

U A 

P I T

 L B

Thesis submitted in
Partial Fulfilment of the

Requirement of the Degree of

Doctor of Philosophy (Ph.D)
in Computer Science

by

Ramprasad Saptharishi

Chennai Mathematical Institute
Plot H1 SIPCOT IT Park
Padur PO, Siruseri 603 103

April 2013

Declaration

I declare that the thesis “Unified Approaches to Polynomial Identity Testing and Lower
Bounds” submitted by me for the degree of Doctor of Philosophy is the record of
work carried out by me during the period from August 2007 to April 2013 under the
guidance of Prof. Manindra Agrawal. is work has not formed the basis for the award
of any degree, diploma, associateship, fellowship, titles in this or any other university
or other similar institution of higher learning.

April 2013 Ramprasad Saptharishi

Chennai Mathematical Institute
Plot H1, SIPCOT IT Park, Siruseri,
Kelambakkam 603103
India

Certificate

is is to certify that the Ph.D. thesis submitted by Ramprasad Saptharishi to Chen-
nai Mathematical Institute, titled “Unified Approaches to Polynomial Identity Testing
and Lower Bounds” is a record of bona fide research work done during the period 2007
– 2013 under my guidance and supervision. e research work presented in this thesis
has not formed the basis for the award of any degree, diploma, associateship, fellow-
ship, titles in this institute or any other university or institution of higher learning.

It is further certified that the thesis represents independent work by the candidate
and collaboration when existed was necessitated by the nature and scope of problems
dealt with.

Manindra Agrawal
(esis superviser)

Chennai Mathematical Institute Indian Institute of Technology
Plot H1, SIPCOT IT Park, Siruseri, & Department of CSE
Kelambakkam 603103 Kanpur, 208016
India India

Synopsis

e field of arithmetic circuit complexity aims towards understanding the complexity
of polynomials with respect to the number of additions and multiplications required
to compute it. e most important problem in the field of arithmetic circuit com-
plexity is to find an explicit polynomial that requires super-polynomially many oper-
ations to compute it. e permanent is widely conjectured to be such a polynomial,
though its illustrious sibling – the determinant – can indeed be computed by polyno-
mial sized circuits. Separating the complexity of the determinant from the permanent
is a question of foremost important in this field. In fact, this question was formalized
by Valiant [Val79] as an algebraic analogue of the “P vs NP” question.

Over the last few decades, this problem has received a lot of attention by several
researchers but has been resilient to numerous attacks. Apart from direct attempts at
obtaining a lower bound, a very surprising connection was established with another
problem of prime importance — polynomial identity testing (PIT). PIT is the task of
check if the polynomial computed by a given input circuit is identically zero or not.
ough this problem admits a very straightforward randomized algorithm (which is
to evaluate the circuit at a random point), a deterministic polynomial time solution
has eluded us so far. e connection of PIT (in spirit) says that efficient determin-
istic algorithms for PIT would yield arithmetic (and boolean) circuit lower bounds
[KI03, Agr05].

For both lower bounds and PIT, there has been limited progress in various re-
stricted models of circuits/formulas. Super-polynomial lower bounds were shown for
multilinear circuits computing the determinant or permanent [Raz09]. Exponential
lower bounds for the determinant and permanent were also shown for depth-3 circuits
over finite fields [GK98], homogeneous depth-3 circuits [NW97], and for monotone cir-
cuits [JS82]. However, none of the above results separate the complexity of the deter-
minant and permanent. Towards this, there has only been a Ω(n2) lower bound for

ii

the determinantal complexity of the permanent [MR04].
Polynomial time algorithms for PIT have been obtained for depth-2 circuits [AB99,

KS01], bounded fan-in depth-3 circuits [KS07, SS11], diagonal circuits [Kay10, Sax08],
bounded transcendence degree depth-4 circuits [BMS11a], bounded fan-in multilin-
ear depth-4 circuits [SV11], multilinear read-k formulas [AvMV11].

Progress for both PIT and lower bounds seem to halt before depth-4 circuits (with-
out additional restrictions like multilinearity, read etc.). is “chasm” was explained
[AV08, Koi10] by showing that depth-4 circuits are almost the general case.

Contributions of this thesis

ough quite a lot of progress for PIT has been made for these restricted models, one
issue is the solution in each model involves a different technique tailored to work for
the models — univariate substitutions, chinese remaindering over local rings, algebraic
independence, duality transforms, shattering of partial derivatives, sparsity bounds
etc. As a result, it is not clear if all these special cases throw insight into the general
problem at all. is thesis address the following natural questions — What is the
central core that makes PIT on these models easy? Is there a unified technique that
encompasses all these models? Can PITs of two different models be “composed” to
work on “combinations” of these models? Do lower bound technique for depth-3
circuits lift to larger depth?

Composition of PITs

If we know how to perform PIT on two different classes C1 and C2, can perform
PIT on circuits from C1 +C2? is question depends on the classes C1 and C2 of
course. If f is a depth-2 circuit, and g = g1 . . . gt is a product of depth-2 circuits,
then checking if f = g1 . . . gt is exactly the problem of validating sparse factorization
(cf. [vzG83]). e simplest models for which PITs are known are bounded fan-in
depth-3 circuits and diagonal circuits. Can the two seemingly disparate techniques
glue together to give a PIT for the composed circuits? In Chapter 3, we answer this
question in the affirmative. Our technique also applies to a special case of the depth-4
problem f −∏t

i=1 gi
?= 0 where each of the gi ’s are sums of univariates.

iii

A unified technique for PITs

e next question the thesis addresses is a unification of the PITs for different models.
In Chapter 4, we present a unified approach via algebraic independence and the jacobian.

We show that the Jacobian is a powerful tool to give one unified approach for
blackbox PITs for all the classes for which polynomial time blackbox PITs were known,
namely bounded fan-in depth-3, bounded fan-in depth-4 multilinear circuits , bounded
read bounded depth multilinear circuits, and bounded transcendence degree depth-4
circuits. e approach however has one caveat that the method works over all fields
with zero or large chracteristic.

In the process of unifying the varied techniques, we strengthen the earlier results
significantly thus giving the first blackbox PIT for these generalized models. We con-
struct blackbox PITs for not only bounded fan-in depth-3 circuits, but also for circuits
of the form C (T1, · · · ,Tm) where C is any polynomial of low degree and Ti ’s are prod-
ucts of linear functions with bounded transcendence degree. Further, we remove the
multilinear restriction completely from the constant-depth constant-read models. e
notion of ‘read’ is also replaced by a general notion of ‘occur’, which additionally gen-
eralizes PIT on ΣΠΣΠ[mult](k) circuits as well.

e connection between PIT and lowerbounds is present in this unification as well.
We present lowerbounds for the Detn and Permn for almost all the models we construct
PITs for, again via the Jacobian.

Approaching the chasm at depth-4

e final question addressed in this thesis is a direct attempt towards a lower bound
for the permanent. A result of Agrawal and Vinay [AV08] states that we only need to
prove a strong enough lowerbound for the class of depth-4 circuits. is was subse-
quently strengthened by Koiran [Koi10] to show that it suffices to prove a lower bound
of exp(ω(

p
n log2 n)) for homogeneous depth-4 circuit with the bottom multiplication

gates having O(
p

n) fan-in to obtain super-polynomial lower bounds for general cir-
cuits.

In Chapter 5 we present a lower bound of exp(Ω(
p

n)) for homogeneous depth-
4 circuits where the fan-in of the bottom multiplication gates having O(

p
n) fan-in

that compute Detn or Permn. In the light of above results of Agrawal-Vinay [AV08]

iv

and Koiran [Koi10] that a exp
�
ω
�p

n log2 n
��

lower bound suffices for a super-
polynomial circuit lower bound, our result does get very close to the chasm. Fur-
ther, we also exhibit that our method has the potential to show non-trivial separations
between the complexities of the determinant and permanent (albeit the above result
works for both). It is conceivable that this indeed might be one of the ingredients in
separating VP and VNP.

Acknowledgements

I have been very fortunate to have Manindra Agrawal as my advisor. My stay at IIT
Kanpur could not have been possible if not for his resourcefulness. He has helped me
immensely throughout the last several years (right from helping me move my luggage
on my first day) and I feel truly indebted to him. His tenacity to focus only on funda-
mental problems has been a constant source of inspiration. I hope that I can display a
fraction of it during the years to come.

My interest in complexity theory stemmed from the wonderful courses I had taken
over the years, and my interaction with the faculty at CMI and IMSc. I’d like to
thank Madhavan, Kumar, KV, Samir, Arvind, Meena and Suresh for all the courses
and discussions we’ve had. I’d specially like to thank Arvind for his wonderful courses
on complexity and computational algebra that sparked my interest in this field.

I’d also like to thank the faculty at IIT Kanpur with whom I’ve interacted during my
stay here. I’ve throughly enjoyed interacting with Somenath, Piyush, Sumit, Satyadev,
Shashank and Surendar (and his classes were truly amazing!).

It was wonderful to work with all my collaborators, and I learnt a great deal from
each of them. Chandan’s enthusiasm and sincerity is contagious and a big thanks
to him for putting up with me for all these years. I learnt an enormous amount of
mathematics through all the collaborations with Nitin. Neeraj’s phenomenal clarity
and focus has moved me deeply, and I hope to emulate his drive for concrete big
problems in future. Many thanks to Piyush, Anindya, Ankit and Pritish as well.

I had the opportunity to make several academic visits during the term. I had an
amazing time at TIFR interacting with Prahladh and Jaikumar. I wish there is a day
when I could give a talk like Jaikumar. I’d also like to thank Madhu for hosting me at
MIT. anks to Kurt Mehlhorn for the wonderful visit at MPI Saarbrücken. And a
big thanks to Satya and Neeraj for the internship at MSR. e internship was the best
academic visit I’ve ever had, and working with Neeraj was wondefully illuminating.

vi

Neeraj and Satya helped me in more ways than one, and I shall always be grateful for
their unconditional support.

Life in IIT and CMI wouldn’t have been half as much fun if not for the company I
had there. Many thanks to Srikanth, Nutan, Suresh, Chandan, Deepanjan, Sagarmoy,
Suman, Mousumi, and Saurabh. I’d specially like to thank Srikanth and Chandan
for their lasting influence. Srikanth’s unparalleled enthusiasm for knowledge doesn’t
take too long to catch on, and I’ve learnt so much interacting with him. Chandan
has been subjected to several hours of torture by me, but ever-so-patiently answers
every question irrespective of how dumb it is. His astounding clarity in exposition is
something I hope to be capable of someday. I also feel compelled to thank Deepanjan
and Suman for all the Spordha sessions.

