of { are never required in the constructions?.

2.3 Stage 3: Analyzing Impagliazzo’s hard-core construction

This stage has three substages. In the first substage, starting from set Ay with
advyeye (A2) < 1— 157, set A’ is constructed with adv,e, (A’) < 1— g for any
€ < €. In the next stage, set A” is constructed from A’ with advyer (A") <
1- %61 for any €” < €’. And in the third substage, from A", set A3 is constructed
with advyee (A%) < 15 for any e < €.

All the three substages are identical. We describe only the first one.

Construction of A’ Set A’ is defined as: rs € A" iff |r| = ¢ ¢, |s| = 2¢ and
r-g(s) = 1 where g(s) = Aa(z1)A2(z2) - - - Aa(Zcp) With 21, . . ., Ty, |zi| = £, (for
an appropriate constant c¢) generated from s in a pairwise-independent fashion—
let s = s152 with |s1] = |s2]| = ¢, then z; = 51 - ¢ + 52 in the field Fye.

% In fact there is a third way that works for all values of ¢. However, it uses error-
correcting codes and decoding these appears to require more than constant depth
subexponential size circuits. So we cannot use it.

Correctness of the construction Let a circuit family {C} of size 2¢'4 be
given such that adve, (A’) > 1 — 1. First invoke the (second) Goldreich-Levin
construction to conclude that there exists a circuit family {C}} of size 20°¢ for
€' < §' < €; that computes function g(s) on at least (1 — gz)* > 1— gz fraction

of inputs. Fix an £. Define a circuit C" as:

On input z, |z| = ¢, randomly select an 4, 1 < i < ¢+ £. Then randomly
select first half s of the seed s and let so = x + s1 - ¢ (this ensures that =
occurs as z;). Use s to generate x1, ..., Zc.¢. Output the it* bit of C 2
as guess for Ay (z).

It was shown in [Imp95] that, for any given set S C {0,1}¢ with |S| > %,
when input z is randomly selected from S, the probability that C"(y) = Aa2(y)
is at least %

From the circuit C”, construct another circuit C""" as: take ¢2 copies of C"
(using different random bits for each one), and take the majority of their output
values. For any z, if the probability of C""' incorrectly computing As(z) is more
than 2% then it must be that C" incorrectly computes As(z) with probability
more than % By the above property of C", there cannot be more than % such
2’s. Therefore, on at least 1 — 4 fraction of inputs, C"' computes A, correctly
with probability at least 1 — 57. Now fix the random bits of C"' such that the
resulting circuit computes Ay correctly on at least 1 — # fraction of inputs.

As for the size and depth increase, circuit C'" (as well as the final circuit)
uses one majority gate (on £? inputs) at the top and one bottom layer of parity
gates (on £ inputs). It also uses £2 copies of C" in parallel. Therefore, the size of
the circuit is at most 2¢2¢ since €5 > ¢’ and depth is only a constant more. This
contradicts the assumption about A,.

The above construction of circuit C"' is used again later with different pa-
rameters: starting with a circuit C" that computes the given set with probability
at least 1 + € on any subset of strings of size O(2%), we can use the above con-
struction to obtain a circuit C" that computes the set on a constant fraction
of inputs in a similar fashion. This circuit is constructed by taking the major-
ity of O(%) copies of another circuit. The value of € would be crucial in our
calculations there.

2.4 Stage 4: Analyzing Impagliazzo-Wigderson’s construction

Construction of A4 Set A4 is defined as: rs € Ay iff |r| = £, |s| = k¢, and
r-g'(s) = 1 where ¢'(s) = As(x1)As(x2)--- A3(x¢) with z;s generated from s
via a generator whose output is XOR of the outputs of an expander graph based
generator and a NW-design based generator.

Correctness of the construction The construction is this stage is very similar
to the one in previous stage. Let a circuit family {C;} of size 2¢4¢ be given such
that advg, (A4) > 517 Invoke the (first) Goldreich-Levin construction to obtain

Deal -

a circuit family {C}} of size 2¢¢ computing function g' on 57 fraction of inputs
for € > ¢4.