Many thanks to my uncle, Vinay, for ... everything. He was the reason I took to
mathematics and theoretical computer science in the first place, and has been an idol
since my childhood. My sincere thanks to him and Subha chitthi for everything that
I am today.

A big thank you to Susmita for sharing all my joy and pain, and life would have
been empty without her. Most of all, thanks to my parents, my sister Kamakshi,
my grandfather and grandmother for the wonderful home I grew up in. My humble
namaskarams to my grandfather specially, who would have been very proud to see this,
and it is to him that I dedicate this thesis.

To my grandfather

Contents

1 Introduction 1
1.1 Lower Bounds . 2
1.2 Polynomial Identity Testing . 3
1.3 Contributions of this thesis . 7

1.3.1 Composition of identity tests . 8
1.3.2 A unified technique for PIT . 9
1.3.3 Towards lower bounds for depth-4 circuits 10

1.4 Structure of the thesis . 11

2 Preliminaries 13
2.1 Notation . 13
2.2 Basic tools for PIT and lower bounds . 14

2.2.1 Homogenization . 14
2.2.2 e Schwartz-Zippel Lemma . 15
2.2.3 Blackbox PIT for sparse polynomials 16

3 Composing identity tests, and sparse factorization 19
3.1 Introduction . 19

3.1.1 Contribution of this chapter . 19
3.1.2 Overview of the approach . 20

3.2 PIT for semidiagonal circuits . 22
3.3 Solving Problem 3.1 . 26

3.3.1 Reviewing the Kayal-Saxena test 26
3.3.2 A brief introduction to local rings 27
3.3.3 Reviewing the Kayal-Saxena test 27
3.3.4 Adapting Algorithm KS-Test to solve Problem 3.1 30

ix

x C

3.4 Solving Problem 3.2 . 34
3.4.1 Checking divisibility by (a power of) a sum of univariates . . 35
3.4.2 Irreducibility of a sum of univariates 36
3.4.3 Finishing the argument . 39

4 Identity testing via algebraic independence 41
4.1 Introduction . 41

4.1.1 Contribution of this chapter . 42
4.1.2 e main ideas . 46

4.2 Algebraic independence and the Jacobian 46
4.3 Depth-3 circuits of bounded transcendence degree 49

4.3.1 Preserving non-zeroness of Jxk
(Tk) 50

4.4 Constant-depth constant-occur formulas 53
4.4.1 Restriction to the case of depth-4 55
4.4.2 Generalizing to larger depth . 56

4.5 Related lower bounds . 59
4.5.1 Lower bound on depth-4 occur-k formulas 60
4.5.2 Lower bound on circuits generated by ΣΠ polynomials 60
4.5.3 Lower bound on circuits generated by ΠΣ polynomials 61
4.5.4 Proofs of the technial lemmas . 62

5 Approaching the chasm at depth four 67
5.1 Introduction . 67

5.1.1 Prior Work . 67
5.1.2 e model . 68

5.2 Basic Idea and Outline . 69
5.2.1 Outline of the chapter . 70

5.3 Shifted partials of ΣΠΣΠ[hom](t) circuits 71
5.4 Shifted partials of the Permanent . 73

5.4.1 Restricting to two diagonals . 74
5.5 Putting it all together . 76

5.5.1 Growth of binomial estimates . 76
5.5.2 Proof of the main theorem . 77

C xi

5.6 Discussion . 79

6 Conclusion and future directions 81
6.1 Composing Identity tests . 81
6.2 PITs via algebraic independence . 82
6.3 Shifted partial derivatives . 83

xii C

1Introduction

Over the last few decades, research in theoretical computer science has become so-
phisticated. We have acquired a variety of tools from several fields, and used them
to better our understanding of computation. Several constructs from mathematics
have now become standard tools in theoretical computer science research, and the dis-
tinction (if there was any) between mathematics and theoretical computer science has
become fuzzy.

Possibly the most basic of mathematical objects are polynomials and we would like
to understand the hardness of various natural problems concerning them. e most
robust way to measure the hardness of the polynomial is via the number of operations
required to compute it, and this notion formalized via arithmetic circuits.

Definition 1.1 (Arithmetic Circuits and formulas). An arithmetic circuit is a directed
acyclic graph with one sink (which is called the output gate or root). Each of the source
vertices (which are called input nodes) are either labelled by a variable xi or an element from
an underlying field F. Each of the internal nodes are labelled either by+ or× to indicate if it
is an addition or multiplication gate respectively. Sometimes edges may carry weights that are
elements from the field and this amounts to scaling the polynomial computed at the incoming
node by that field element.

An arithmetic circuit is a formula if every internal node has out-degree 1. e size of the
circuit/formula is the number of nodes in the graph, and the depth is the length of the longest
path from the leaf to the root.

Arithmetic circuits provide a very compact way of representing polynomials, and
this can be seen in Example 3 which has 2n terms on expanding fully. For any poly-
nomial p, the size of the smallest arithmetic circuit computing it can be thought of as
the arithmetic complexity of p. We would like to know if there are explicit examples of
polynomials that are very hard to compute, or have very large arithmetic complexity.

2 C . I

Figure 1.1: Arithmetic Circuits

..x1 . x2.

×

.

×

.

×

.

+

.

2

.

(x1+ x2)
2

.

Example 1

..x1 . x2.

+

.

×

.

(x1+ x2)
2

.

Example 2

..· · ·.x2 .x1 .1 . xn.

+

.

+

.

+

.

· · ·

.

×

.

(1+ x1)(1+ x2) · · · (1+ xn)

.

Example 3

1.1 Lower Bounds

Amongst the multitude of polynomials, these two are of the highest significance —
the determinant and permanent polynomial (denoted by Detn and Permn respectively).

Detn =
∑
σ∈Sn

sign(σ) · x1σ(1) . . . xnσ(n)

Permn =
∑
σ∈Sn

x1σ(1) . . . xnσ(n)

Although these two polynomials look similar, they seem to be very different com-
putationally. e polynomial Detn is known to be computable by arithmetic cir-
cuits of polynomial size (in n) but Permn is believed to have exponential complexity.
Valiant [Val79] defined the classes VP and VNP as algebraic analogues of the boolean
complexity classes P and NP. He showed that Detn was complete for VP, and Permn

was complete for VNP. Further, he showed that VP 6= VNP must necessarily be resolved
before showing P 6= NP. Separating the complexity of the determinant and permanent
is also referred to as the determinant vs permanent conjecture, and is perhaps the most
important question in arithmetic complexity theory.

“e determinant of this conjecture would be permanently famous.”

– Neeraj Kayal

.. P I T 3

e current state of the art for lowerbounds for general circuits is rather bleak. Baur
and Strassen [BS83] showed that any circuit computing the polynomial x r

1 + · · ·+ x r
n

must have size Ω(n log r). is is the only super-linear lowerbound known for general
circuits. For arithmetic formulae, Kalorkoti [Kal85a] showed that any arithmetic formula
computing Detn or Permn must have size Ω(n3).

With some additional restrictions on the circuit/formula, further lowerbounds are
known. Jerrum and Snir [JS82] showed that any monotone circuit computing Detn or
Permn requires 2Ω(n) size. Raz [Raz09] showed that any multilinear circuit computing
Detn or Permn requires nΩ(log n) size.

For constant depth circuits, the situation is more respectable. Grigoriev and Karpin-
ski [GK98] showed that any depth-3 circuit computing Detn over finite fields must
have size 2Ω(n). But over characteristic zero fields, we only have an Ω(n4/ log n) lower
bound, due to Shpilka and Wigderson [SW01], for Detn and Permn. For homogeneous
depth-3 circuits, Nisan and Wigderson [NW97] gave a 2Ω(n) lowerbound for Detn and
Permn.

All the above results do not separate the complexity of Permn from Detn. In the
context of separation, Mignon and Ressayre [MR04] showed that the determinental
complexity of the Permn is Ω(n2). More formally, if one wishes to write Permn as the
determinant of some m×m matrix with affine function entries, then m =Ω(n2).

1.2 Polynomial Identity Testing

ere are several algorithmic questions that can be asked about arithmetic circuits,
and the simplest (to state) amongst them is polynomial identity testing (PIT) — given
an arithmetic circuit C as input, test if the polynomial computed by C is identically
zero.

ough a circuit of size s can potentially compute a polynomial of degree 2s , the
input circuit for PIT is usually promised to have low degree, i.e. degree polynomially
bounded in the number of variables. is problem is sometimes referred to as low degree
PIT, but throughout this thesis we will restrict ourselves to only low degree PIT and
refer to it as simply ‘PIT’. e circuit is usually assumed to be layered with alternating
layers of + and × gates which are referred to as Σ and Π layers respectively.

ere are two types of algorithms for PIT that are studied — blackbox and non-

4 C . I

blackbox. A blackbox PIT is an algorithm that tests if a given circuit computes the zero
polynomial by only evaluating the circuit on points, and not inspecting the internal
structure of the circuit. Hence all that a blackbox PIT can do is evaluate the circuit
on a small list of points which is guaranteed to have a property that every non-zero
circuit produces at least one non-zero evaluation in the list. Such lists are also called
hitting sets, the blackbox PITs are also called hitting set generators. Algorithms that use
the internal structure of the input circuit are called non-blackbox algorithms.

PIT is an essential ingredient in several important results in complexity theory
and algorithms. It plays a pivotal role in the primality test [AKS04], graph match-
ing algorithms [Lov79, MVV87], the PCP theorem [ALM+98], interactive protocols
[LFKN90, Sha90] etc. and there are several more. Further, it has a surprising connec-
tion to arithmetic and boolean circuit lower bounds. Kabanets and Impagliazzo [KI03]
showed that a subexponential algorithm for PIT would imply that either Permn does
not have polynomial sized arithmetic circuits, or NEXP * P/poly. A similar conclu-
sion was also established for constant depth circuits by Dvir, Shpilka and Yehuday-
off [DSY08]. Heintz-Shnorr [HS80] and Agrawal [Agr05] showed that a polynomial
time blackbox algorithm for PIT on general circuits implies an exponential lower-
bound for a polynomial computable in PSPACE. Under additional structural assump-
tions on the blackbox PIT, Agrawal [Agr11] showed that such a strong blackbox PIT
would separate VP and VNP.

PIT admits a very simple randomized polynomial time algorithm — evaluate the
polynomial on a random point. is is also called the Schwartz-Zippel test [Sch80,
Zip79, DL78]. ere has been a plethora of results following this test to reduce the
number of random bits [CK97, LV98, KS01, AB99].

e Schwartz-Zippel test essentially states that a random evaluation of a non-zero
polynomial is non-zero with high probability. Specifically, it does not really use the fact
that the polynomial is computable by a small arithmetic circuit. A natural question to
ask if we can use this structure to construct deterministic polynomial time algorithms
for PIT.

For general circuits, we do not yet have a subexponential time deterministic algo-
rithm for PIT. However, there has been a lot of progress on several restricted models

.. P I T 5

of circuits using a variety of techniques.

1. Depth-2 circuits (or ΣΠ circuits):

ese circuits have a trivial non-blackbox algorithm to test if it is identically zero
as any such circuit describes a polynomial explicitly as a sum of monomials (such
polynomials are also called sparse polynomials). We also have blackbox PITs for
ΣΠ circuits [KS01, AB99] and we shall see this in more detail in Section 2.1.

2. Bounded fanin depth-3 circuits (or ΣΠΣ(k) circuits):

ese are circuits computing a polynomial of the form C = T1+ · · ·+Tk where
each Ti is a product of linear functions `i1 . . .`i d . Kayal and Saxena [KS07] gave
a deterministic non-blackbox algorithm running in time poly(n, d k). e main
idea in their approach was chinese remaindering over local rings (and we will see
this in more detail in Chapter 3).

After a series of results on rank estimates forΣΠΣ(k) circuits[DS05, SS09, KS09b,
SS10a], Saxena and Seshadhri[SS11] gave a poly(n, d k) blackbox algorithm for
ΣΠΣ(k) circuits using a combination of the chinese remaindering ideas and rank
preserving homomorphisms from Dvir, Gabizon and Wigderson[DGW09].

3. Depth-3 diagonal circuits:

is is a special class of depth-3 circuits computing a polynomial of the form
C = `d

1 + · · ·`d
s , a sum of powers of linear functions. A more general definition

of semidiagonal circuits (Definition 3.1) would be studied in Chapter 3.

ere are two different non-blackbox algorithms known for this class, one by
Kayal [Kay10] using the partial derivative method, and one by Saxena [Sax08]
using the dual representation. Very recently, Agrawal, Saha and Saxena [ASS12],
and independently Forbes and Shpilka [FS12] gave two different nO(log n)-time
blackbox PIT for diagonal circuits.

4. Depth-4, bounded transcendence degree circuits:

is class of circuit shall be dealt with in more detail in Chapter 4 but an il-
lustrative example is a circuit that depends on k sparse polynomials, i.e. C =

6 C . I

f (g1, · · · , gk) where f is a low-degree polynomial. Beecken, Mittman and Sax-
ena [BMS11a] gave an poly(s k) blackbox PIT for this class of circuits of fields
of zero or large characteristic. e main ingredient in their proof was algebraic
independence and the Jacobian (which would be seen in more detail in Chapter 4).

5. Depth-4, bounded fan-in, multilinear circuits (or ΣΠΣΠ[mult](k)):

A multilinear circuit is one where every gate computes a multilinear polynomial
(degree of every variable is bounded by 1). Saraf and Volkovich [SV11] gave a
deterministic blackbox algorithm to check if a ΣΠΣΠ[mult] circuit of top fanin
k is identically zero running in poly(s k3) time (where s is the size of the circuit).
e main ideas used in their approach was to study the partial derivatives of the
circuit and obtain sparsity bounds on the polynomials computed by the children
of the root.

6. Read-k, multilinear formula:

A read-k formula is one where every input variable occurs in at most k of the leaf
nodes. Anderson, van Melkebeek and Volkovich[AvMV11] extended the ideas
in the PIT for ΣΠΣΠ[mult](k) circuits to give PITs for read-k multilinear circuits.
ey give an nkO(k)-time non-blackbox PIT, and a nkO(k) log n-time blackbox PIT
for this model. In the case when the depth is constant, their blackbox PIT runs
in polynomial time.

e surveys by Saxena[Sax09], and by Shpilka and Yehudayoff [SY10] give wonderful
expositions of the progress made so far in arithmetic circuit complexity.

An intriguing pattern in almost all lowerbounds and PITs stated so far is that
progress seems to stop at depth-4. is chasm at depth-4 was ‘explained’ by Agrawal and
Vinay [AV08] by showing that depth-4 circuits are essentially equivalent to general cir-
cuits. ey showed that any sub-exponential sized circuit computing a polynomial of
low degree can be depth-reduced to a sub-exponential sized depth-4 circuit computing
the same polynomial. e contrapositive of this theorem is that any exponential lower
bound for depth-4 circuits automatically translates to an exponential lower bound for
any circuit. Agrawal and Vinay [AV08] further showed that a polynomial time black-
box PIT for depth-4 circuits translates to an nO(log n)-time blackbox PIT for any general

.. C    7

circuit. In essence, they showed that ΣΠΣΠ circuits are almost as hard as general cir-
cuits.

1.3 Contributions of this thesis

With the result of Agrawal and Vinay [AV08, Koi10], the current state of the art for
PITs and lowerbounds is not as bleak as it appeared. ere has been considerable
progress made for constant depth circuits and separating VP and VNP may not be far
from our reach. However, one annoying quirk is that each of the special cases have
used a specialized technique tailored towards that model (see Table 1.1). It is prima
facie not clear if the techniques of one model can be used to PIT on another.

Table 1.1: PIT Techniques

..

Model PIT Main Idea
Sparse polynomials
(ΣΠ circuits)

poly(n, s), blackbox Univariate substitution

Diagonal Circuits
`d

1 + · · ·+ `d
s

poly(n, s) non-blackbox
poly(s log s) blackbox

Partial derivative /
dual representation

Bounded fan-in depth-3
(ΣΠΣ(k) circuits)

poly(n, d k) blackbox
Chinese remaindering
over local rings

Bounded trdeg depth-4 poly(s k) blackbox
(k = trdeg bound)

Alg. independence,
Jacobian

Bounded fan-in depth-4,
multilinear
(ΣΠΣΠ[mult](k) circuits)

poly(s k3) blackbox Sparsity bounds

Read-k multilinear,
depth D

s kO(k)+k log n non-blackbox
s kk2

+O(kD) blackbox
Fragmentation of
partial derivatives

What is the central core that makes PIT on these models easy? Is there a unified
technique to understand the different PITs? Can we solve PITs on models that are a
combination of the above “easy” models? Do the lowerbound techniques of depth-3
circuits lift to depth-4? ese are some of the main questions addressed in this thesis.

8 C . I

1.3.1 Composition of identity tests

e first question this thesis addresses is the following — suppose we know how to
perform identity tests efficiently on two classes of circuits C1 and C2, how easy is it to
solve PIT on the class of circuits C1+C2? e class C1+C2 is made up of circuits C

of the form C1+C2, where C1 ∈C1 and C2 ∈C2. Depending on the classesC1 andC2,
this question can be quite non-trivial to answer. For instance, suppose we are given
sparse polynomials f , g1, . . . , gt , explicitly as sums of monomials, and asked to check if
f =

∏t
i=1 gi . Surely, it is easy to check if f or

∏t
i=1 gi is zero. But, it is not clear how to

perform the test f −∏t
i=1 gi

?= 0. (is problem has also been declared open in a work
by [vzG83] on sparse multivariate polynomial factoring.) e test f −∏t

i=1 gi
?= 0 is

one of the most basic cases of depth-4 PIT that is still open.
Two of the non-trivial classes of depth-3 circuits for which efficient PIT algo-

rithms are known are the classes of bounded top fan-in [KS07] and diagonal circuits
[Kay10, Sax08]. e question is - Is it possible to glue together the seemingly disparate
methods of [KS07] and [Kay10, Sax08] and give a PIT algorithm for the composition
of bounded top fan-in depth-3 and diagonal circuits, or bounded top fan-in depth-3
and sparse polynomials (depth-2 circuits)? In Chapter 3, we answer this question in
the affirmative. Our technique also applies to a special case of the depth-4 problem
f −∏t

i=1 gi
?= 0 where each of the gi ’s are sums of univariates.

Main ideas

e key ingredient in the proof is an algorithm to identity test and compute the lead-
ing monomial for a generalization of diagonal circuits and sparse polynomials called
semidiagonal circuits (Definition 3.1).

With this in hand, the composition of PITs for ΣΠΣ(k) and sparse/diagonal circuit
proceeds by a careful analysis of the Kayal-Saxena test [KS07] on the ΣΠΣ(k) part
of the input, and studying the evolution of the sparse/diagonal part. e PIT for
semidiagonal circuits would help us keep the transformation of the sparse/diagonal
part in control.

To solve the problem of checking f −∏ gi
?= 0 where gi ’s are sums of univariates,

we show that checking divisibility of a given polynomial f by a sum of univariates
reduces to a semidiagonal PIT. An additional result about the irreducibility of sums of

.. C    9

univariates allow us to use chinese remaindering to verify the given factorization.

1.3.2 A unified technique for PIT

e next question this thesis addresses is a quest for unification of the various tech-
niques for PIT — Is there a unified approach that explains some (if not all) of the
blackbox PITs on the various models? In Chapter 4 we answer this question with a
“Yes!”, and the unified approach is via algebraic independence and the Jacobian intro-
duced by Beecken, Mittman and Saxena [BMS11a].

We show that the Jacobian is powerful enough to give one unified approach to give
blackbox PITs for bounded fan-in depth-3, bounded fan-in depth-4 multilinear cir-
cuits , bounded read bounded depth multilinear circuits, and bounded transcendence
degree depth-4 circuits of course, but with a caveat that our approach only works over
fields of zero or large characteristic.

In the process of finding a universal technique, we strengthen the earlier results
significantly thus giving the first blackbox PIT for these generalized models. We con-
struct blackbox PITs for not only bounded fan-in depth-3 circuits, but also for circuits
of the form C (T1, · · · ,Tm) where C is any polynomial of low degree and Ti ’s are prod-
ucts of linear functions with bounded transcendence degree. Further, we remove the
multilinear restriction completely from the constant-depth constant-read models. e
notion of ‘read’ is also replaced by a general notion of ‘occur’ , which additionally gen-
eralizes PIT on ΣΠΣΠ[mult](k) circuits as well.

e strong connection between PIT and lowerbounds that was alluded to earlier
translates to this unification as well. We present lowerbounds for the Detn and Permn

for almost all the models we construct PITs for, again via the Jacobian.

Main ideas

e driving question is to find out the key property that makes PIT the earlier mod-
els easy, and one candidate is that some parameter for each of the models is being
bounded (depth does not qualify as such a parameter, as depth-4 is nearly as hard as
the general case [AV08]). e main contribution is to transform this boundedness
into the transcendence degree and structure of the Jacobian.