Fix and £. Construct a circuit C"' in a similar fashion (although the analysis
becomes different) that computes A3z with probability at least % + %7 (for any

26”2
€" > €') on any given set of size % and then construct C"" from C" by taking the
majority of O(22¢"¢) copies of C". As before, it can be shown that C"' computes
As correctly with probability more than 1 — 3 on all but { fraction of inputs.
Fixing random bits of C"' suitably gives a circuit that correctly computes A3
on at least 13 fraction of inputs.

The size of circuit C" is at most 2¢3¢ since €3 > €”’. The depth of C"' is still
only a constant more than that of C; since the output of the generator used
in construction of A4 can be easily computed: the output of the generator gets
fixed upon fixing the random bit values apart from £ fixed positions where the
string x is written.

However, the majority gate at the top of C" has 29() inputs. This cannot
be done using AC? circuits in constant depth and 2°” size for any § > 0. In fact,
this is the only place where the depth condition is violated.

2.5 Stage 5: Analyzing Nisan-Wigderson’s construction

Construction of generator Pseudo-random generator G, is defined as: given
k-logn length seed s, compute n “nearly disjoint” subsets of bit positions in the
seed of size t - logn each (¢t < k). Let the strings written in these positions be
T, - eny T, T3] =t -logn. Output Ag(z1)As(z2) - - As(zy,).

Correctness of the construction Let C be a circuit of size n such that

S|

| prOme{O,l}" {C(z) =1} - PrObse{o,l}k-n {C(Gn(s) =1} [>

Define circuit C? as:

On input z; and Ay(x1) -- - Ag(x;_1), randomly select a bit b and a string
r of length n — i. Compute 0 = C(A4(z1) - - - A4(z;—1)br). Output b & o.

It was shown in [NW94] that for at least one i, C? correctly computes A4 (z;)
on at least % + # fraction of inputs.

Exploiting the property that the subsets of bit positions determining each
of z1, ..., x;_1 are nearly disjoint from those determining x;, one can fix the
random bits of C* and of the seed s except for those bits that determine z;
such that the advantage of C* in computing A4(x;) is preserved and the value of
A4(z;) (for j < i) is needed by the circuit (as z; varies) for at most n different
inputs. So all values of A4 needed by the circuit (at most n?) can be hardwired
into it, thus eliminating the need of providing A4(z1) - - - A4(z;—1) as part of the
input.

Let the final circuit be C”. The size of C" is O(n?) and adven(Ag) > 25
on inputs of size ¢ - logn. For a suitable choice of ¢t and k, this contradicts the
hardness of A4. The depth of C” is only a constant more than the depth of
C as the only additional computation needed is to select the correct hardwired
values of A4(x1), ..., As(x;_1) depending on the input z; (this is a simple table
lookup).

2.6 Analyzing constructions of Sudan-Trevisan-Vadhan

The above bottleneck prompts us to look at other constructions of true pseudo-
random generators present in the literature: there are two such constructions
known given in [STV99]. However, both these constructions have similar bottle-
necks. We point out these bottlenecks below:

First construction. This construction uses a false entropy generator. This gen-
erator makes use of the hard-core result of Impagliazzo [Imp95]. The value
of € that the construction requires in the hard-core result is 557 . So this
has the same problem as the construction of [IW97]: it requires to compute
the majority of 2909 bits.

Second construction. This construction actually shows that stage 3 and 4
above can be bypassed. In other words, the multivariate polynomial P has
enough redundancy to directly ensure that no circuit family of size 25¢ can
compute the function on more than 2% fraction of inputs. However, the proof
for this result is far more involved than the proof of stage 1. In the proof, to
interpolate the polynomial correctly on a random line, at least 2%¢ samples
are needed. This requires, amongst other things, xoring of 2%¢ bits and also
computing 2%‘th power of a given element in a field of size 2°(©). None of
these can be performed by constant depth 2009 sized AND-OR circuits.