10 C . I

1.3.3 Towards lower bounds for depth-4 circuits

e final question addressed in this thesis is to push towards lowerbounds for Permn.
e result of Agrawal and Vinay [AV08] states that we only need to prove a strong
enough lowerbound for the class of depth-4 circuits. Koiran [Koi10] strenghtened
their result and showed that it suffices to prove a lower bound of exp(ω(

p
n log2 n)) for

homogeneous depth-4 circuit with the bottom multiplication gates having O(
p

n) fan-
in to obtain super-polynomial lower bounds for general circuits. is fact of depth-4
circuits almost capturing the general case is often referred to as the “chasm at depth-4”.

As mentioned in Section 1.1, there are lower bounds known for Detn and Permn

for depth-3 circuits and the main idea used is to study the rank of the partial derivative
space. Unfortunately, this technique does not scale even to the case when we have a
homogeneous circuit of the form C = T1+ · · ·+Ts with each Ti =Qi1 . . .Qi d , a product
of quadratics. Is there a technique that helps us address such circuits? How close can
we get to the chasm?

In Chapter 5 we present a lower bound of exp(Ω(
p

n)) for homogeneous depth-4
circuits where the fan-in of the bottom multiplication gates having O(

p
n) fan-in that

compute Detn or Permn. In the light of results of Agrawal-Vinay [AV08] and Koiran
[Koi10] that a exp

�
ω
�p

n log2 n
��

lower bound would yield super-polynomial circuit
lower bounds, this gets very close to the chasm.

Main ideas

e key technique in this result is to study the rank of shifted partial derivatives, or
low degree combinations of the partial derivatives. We show that that any homogeneous
depth-4 circuit with bounded bottom fan-in is weak with respect to the rank of the
shifted partial derivatives. We then lowerbound the rank of the shifted partial deriva-
tives of Detn, Permn by reducing it to a counting problem which we then solve.

An interesting artifact of the proof is a vague possibility of separating the complex-
ity of Detn and Permn. e rank of the shifted partial derivatives is closely related to an
algebraic geometric construct called the Hilbert polynomial. In the process of obtain-
ing a lower bound for the rank of Detn and Permn, it turns out that certain algebraic
geometric properties of determinantal minors show that the rank of shifted partial

.. S    11

derivatives of Permn is provably larger than that of Detn. It might be possible to show
that rank of Permn is significantly larger than that of the Detn and might yield some non-
trivial separation in their complexity. is measure of the rank of the shifted partial
derivatives is one of the few measures that seem to visibly distinguish the complexity
of the determinant and the permanent.

1.4 Structure of the thesis

Chapter 2 discusses some of the preliminaries required for the following chapters. We
shall also discuss some standard PIT/lowerbound techniques that would be useful for
several results in the thesis. Chapter 3 deals with the question of composing iden-
tity tests, and applying that to a special case of the “sparse factorization verification”
problem. Chapter 4 presents the unified approach to blackbox PITs via the Jacobian.
Chapter 5 is devoted to the shifted partial derivative technique and presents an exponen-
tial lower bound for bounded bottom fan-in depth-4 circuits. Chapter 6 closes with
some concluding remarks, open problems and future directions.

12 C . I

....ΣΠ circuits.

Diagonal circuits

.

ΣΠΣ(k) circuits:
T1 + · · · + Tk

.

ΣΠΣΠ[mult](k) circuits

.

Read-k, multilinear
depth-D circuits

.

Combination of classes:
C1 + C2

.

C (T1, · · · ,Tm) where
trdeg(T1, · · · ,Tm) ≤ k

.

occur-k, depth-D
circuits

.

Polynomial Identity Tests

.

Lower bounds

.

Hom. ΣΠΣ circuits

.

Hom. ΣΠΣΠ, bounded
bottom-fanin circuits

.

Earlier models

.

Extensions in this thesis

Figure 1.2: Contributions of this thesis

2Preliminaries

is chapter shall be devoted to the notational preliminaries, and some basics that
would be required for the remaining chapters.

2.1 Notation

• For any integer n, we shall use [n] to denote the set {1, . . . , n}.
• We shall reserve the use of bold letters to denote indexed sets, for example Tn =
{T1, . . . ,Tn} or fr = { f1, . . . , fr }, and we shall drop the subscript if the size of the
set is clear from context.

• For i = {i1, . . . , in} and x = {x1, . . . , xn}, we shall use xi to be the monomials
x i1

1 . . . x in
n . Similarly, ∂ i(f) shall denote the partial derivative:

∂ i f def=
∂ i1

∂ x i1
1

 ∂ i2

∂ x i2
2

· · ·

∂ in f

∂ x in
n

!
· · ·
!

• ∂ =k(f) shall denote the set
�
∂ i(f) : i1+ · · ·+ in = k

	
, and x=` shall denote the

set
�
xi : i1+ · · ·+ in = `

	
. Also, ∂ ≤k(f) shall denote

�
∂ i(f) : i1+ · · ·+ in ≤ k

	
,

and x≤` shall denote
�
xi : i1+ · · ·+ in ≤ `

	
.

• For a fixed monomial ordering on the monomials, LM(f) shall denote the lead-
ing monomial of f under this ordering, and LC(f) shall denote the coefficient of
the leading monomial. And for any monomial xi, we shall use [xi](f) to denote
the coefficient of xi in the polynomial f .

• ∂i f shall denote the partial derivative ∂ f
∂ xi

• For any polynomial f , the term f(xi=αi)
denotes the polynomial obtained by set-

ting xi = αi in f .

14 C . P

• For a set of polynomials { f1, . . . , fr }, we shall use 〈 f1, . . . , fr 〉 to denote the ideal
generated by them, and 〈 f1, . . . , fr 〉≤` to denote the set of all `-degree combina-
tions of them. at is,

〈 f1, . . . , fr 〉= {p1 f1+ · · ·+ pr fr : pi ∈ F[x]}
〈 f1, . . . , fr 〉≤` = {p1 f1+ · · ·+ pr fr : pi ∈ F[x] , deg(pi)≤ `}

Polynomials and arithmetic circuits

• For a polynomial f , the sparsity of f shall denote the number of monomials in
f . If the sparsity of f is polynomially bounded in the number of variables, we
shall say that the polynomial f is sparse.

• A circuit/formula is said to be homogeneous if every gate computes a homo-
geneous polynomial. A circuit/formula is said to be multilinear if every gate
computes a multilinear polynomial.

• Normally, the top gate of the circuit is assumed to be a + gate (unless otherwise
stated). ΣΠ shall denote the class of polynomial sized depth-2 circuits (which
are sparse polynomials). ΣΠΣ denotes of depth-3 circuits, and ΣΠΣΠ denotes
the class of depth-4 circuits. Further, we shall add the term hom or ml to denote
homogeneity or multilinearity respectively (for example, ΣΠΣΠ[hom] denotes the
class of homogeneous depth-4 circuits, and ΣΠΣΠ[hom,ml] denotes the class of
homogeneous multilinear depth-4 circuits).

2.2 Basic tools for PIT and lower bounds

is section shall help build the some basic tools that would be required in the chapters
to follow.

2.2.1 Homogenization

In the context of PIT, the input circuit is normally assumed to be homogeneous. e
reason is because of a standard trick of homogenizing a polynomial, and also homoge-
nizing any circuit computing a homogeneous polynomial without too much blow-up
in size.

.. B   PIT    15

For a polynomial f (x1, . . . , xn) of degree d , the homogenized version of f is the poly-
nomial

f [hom](x1, . . . , xn, z) def= zd · f
� x1

z
, . . . ,

xn

z

�
Of course, f = 0 if and only if f [hom] = 0.

Given a circuit C of size s that computes a homogeneous polynomial of degree d ,
the homogenization of C is defined as follows:

• For every gate g ∈C , define gates
¦

g (0), . . . , g (d)
©

(where each g (i) shall compute
the i-th homogeneous part of the polynomial computed by g ∈C).

• If g is a + gate with children h1, h2, then

g (i) def= h (i)1 + h (i)2 for all 0≤ i ≤ d

If g is a × gate with children h1, h2, then

g (i) def=
∑
j≤i

�
h (j)1 × h (i− j)

2

�
for all 0≤ i ≤ d

Clearly, the size of the new circuit is only larger by a factor of O(d 2).

2.2.2 e Schwartz-Zippel Lemma

PIT has a natural randomized algorithm, which usually attributed to Schwartz [Sch80]
and Zippel [Zip79] (though it was also observed by DeMillo and Lipton [DL78]).

Lemma 2.1 (Schwartz-Zippel Lemma [Sch80, Zip79, DL78]). Suppose f is a non-zero
degree d polynomial over n variables. en for any set S ⊆ F,

Pr
ai∈S

�
f (a1, . . . ,an) = 0

� ≤ d

|S |
In other words, a random evaluation of a non-zero polynomial is non-zero with

high probability (if the set S is large enough). is also means that any n-variate
degree d polynomial has a hitting set of size (d + 1)n.

Corollary 2.2. ere is a hitting set generator for the class of n-variate degree d polynomials
running in time poly(d n).

16 C . P

Proof. Let f be any non-zero n-variate degree d polynomial. By choosing any set S ⊆ F
of size greater than d , Lemma 2.1 asserts a random evaluation using elements of S is
non-zero with probability greater than zero. Hence, there is some point in Sn on which
f evaluates to a non-zero value.

Almost all PITs proceed by starting with the input polynomial f and constructing
a variable reduction to obtain f̃ on fewer variables such that f = 0 if and only if f̃ = 0.
en, an application of Corollary 2.2 on f̃ would give the hitting set for f̃ , and hence
for f .

2.2.3 Blackbox PIT for sparse polynomials

Another recurrent tool that shall be used in the subsequent chapters is a hitting set
for sparse polynomials. e hitting set for sparse polynomials is usually attributed
to Klivans and Spielman[KS01], but the following description is by Agrawal and
Biswas[AB99].

Let f be a non-zero n-variate polynomial of degree less than d . Suppose we want
to convert f into a univariate polynomial in t by mapping distinct monomials in x to
distinct powers of t , then one natural map is

∆ : xi 7→ t d i

An obvious problem is that the resulting polynomial has exponential degree. Agrawal
and Biswas [AB99] suggested folding the above map by considering

∆p : xi 7→ t d i mod p

for a suitable choice of p. If t a and t b are two distinct monomials of ∆(f), we shall
say a choice of p is bad for the pair (a, b) if ∆p(f) maps these two monomials to the
same monomial.