3 Proof of Theorem 1

The problem in working with AC? circuits is that they are too weak to do even
simple computations. But we can use this drawback to our advantage! Since good
lower bounds for AC? circuits are known [Has86], one can construct uncondi-
tional pseudo-random generator against such circuits. In [Nis91], Nisan used
lower bounds on parity function to obtain pseudo-random generators against
depth d, size n ACP circuits that stretch seeds of size (logn)°(% to n bits. More-
over, each output bit of these generators is simply parity of some of the seed
bits. Therefore, each output bit of the generator can be computed by an AC°
circuit, of size n°(!) and depth O(d).

So, given an AC? circuit C' of depth d and size n that accepts é fraction of in-
puts, when we combine this circuit with the pseudo-random generator of [Nis91],
we get another ACP circuit of depth O(d) and size O(n?) that has only (logn)°(@
input bits and still accepts § £ % fraction of inputs. Let us try to construct a
true pseudo-random generator against such a circuit using the Nisan-Wigderson

construction. This generator needs to stretch O(logn) bits to (logn)?(® bits. If
we examine the Nisan-Wigderson construction of the generator, it is apparent
that—if we fix the approximation error to W instead of %—such a gen-
erator can be constructed provided there exists a set A € E such that for any
depth O(d) circuit family {C¢} of size 2°¢, advc,(A) < o@y- Now notice that
such a set can be easily constructed by modifying the stage 4 of the construc-
tion! Since instead of € = 557 we now have € = 757, the majority gate needed

in the construction will have a fan-in of only ¢9(? and this can be done by
constant depth AND-OR circuits of subexponential size®. Hence the overall con-
struction now becomes six stage one: first three stages are identical to the ones
described above; the fourth stage is modified for weaker approximation needed;
the fifth stage uses Nisan-Wigderson construction for pseudo-random generator
that stretches the seed only polynomially; this stretched seed acts as seed for
the Nisan generator in the final stage that stretches the output to n bits.

It is interesting to note that each output bit of this pseudo-random generator
is simply an XOR of several bits of the characteristic function A;: the multi-
variate polynomial construction in Stage 1 is just an XOR of some input bits;
Stage 2, 3, and 4 constructions are clearly simple XORs (computing which bits
to XOR requires some effort though); the fifth stage merely copies some bits
from input to output; and the last stage (it uses parity function) is also xoring
some bits.

Acknowledgements

An anonymous referee’s suggestions have helped to make the writeup more read-
able. Eric Allender and Adam Klivans pointed out a wrong claim made in an
earlier version of the paper.

References

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponen-
tial time simulations unless EXPTIME has publishable proofs. Computa-
tional Complezity, 3(4):307-318, 1993.

[BM&4] M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM Journal on Computing, 13:850-864, 1984.

[GL89] O. Goldreich and L. A. Levin. A hardcore predicate for all one-way func-
tions. In Proceedings of Annual ACM Symposium on the Theory of Com-
puting, pages 25-32, 1989.

[Has86] J. Hastad. Computational limitations on small depth circuits. PhD thesis,
Massachusetts Institute of Technology, 1986.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In
Proceedings of Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 538-545, 1995.

3 Alternatively, one can use a construction (given in [Imp95]) that decreases the ad-
vantage to N+U using k-wise independent generation of strings. This avoids the
construction of [IW97] altogether.

[TW97]

[KL83]

[Nis91]
[NW94]

[STV99]

[Yao82]

R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Proceedings of Annual ACM
Symposium on the Theory of Computing, pages 220-229, 1997.

R. M. Karp and M. Luby. Monte-Carlo algorithms foe enumeration and
reliability problems. In Proceedings of Annual IEEE Symposium on Foun-
dations of Computer Science, pages 56—64, 1983.

N. Nisan. Pseudo random bits for constant depth circuits. Combinatorica,
11(1):63-70, 1991.

N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Sys.
Sei., 49(2):149-167, 1994.

M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without
the XOR lemma. In Proceedings of Annual ACM Symposium on the Theory
of Computing, pages 537-546, 1999.

A. C. Yao. Theory and applications of trapdoor functions. In Proceedings
of Annual IEEE Symposium on Foundations of Computer Science, pages
8091, 1982.