Note that p is bad for a pair (a, b) if and only if p divides (a − b). If f has s

monomials to begin with, then there are at most s 2 pairs (a, b). Since a − b < d n+1,
the number of prime factors of (a − b) is at most (n + 1) log d . Hence overall, there
are at most s 2(n + 1) log d bad primes p. By the prime number theorem, there are
O(r/ log r) primes between 1 and r , and hence there are more than s 2(n + 1) log d

.. B   PIT    17

primes within the first (s 2(n+ 1) log d)2 choices of p. erefore, ∆p(f) 6= 0 for some
p ≤ (s 2(n+1) log d)2. Since ∆p(f) has degree at most p · d , this yields this hitting set.
e following lemma summarizes this discussion (with a small generalization).

Lemma 2.3. Let f1, . . . , fr be non-zero n-variate polynomials of degree less than d of sparsity
at most s each. Let P = r · s 4(n+ 1)2 log2 d and S ⊆ F be any set of size greater than d · P .
en, one of the elements of the following set is a point on which each fi is non-zero:¦

(α,αd mod p , . . . ,αd n−1 mod p) : α ∈ S , p ≤ P
©

Proof. We shall say p is bad for fi if ∆(fi) contains two non-zero monomials t a, t b

with p | (a− b). As in the above discussion, the number of p’s that are bad for a single
fi is at most (s 2(n+ 1) log d)2. Hence, the number of p’s that are bad for some fi is at
most r · (s 2(n+ 1) log d)2. Hence, for some p ≤ P = r (s 2(n+ 1) log d)2, we have that
∆p(fi) 6= 0 for every i and hence F (t) =∆p(

∏r
i=1 fi) 6= 0.

Since F (t) is a non-zero univariate of degree at most d · P , it has at most d · P roots.
Hence, for any set S ⊆ F of size greater than d · P , there is some α ∈ S such that

F (α) =
r∏

i=1

fi (α,αd mod p , . . . ,αd n−1 mod p) 6= 0

which is what we wanted to show.

18 C . P

3Composing identity tests, and sparse factorization

3.1 Introduction

is chapter addresses a question on ‘composition of identity tests’ — if we know PITs
for two classesC1 andC2, can we construct PITs for circuits of the form C1+C2 where
C1 ∈C1 and C2 ∈C2? PIT on the class C1×C2 is trivial, as the product is zero if and
only if one of them is zero.

As mentioned in Chapter 1, an open problem posed by von zur Gathen [vzG83]
can be thought of as such a composition problem: Given polynomial f , g1, · · · , gt

explicitly as a sum of monomials, check if

f − g1 . . . gt
?= 0.

Sparse polynomials (ΣΠ circuits) are one of the simplest class of arithmetic circuits for
which PITs are known, and following it are bounded fan-in depth-3 circuits (ΣΠΣ(k))
and diagonal circuits. What can we say about the composition of these classes? Can
the seemingly different methods employed for each of these classes be used to give PITs
on composed circuits? is chapter answers this question in the affirmative. is also
applies to a special case of checking if f −∏t

i=1 gi
?= 0 where each gi ’s are sums of

univariates.

3.1.1 Contribution of this chapter

is chapter presents deterministic polynomial time algorithms for two problems on
identity testing – one is on a class of depth-3 circuits, while the other is on a class of
depth-4 circuits. As mentioned in Section 3.1, both these classes of circuits would be
examples of composition of subclasses over which we already know how to perform
PIT.

20 C . C  

e first problem is a common generalization of the problems studied in [KS07]
and [Sax08]. We shall need the following definition of a semidiagonal circuit.

Definition 3.1. (Semidiagonal circuit) Let C be a depth-3 circuit, i.e. a sum of products
of linear polynomials. e circuit is said to be an r -semidiagonal circuit if each product
gate in C computes a polynomial of the form m ·∏b

i=1 `
ei
i , where m is a monomial, `i is a

linear polynomials in the input variables and
∏
(1+ ei)≤ r .

Also, a term of the form (m ·∏b
i=1 `

ei
i) shall be called a r -semidiagonal term.

Remark. A general ΣΠΣ circuit of degree d is trivially a r -semidiagonal circuit for
r = 2d but we shall be more interested in circuits where r is polynomially bounded by
the circuit size. We shall refer to such circuits as simply semidiagonal circuits (dropping
the parameter r).

Problem 3.1. Given a depth-3 circuit C1 with bounded top fan-in and given a semidiagonal
circuit C2, test if the output of the circuit C1+C2 is identically zero.

e second problem is a special case of checking the validity of a given factorization
of a sparse multivariate polynomial (thus, a case of PIT on depth-4 top fan-in 2).

Problem 3.2. Given t + 1 polynomials f , g1, . . . , gt explicitly as sum of monomials, where
every gi is a sum of univariate polynomials, check if f =

∏t
i=1 gi .

It is possible that though f is sparse, some of its factors are not sparse (an example
is provided in Section 3.4). So, multiplying the gi ’s in a brute force fashion is not a
feasible option. In this chapter, we shall present the following:

eorem 3.2. Problem 3.1 and 3.2 can be solved in deterministic polynomial time.

3.1.2 Overview of the approach

e main tool in solving both Problem 3.1 and 3.2 is a polynomial identity test for
semidiagonal circuits.

PIT for semidiagonal circuits

ere are two known polynomial time non-blackbox PITs for semidiagonal circuits –
one approach by Saxena [Sax08] using duality, and another by Kayal [Kay10] using

.. I 21

the partial derivative method. e two approaches are quite different, but both of them
face a hurdle when the underlying field is of low characteristic. Saxena [Sax08]’s dual-
ity can be made to work over low-characteristic fields by moving to appropriate higher
algebras, which sometimes turns out to be rather cumbersome. Kayal’s [Kay10] par-
tial derivative method doesn’t work directly since derivatives of non-zero polynomials
could become zero in low characteristic fields (e.g. x p+y p). In this chapter, we present
a modification of Kayal’s [Kay10] partial derivative method that works purely on eval-
uations. Further, the algorithm can be easily augmented to present an algorithm to
compute the leading monomial (and coefficient) of a given semidiagonal circuit. is
additional augmentation would turn out to be crucial in solving Problem 3.1.

e approaches to solve Problem 3.1 and 3.2 shall be described now.

Solving Problem 3.1

Let p and f be the polynomials computed by a ΣΠΣ(k) circuit and a semidiagonal
circuit respectively, and we wish to check if p + f = 0. e general idea is to apply
the Kayal-Saxena test [KS07] on the polynomial p, and track the evolution of f in the
process.

Let p = T1+ · · ·+Tk where each Ti is a product of linear forms. e original Kayal-
Saxena test first chooses a T j such that LM

�
T j

� � LM (p) (recall that LM (f) refers to
the leading monomial of f), and then proceeds to check if p = 0 mod T j . e purpose
of this choice of T j is to ensure that p = 0 mod T j if and only if p = αT j for some α ∈ F.
To apply the same test in our setting, we need to ensure that LM

�
T j

�� LM (p + f), and
hence we would require to compute LM (f) as well. Fortunately, the leading monomial
of a semidiagonal circuit can be computed efficiently (eorem 3.6) and this lets us
proceed further. e next few step of the Kayal-Saxena test employs some invertible
maps to transform p, and this in our setting would modify f as well. By a slightly
different choice of a suitable invertible map, we can maintain the semidiagonal struc-
ture of f . Hence, we can eventually reduce the problem of testing if p + f = 0 to a
semidiagonal PIT.

22 C . C  

Solving Problem 3.2

e approach to check if f =
∏t

i=1 gi is quite intuitive — reduce the problem to
checking divisibility and then use chinese remaindering. But the two issues here are:
how to check gi divides f , and that gi ’s need not be coprime. So in general we need to
check if g d divides f for some d ≥ 1. We shall see that such divisibility checks reduce to
identity testing of a (slightly general) form of semidiagonal circuits. Finally, for chinese
remaindering to work, we need to say something about the coprimality of gi and g j .
Towards this, an irreducibility result on polynomials of the form f (x) + g (y) + h(z)
would help us conclude the proof (in Section 3.4).

3.2 PIT for semidiagonal circuits

e main result of this section would be a deterministic polynomial time algorithm to
solve a stronger problem of computing F-linear dependencies for semidiagonal circuits.

Definition 3.3. (F-linear dependencies) Let f(X) =
�

f1(X), . . . , fm(X)
� ∈ (F[X])m be a

vector of polynomials. e set of F-linear dependencies of these polynomials, denoted by f⊥,
is defined as

f⊥ =
¦
(a1, . . . ,am) ∈ Fm :

∑
ai fi = 0

©
Since f⊥ forms a vector space, we can talk about computing a basis of this vector

space in polynomial time. e computational problem of obtaining a basis of f⊥ given
f is referred to as PD(f) (studied in great detail in [Kay10] where it was first
introduced).

Just like polynomial identity testing, PD also admits a randomized polyno-
mial time algorithm when the polynomials in the input vector is presented as circuits.
It is also known that PIT testing reduces to PD via turing reductions but is un-
clear they are equivalent. Kayal [Kay10] showed that PD of semidiagonal terms
can be computed in deterministic polynomial time over fields of zero or large charac-
teristic, by exploiting the structure of partial derivatives. In this section, using slight
modification, we will adapt the algorithm of Kayal [Kay10] to compute PD over
arbitrary fields (or finite dimensional algebras over fields) of large enough size.

To proceed with the algorithm, we shall need the following two simple lemmas.

.. PIT    23

Lemma 3.4. Let f(X) def= (f1(X), . . . , fm(X)) ∈ (F[X])m be a vector of polynomials each of
whose x1-degree is bounded by d . en, for any (d + 1) distinct scalars α1, . . . ,αd+1 ∈ F,

f⊥ =
d+1∩
i=1

�
f(x1=αi)

�⊥
where by f(x1=αi)

shall denote the vector of polynomials obtained by substituting x1 = αi in
each of its coordinates.

Proof. Of course, any vector
�
a1, · · · ,am

�
satisfying

∑
ai fi = 0 would also satisfy the

equation
∑

ai f(x1=α)
= 0 for any α. Hence, it is clear that f⊥ is contained in the RHS. As

for the other direction, consider any (a1, . . . ,am) that is not contained in f⊥. e linear
combination

∑
ai fi can be thought of as a non-zero polynomial in x1 with coefficients

as polynomials in the other variables. Since the degree is bounded by d , there can be
at most d roots to this polynomial. Hence (a1, . . . ,am) is not in

�
f(x1=αi)

�⊥
for some

1≤ i ≤ d + 1.

Lemma 3.5. [Kay10] Let f1, . . . , fm ∈ F[x1, . . . , xn]. Suppose h1, . . . , ht ∈ F[x1, . . . , xn]
such that for every i , there is some bi

def= (bi1, . . . , bi t) ∈ Ft such that

fi = bi1h1+ · · ·+ bi t ht

Given a basis for h⊥ and the vectors bi , we can compute f⊥ in deterministic polynomial time.

Proof. Given a basis for h⊥, we can compute a basis {h1, . . . , hr } that are linearly inde-
pendent and rewrite every other hi as linear combination of {h1, . . . , hr }. erefore,
each fi can be rewritten in this basis as well, i.e.,

fi = ci1h1+ . . . ci r hr where ci j ∈ F.
It follows that f⊥ is just

��
ci1, . . . , ci r

�
: i = 1, . . . , m

	⊥ as {h1, . . . , hr } are linearly inde-
pendent.

We are now ready to state and prove the main theorem of this section.

eorem 3.6 (Semidiagonal PIT). Given an r -semidiagonal circuit C (over n variables
and degree d) of the form

C =
s∑

i=1

αi ·mi

b∏
j=1

`
ei j

i j , αi ∈ F

24 C . C  

we can test in deterministic poly(s , n, d , r) time if C is identically zero. Further, if C is
not identically zero, we can compute the leading monomial and coefficient induced by the
lexicographic ordering on the variables.

Proof. We shall in fact present a polynomial time algorithm for PD on a given set
of semidiagonal terms. It is clear that checking if C is identically zero is equivalent to

checking if (α1, . . . ,αs) is contained in
n

mi
∏b

j=1 `
e j

i j

o⊥
. It would be useful to perform

a one-time ‘saturation’ of the set of semidiagonal terms to the following set S defined
as

S def=

mi

b∏
j=1

`
e ′i j

i j : i = 1, . . . , s and 1≤ e ′i j ≤ ei j

 .

Note that |S | ≤ maxi

�∏b
j=1(1+ ei j)

�
· s and this is bounded by s · r . e reason for

this saturation is because this gives us a handle on how terms evolve under partial
evaluations. For any f ∈ S and α ∈ F, we can write f(x1=α)

as a linear combination of
the polynomials in

S1 =

(mi)(x1=1)

 b∏
j=1

`
e ′i j

i j


(x1=0)

: i = 1, . . . , s and 0≤ e ′i j ≤ ei j

 .

Further, these linear combinations can be efficiently computed given α and C by sim-
ply expanding using the binomial expansion. Observe that the size of S1 is at most the
size of S, but every element of S1 is semidiagonal term over (n−1) variables. is leads
to a natural recursive algorithm for PD(S) using Lemma 3.4 and Lemma 3.5.

1. If n = 0, the elements of S are just scalars and the problem is trivial.

2. Otherwise, pick distinct α1, . . . ,αd+1 ∈ F. For each f ∈ S and i = 1, . . . , (d + 1),
write f(x1=αi)

as a linear combination of elements in S1.

3. Recursively compute PD(S1), a basis for the set of dependencies of S1.

4. From PD(S1) (using Lemma 3.5), compute a basis of dependencies for

Vi =
¦

f(x1=αi)
: f ∈ S

©⊥
for each i = 1, . . . , (d + 1).

.. PIT    25

5. Return a basis for

S⊥ =
d+1∩
i=1

Vi (by Lemma 3.4)

e correctness of the algorithm is clear from Lemma 3.4 and Lemma 3.5. As for
the time complexity analysis, notice that every step besides Step 3 can be computed
in poly(n, d , |S |) time. And Step 3 is a recursive call to PD on polynomials over
(n−1) variables, and the size of S1 is no larger than the size of S. Hence, if T (n, d , |S |)
denotes the time complexity of PD, we have:

T (n, d , |S |) = T (n− 1, d , |S |) + poly(n, d , |S |)
=⇒ T (n, d , |S |) = poly(n, d , |S |) = poly(n, d , r, s)

Computing the leading monomial: e coefficient of any degree d univariate poly-
nomial f (x1) can be interpolated (d + 1) evaluations. Formally, if [x i

1] f denotes the
coefficient of x i

1 in f , for every α1, . . . ,αd+1 ∈ F, there exists β1, . . . ,βd+1 ∈ F such that

[x i
1] f = β1 f(x1=α1)

+ · · ·+βd+1 f(x1=αd+1)

In the case when f is a semidiagonal circuit (interpretting it as a univariate in x1 with
coefficients in the remaining variables), the RHS is a linear combination of semidiag-
onal terms. Hence, we have a natural algorithm to compute the leading monomial of
f under the lexicographic order.

1. If n = 0, then f is a scalar and the problem is trivial.

2. Otherwise, compute the largest i for which

[x i
1] f = β1 f(x1=α1)

+ · · ·+βd+1 f(x1=αd+1)
6= 0

If no such i exists, return Z. Else, recursively compute the leading mono-
mial and coefficient of [x i

1] f and return LM (f) = x i
1 · LM

�
[x i

1] f
�

and LC (f) =
LC
�
[x i

1] f
�
.

e correctness of the algorithm is obvious and the time complexity is poly(n, d , r, s)
as earlier.

26 C . C  

Remark. e above proof works for a class of polynomials slightly more general than
semidiagonal circuits with each term be a product of few sums of univariates rather
than linear functions. ese are polynomials of the form f = T1+ · · ·+Ts with each
summand being of the form m ·∏b

i=1 g ei
i for some monomial m and gi = ui1(x1)+· · ·+

ui n(xn). e algorithms are exactly the same and shall avoid stating the more general
theorem and proof. is generalization, however, would be required in Section 3.4 to
solve Problem 3.2.

3.3 Solving Problem 3.1

is section would be devoted to the solution of Problem 3.1. To recall the problem
statement:

Given a ΣΠΣ(k) circuit computing a polynomial p and a semidiagonal
circuit computing a polynomial f , check if p + f = 0.

Assume, without any loss of generality, that p and f are homogeneous polynomials
having the same degree d . Let p =

∑k
i=1 Ti where each Ti is a product of d linear

forms over F, and let f be a sum of s semidiagonal terms. Let X = {x1, . . . , xn} be the
underlying set of variables. e algorithm builds upon the Kayal-Saxena test [KS07],
which tests if a given ΣΠΣ(k) circuit is zero. To put things in context, let us review
their algorithm first.

3.3.1 Reviewing the Kayal-Saxena test

Suppose p = T1+ · · ·+Tk , where each Ti is a product of linear forms. Fix a monomial
order induced by, say, x1 � · · · � xn. Let us assume without loss of generality that
LM (T1)� LM

�
Ti

�
for every i ≤ k. If p = 0 mod T1, then p = αT1 for some α ∈ F. In

this case, it is easy to check if α = 0 by just checking if the contribution of LM (T1) in
T1+ · · ·+Tk is zero or not.

To check if p = 0 mod T1, Kayal and Saxena [KS07] employ chinese remaindering.
If T1 = `

e1
11 . . .`ed

1d
, then it suffices to check if p = 0 mod `ei

1i for every 1 ≤ i ≤ d . How
does one check, say, if p = 0 mod x e1

1 ? Kayal and Saxena do this by thinking of p mod

x e1
1 as a polynomial over R[x2, . . . , xn] where R = F[x1]/(x

e1
1), which is a local ring.

.. S P . 27

ey show that the essential ideas and chinese remaindering continues to work over
such local rings. Before we proceed to the algorithm of Kayal and Saxena, we shall
spend some time understanding the basic properties of local rings that we shall require.

3.3.2 A brief introduction to local rings

Definition 3.7. A commutative ringR over a field F is said to be a local ring if every non-
invertible element a ∈R is nilpotent i.e. there is some positive integer k such that ak = 0.

Rings like F[x]/(x5),F[x, y]/(x4, (y+ x)3) are examples of local rings (these would
be the sort of rings that arise form the Kayal-Saxena test).

Local rings have lots of very interesting properties, making it behave very close to
a field. e set of all nilpotent elements of a local ring R form a maximal ideal of R ,
and is in fact the unique maximal ideal of R .

Proposition 3.8 (cf. [AM69]). Every element a ∈ R can be uniquely expressed as α+ τ
where α ∈ F and τ is a nilpotent inR .

e fact that the only non-invertible elements inR are nilpotent is intuitively why
a local ring behaves “almost like” a field (wherein the only non-invertible element is
zero). In fact, the above proposition yields a natural homomorphism ϕ :R → F that
sends (α+τ) to α. is map ϕ lifts naturally to polynomials overR as well, enables a
transition from the ring to the field while preserving a lot of algebraic properties. One
particular example is a version of chinese remaindering.

Lemma 3.9 ([KS07] Chinese Remaindering over Local Rings). Let R be a local ring
over F and p, g , h ∈ R[x1, . . . , xn] be multivariate polynomials such that ϕ(g) and ϕ(h)
are coprime over F. If p = 0 mod g and p = 0 mod h then p = 0 mod g h.

is is exactly what would be required to check if p = 0 mod T1 even over local
rings. With this sketch in mind, let us proceed to Kayal-Saxena test.

3.3.3 Reviewing the Kayal-Saxena test

e intermediate recursive steps of the Kayal-Saxena test would deal with local rings
of the form R = F[x1, · · · , xc]/(`

e1
1 , . . . ,`ec

c) where `1, . . . ,`c are linear forms in the

28 C . C  

variables x1, . . . , xc . Note that dimFR ≤ d c where d is an upper-bound on the ei ’s. We
shall refer to the rest of the variables

�
xc+1, . . . , xn

	
as the free variables. Note that any

F-linear combination of x1, . . . , xn, when thought of as an element of R[xc+1, . . . , xn],
can be expressed as a sum `+τ where ` is a polynomial over the free variables and τ is a
nilpotent inR . e following Algorithm KS-Test would take as input the description
ofR specified by the relations

¦
`e1

1 , . . . ,`ec
c

©
, products of linear functions {T1, · · · ,Tk ′}

and test if p̃ = T1+ · · ·+Tk ′ is zero or not. To begin with, R = F, c = 0, k ′ = k and
p̃ = p. e invariant that shall be maintained is that c + k ′ ≤ k.

e description of the following algorithm is the same as in [KS07], except a slight
modification in Step 3.1 which is somewhat necessary for our purpose (explained in
remark after Algorithm KS-Test).

Algorithm KS-T
�R ,{T1, . . . ,Tk ′}

�
:

Step 1: (Rearranging terms) Order the terms Ti so that LM (T1) � LM
�
Ti

�
, for all

2≤ i ≤ k ′.

Step 2: (Base Cases) If k ′ = 1 check if T1 = 0. If so, return YES, and NO otherwise.
If LM (T1) ∈R , then each of the Ti ’s are just elements ofR . Add the elements and

return YES if zero, and NO otherwise.

Step 3: (Verifying that p̃ = 0 mod T1) By suitably grouping the factors of T1, it can be
expressed as T1 = α1 · S1 . . . Sr where α1 ∈R , and each S j is of the form

S j = (` j +τ1) · (` j +τ2) . . . (` j +τt j
),

where each τi is a nilpotent inR and ` j is a non-zero linear form over the free variables.
Further, `i and ` j are coprime linear forms (overF) when i 6= j . Check if p̃ = 0 mod S j ,
for every 1≤ j ≤ r , in the following way.

Step 3.1: (Building the new ring) Suppose ` j = cu xu + `
′
j where xu is a

free variable, 0 6= cu ∈ F and `′j is independent of xu . Define an invertible
linear transformation on the free variables that maps xu to c−1

u (xu−`′j) and
leaves every other variable unchanged. In other words, σ is defined such

.. S P . 29

that σ(` j) = xu . Hence, σ(S j) = (xu +τ1) . . . (xu +τt j
). Define the ring

R ′ =R[xu]/(σ(S j))

Step 3.2: (Recursively verify if σ(p̃) = 0 mod σ(S j)) Note that σ(T1) =
0 mod σ(S j) as S j divides T1.

Recursively call KS-T
�R ′,{σ(T2), . . . ,σ(Tk ′)}

�
. If the recursive call re-

turns NO then output NO and exit, otherwise declare p̃ = 0 mod S j .

Declare p̃ = 0 mod T1, if p̃ = 0 mod S j for all 1≤ j ≤ r .

Step 4: Check if [LM (T1)] p̃ is zero by using the fact that

[LM (T1)] p̃ =
∑

LM(Ti)=LM(T1)

LC
�
Ti

�
Return YES if zero, and NO otherwise.

Remark on Step 3.1: In [KS07], the linear transformation σ is described as a map
that takes ` j to some fixed variable x1 and transforms the remaining variables x2, . . . , xn

accordingly so that σ is invertible. In the application, we will also need the property
that σ maps only one variable to a general linear form, whereas any other variables
remain unchanged. We will need this attribute of σ , in Section 3.3.4, to ensure that a
the semidiagonal structure of the given polynomial is preserved at every intermediate
stage of the algorithm.

Correctness of Algorithm KS-Test

By Step 3, we are guaranteed that LM(T1) � LM(p̃). erefore, if p̃ = 0 mod T1, then
p̃ = 0 if and only if [LM (T1)] p̃ = 0. is is verified in Step 4.

It remains to show the correctness of Step 3. In order to check if p̃ = 0 mod T1, the
algorithm finds out if p̃ = 0 mod S j for every 1≤ j ≤ r . at fact that this is a sufficient
condition is implied by Lemma 3.9. Since ϕ(S j) = `

t j

j (recall that ϕ is the map that
sends all nilpotents of R to zero) and `i ,` j are coprime for i 6= j , the correctness of
Step 3 follows from chinese remaindering. Finally notice that p̃ = 0 mod S j if and
only if σ(p̃) = 0 mod σ(S j) as σ is an invertible linear transformation. e check
σ(p̃) = 0 mod σ(S j) is done recursively in Step 3.2.

30 C . C  

Complexity of Algorithm KS-Test

At the start, Algorithm KS-Test is called on polynomial p. So, at every intermediate
level deg(S j)≤ deg(T1)≤ d . erefore, dimF(R ′)≤ d · dimF(R). Time spent by Algo-
rithmKS-Test is bounded by poly(n, k ′, d , dimF(R)) in Steps 1, 2, 3.1 and 4. Moreover,
time spent in Step 3.2 is at most d times a smaller problem (with top fan-in reduced
by 1) while dimension of the underlying local ring gets raised by a factor at most d .
Unfolding the recursion, we get the time complexity of Algorithm KS-Test on input
p to be poly(n, d k).

3.3.4 Adapting Algorithm KS-Test to solve Problem 3.1

We now wish to identity test a polynomial of the form p + f where p is computed
by a ΣΠΣ(k) and f is an r -semidiagonal circuit (cf. Definition 3.1). ough p + f

is a ΣΠΣ circuit, it is a ΣΠΣ circuit of unbounded top fan-in and hence we can not
apply the Kayal-Saxena test directly. We shall apply the test on p, which is a fanin-
k depth-3 circuit, and track the evolution of f in the process. We shall see that the
semidiagonal structure of f is preserved throughout the execution. To begin with, f

an r -semidiagonal circuit.
Just as in the Kayal-Saxena test, an intermediate level of the recursion would involve

a local ring R = F[x1, . . . , xc]/(`
e1
1 , . . . ,`ec

c). As before, we shall refer to the variables�
xc+1, . . . , xn

	
as the free variables. But now, we have to test if a polynomial of the form

q =
k ′∑

i=1

Ti +
s ′∑

t=1

ωt

is zero where each Ti is a product of linear forms and each ωt is an r -semidiagonal
term. Each of the Ti ’s, like earlier, can be expressed as Ti = αi ·∏d

j=1(`i j +τi j) for
some αi ∈ R , linear forms `i j over the free variables, and nilpotents τi j ∈ R . And
each ωt is an r ′-semidiagonal term that can be written as

ωt = βt ·mt

b∏
i=1

(`i t +τi t)
ei t (3.1)

where mt is a monomial in the free variables and βt ∈ R . Let p̃ denote the part
T1 + · · ·+ Tk ′ , and let f̃ denote the part

∑s ′
t=1ωt . e polynomials p̃ and f̃ are the

.. S P . 31

evolutions of p and f in the course of the algorithm. At the beginning p̃ = p and
f̃ = f , and the algorithm shall maintain the invariant that c + k ′ ≤ k and r ′ ≤ d c · r ,
which would ensure that f̃ stays semidiagonal.

In this modification, we would need to compute the leading monomial and co-
efficient of f̃ as well. We know from eorem 3.6 that we can compute the leading
monomial and coefficient of a semidiagonal polynomial over F, but here f̃ is a semidi-
agonal polynomial over a local ringR . e same approach, with minor modifications,
can be used to compute the leading monomial and coefficient of f̃ as well, but we shall
defer that to later. For now let us assume that we know how to compute LM

�
f̃
�

and

LC
�

f̃
�
. Below is the modified algorithm, with the changes from Algorithm KS-Test

marked.

Algorithm KS-T-M
�
R ,{T1, . . . ,Tk ′} , f̃

�
:

Step 1: (Rearranging terms) Order the terms Ti so that LM (T1) � LM
�
Ti

�
, for all

2≤ i ≤ k ′.

Step 1.1: If LM(f̃)� LM (T1), return NO.

Step 2: (Base Cases) If f̃ = 0, return KS-Test
�R ,{T1, . . . ,Tk ′}

�
. If k ′ = 0 check if

f̃ = 0. If so, return YES, and NO otherewise.
If LM (T1) ∈ R , then each of the Ti ’s and f̃ are just elements of R . Add the ele-

ments and return YES if zero, and NO otherwise.

Step 3: (Verifying that p̃ + f̃ = 0 mod T1) By suitably grouping factors of T1, it can
be written as T1 = α1 · S1 . . . Sm where α1 ∈R , and each S j is of the form

S j = (` j +τ1) · (` j +τ2) . . . (` j +τt j
),

where each τi is a nilpotent inR and ` j is a non-zero linear form over the free variables.
Further, `i and ` j are coprime linear polynomials (over F) when i 6= j . Check if
p̃ + f̃ = 0 mod S j , for every 1≤ j ≤ m, in the following way.

Step 3.1: (Building the new ring) Suppose ` j = cu xu + `
′
j where xu is a

free variable, 0 6= cu ∈ F and `′j is independent of xu . Define an invertible

32 C . C  

linear transformation on the free variables that maps xu to c−1
u (xu−`′j) and

leaves every other variable unchanged. In other words, σ is defined such
that σ(` j) = xu . Hence, σ(S j) = (xu +τ1) . . . (xu +τt j

). Define the ring

R ′ =R[xu]/(σ(S j))

Step 3.2: (Recursively verify if σ(p̃ + f̃) = 0 mod σ(S j)) Notice that we
have σ(T1) = 0 mod σ(S j) as S j divides T1.

Recursively call KS-T-M
�
R ′,¦σ(T2), . . . ,σ(T

′
k ′)
©

,σ(f̃)
�
. Re-

turn NO if the call returns NO, otherwise declare p + f̃ = 0 mod S j .

Declare p̃ + f̃ = 0 mod T1, if p̃ + f̃ = 0 mod S j for all 1≤ j ≤ m.

Step 4: Check if [LM (T1)](p̃ + f̃) = 0 using the fact that

[LM (T1)](p̃ + f̃) =



∑
LM(Ti)=LM(T1)

LC
�
Ti

�
if LM(f̃)≺ LM (T1)

LC(f̃) +
∑

LM(Ti)=LM(T1)

LC
�
Ti

�
otherwise

Return YES if zero, and NO otherwise.

Correctness of Algorithm KS-Test-Modified

Recall that in Step 1 of Algorithm KS-Test, we rearranged terms to have LM (T1) �
LM
�
Ti

�
for all 2≤ i ≤ k ′. e purpose of this step was to ensure that LM (T1)� LM (p̃),

so that p̃ = 0 mod T1 implies that p̃ = α · T1 for some α ∈ R . Since we are now
dealing with p̃ + f̃ , we need to account for the contribution of f̃ as well. Note that
if LM(f̃) � LM

�
Ti

�
for all 1 ≤ i ≤ k ′ then surely p̃ + f̃ 6= 0. Otherwise, T1 (after

reordering) satisfies LM (T1) � LM (p̃) and we can proceed to Step 2. is is precisely
what is checked in Step 1.1 of the modified algorithm. erefore if p̃+ f̃ = 0 mod T1,
then p̃ + f̃ = α ·T1, and this is checked in Step 3. Note that Step 1.1 ensures that, in
Step 3, we just have to check if p̃+ f̃ = 0 mod T1 rather than p̃+ f̃ = 0 mod f̃ (which,
presumably, is a much harder task).

.. S P . 33

Step 2 of the modified algorithm also handles the base case when k = 0, where we
have to check if f̃ = 0 in R .

Step 3 remains the same as before, and the only property that needs to be ensured
is that σ(f̃) continues to stay semidiagonal. Note that the choice of σ ensures that at
most one new free variable is mapped to a linear form (Step 3.2 only replaces xu , and
other variables remain unchanged). erefore, σ(f̃) is a sum of the terms σ(ωt)’s, and
each σ(ωt) has at most one power of a linear form more than ωt . In other words, if
f̃ is r ′-semidiagonal, then σ(f̃) is d r ′-semidiagonal. Again Lemma 3.9 ensures that
p̃ + f̃ = 0 mod S j for all 1≤ j ≤ m implies p̃ + f̃ = 0 mod T1.

Finally, in Step 4, we need to confirm if [LM (T1)](p̃+ f̃) = 0. Since we have ensured
in Step 1.1 that LM(f̃)� LM (T1), Step 4 of the modified algorithm additional accounts
for the contribution of f̃ to the sum depending on whether LM(f̃) = LM (T1) or not.

Also note that to begin with k ′ = k, c = 0 , and r ′ = r . And in each recursive
stage of the algorithm, c increases by at most one, r ′ increases by a factor of d and k ′

decreases by 1. Hence, we always have that c + k ′ ≤ k and r ′ ≤ r d c ≤ d k .
We now shall see how the leading monomial and coefficient of f̃ can be computed.

Computing LM
�

f̃
�
- From Equation 3.1

f̃ =
s ′∑

t=1

ωt

where each ωt = βt ·mt ·
b ′∏

i=1

(`i t +τi t)
ei t

By using the binomial expansion on (`i t + τi t)
ei t , we can express f̃ as an R-linear

combination of semidiagonal terms (reusing symbols βt ’s):

f̃ =
∑
t≤s ′

e ′i t≤ei t

βt ·mt ·
b ′∏

i=1

`
e ′i t
i t (3.2)

Note that each `i t is a linear form over the base field F, and hence the above expres-
sion is a R-linear combination of semidiagonal terms over F. Also, the number of
summands in the above expression of f̃ is at most r ′ s ′ since f̃ is r ′-semidiagonal.

34 C . C  

Let {v1, . . . , vdimFR} be an F-basis of R and let each βi be expressed in this basis as

βi =
∑

j

bi j v j where bi j ∈ F.

en, Equation (3.2) can be split in terms of these basis vectors as follows:

If f̃ j
def=

∑
t≤s ′

e ′i t≤e ′i t

bt j ·mt

b ′∏
i=1

`ei t
i t for j = 1, . . . , dimFR

then f̃ =
dimFR∑

j=1

v j · f̃ j

us to compute the leading monomial (or coefficient) of f̃ , it suffices to compute
the leading monomial (or coefficient) of each of the f̃ j ’s which are semidiagonal cir-
cuits over F. Hence, the leading monomial and coefficient of f̃ can be computed in
deterministic poly(n, d , r ′, s ′, dimFR) time by (dimF(R))-many applications of eo-
rem 3.6.

Using an analysis similar to the complexity analysis of Algorithm KS-Test (pre-
sented in Section 3.3.3) and observing that dimFR ≤ d k , we see that Algorithm KS-
Test-Modified takes time poly(n, r, s , d k). is solves Problem 3.1 in deterministic
polynomial time as promised. Summarizing this as a theorem:

eorem 3.10. Given aΣΠΣ(k) circuit computing a polynomial p, and an r -semidiagonal
circuit computing a polynomial f , there is a deterministic poly(n, r, s , d k)-time algorithm to
check if p + f = 0.

3.4 Solving Problem 3.2

is section shall address Problem 3.2, a special case of “sparse factorization verifica-
tion”:

Given polynomials f , g1, · · · , gt explicitly as a sum of monomial with each
gi being a sum of univariates, check if f − g1 . . . gt = 0.

e naïve approach of multiplying all gi ’s is infeasible because of intermediate swelling
in the number of monomials (as sparse polynomials could have factors of very large

.. S P . 35

sparsity). Consider the following examples: the polynomial
∏n

i=1 (x
d
i − 1) has s = 2n

monomials, and its factor
∏n

i=1 (x
d−1
i + xd−2

i + . . .+ 1) has d n = s log d monomials. Over
the finite field Fp , the polynomial (`p

1 − `p
2) has 2n monomials (for any choice of

linear forms `1,`2) and has a factor (`p
1 − `p

2)/(`1− `2) which has exponentially many
monomials for a generic choice of `1,`2. us the naïve approach may lead to one of
these large factors intermediately.

Notice that, when gi ’s are linear polynomials, Problem 3.2 becomes a special case of
Problem 3.1 and can therefore be solved in deterministic polynomial time. However,
the approach using chinese remaindering given in Section 3.3 does not seem to gener-
alize directly to the case when, instead of linear functions, gi ’s are sums of univariates.
is case is handled in this section.

3.4.1 Checking divisibility by (a power of) a sum of univariates

Given g1, . . . , gt , group together the polynomials gi ’s that are just F-multiples of each
other. After this is done, we need to check if f is equal to a product of the form
a · g d1

1 . . . g dt
t (reusing symbol t) for some a ∈ F, where no two gi ’s are scalar multiples

of each other. Suppose gi and g j are coprime for i 6= j (this assumption is justified
later in Section 3.4.2 by essentially proving them irreducible). en, Problem 3.2 gets
reduced to the problem of checking divisibility followed by a comparison of the leading
monomials of f and a · g d1

1 . . . g dt
t . e latter is easy as we have f and gi ’s explicitly.

Checking divisibility, however, is more technical and we do that in this section. We
once again use eorem 3.6, but on a slightly more general form of semidiagonal
polynomials.

eorem 3.11. Checking divisibility of a sparse polynomial f by g d , where g is a sum of
univariates, can be done in deterministic polynomial time.

Proof. Let g =
∑n

i=1 ui (xi), where ui is a univariate in xi . Assume without loss of
generality that u1 6= 0 and let degx1

u1 = e . By replacing the partial sum
∑n

i=2 ui (xi) in
g by a new variable y, let h(x1, y) = (u1(x1)+ y)d be the bivariate thus obtained. Since
hd is a sparse polynomial that is monic in x1, for every k ≥ ed we can employ long
division and uniquely express xk

1 = qk · hd + rk where degx1
rk < ed and degy rk ≤ k.

Further, since each rk is a bivariate, the number of monomials in them is bounded by

36 C . C  

ed (k+1). Using this, f can be written as q ·hd+ r where degx1
r < ed and the number

of monomials in r (x1, . . . , xn, y) is bounded by s · ed (d + 1) where the s is the number
of monomials in f . Substituting y =

∑n
i=2 ui (xi), we get

f (x1, . . . , xn) = q̃ · g d + r̃
�

x1, . . . , xn

�
where r̃

�
x1, . . . , xn

�
= r

�
x1, . . . , xn,

∑n
i=2 ui (xi)

�
. Since degx1

r̃ < ed = degx1
g d it fol-

lows that f = 0 mod g d if and only if r̃ = 0.
Polynomial r̃ is of the form of a sum of products, where each product term looks

like m · (∑n
i=2 ui (xi))

j for some monomial m and j ≤ deg f . is form is similar to
that of a semidiagonal circuit (Definition 3.1), except that

∑n
i=2 ui (xi) is a sum of

univariates instead of a linear form. Nevertheless, eorem 3.6 would still allow us to
check if this is zero in deterministic polynomial time (explained in remark following
eorem 3.6).

e polynomial r̃ can be constructed in polynomial time, and identity testing r̃

also takes polynomial time by eorem 3.6.

3.4.2 Irreducibility of a sum of univariates

As mentioned in Section 3.4.1, we would like to employ chinese remaindering to
solve Problem 3.2. In this section, we show that any sum of univariates that depends
on at least three variables non-trivially is either irreducible or a p-th power of some
polynomial (in characteristic p).

eorem 3.12. (Irreducibility) Let g be a polynomial over a field F that is a sum of univari-
ates. Suppose g depends non-trivially on at least three variables. en either g is irreducible,
or g is a p-th power of some polynomial where p = char(F).
Remark. Such a statement is false when g is a sum of just two univariates. For eg., the
real polynomial g := x4

1 + x4
2 has factors (x2

1 + x2
2 ± x1x2

p
2) (which is not even a sum

of univariates!).

We need the following observations (with g being a sum of univariates as in eo-
rem 3.12).

Observation 3.13. Let g = u · v be a non-trivial factorization. en both u and v are
monic in every variable that g depends on. In particular, they depend non-trivially on every
variable that g depends on.

.. S P . 37

Proof. If u is not monic in, say, x1 then fix an ordering amongst the variables under
which x1 is the highest. en the leading monomial of g = u · v is a mixed term, and
that is not possible as g is a sum of univariates.

Observation 3.14. If g is not a p-th power of any polynomial then it is square-free.

Proof. Suppose not, then g = u2v for some polynomials u and v. If g is not a p-th
power, there must exist a variable xi such that 0 6= ∂i g = 2uv∂i u + u2∂i v. Since u

divides the RHS, u must be a univariate as ∂i g is a univariate in xi . But this forces g

to be a univariate as u is also a factor of g .

Proof of eorem 3.12. Suppose that g is not a p-th power of any polynomial. en
there exists a variable, say x1, such that ∂1 g 6= 0. Suppose g = u · v; this means ∂i g =
(∂i u)v +(∂i v)u.

ere are two variables other than x1, say x2 and x3, that g depends non-trivially
on. If one of these partial derivatives is zero, say ∂2 g = 0, then 0 = (∂2u)v + (∂2v)u.
Since both u and v are monic in x1 (by Observation 3.13), degx1

(∂2u) is strictly less
than degx1

u and similarly for v. As we also know that u and v do not share any
common factor (since g is square-free, by Observation 3.14), the above equation forces
∂2u = ∂2v = 0. is implies that every occurrence of x2 in g , u and v has an exponent
that is a multiple of p = char(F). Hence,

g ′ = u ′ · v ′
where g (x1, x2, . . . , xn) =: g ′(x1, x p

2 , . . . , xn)

u(x1, x2, . . . , xn) =: u ′(x1, x p
2 , . . . , xn)

v(x1, x2, . . . , xn) =: v ′(x1, x p
2 , . . . , xn).

and we can induct on this “smaller” equation g ′ = u ′v ′.
Suppose that both ∂2 g and ∂3 g are non-zero. Denote by h(xi=α)

, the polynomial h

evaluated at xi = α, where α ∈ F (the algebraic closure of F).

Claim 3.15. ere exists an α ∈ F such that u(x1=α)
, v(x1=α)

6= 0 and they share a non-trivial
common factor.

38 C . C  

For now, let us assume the claim is true and complete the proof. Since ∂2 g and ∂3 g do
not depend on x1, evaluating x1 to α doesn’t change the LHS.

(∂2 g)(x1=α)
= ∂2 g = (∂2u)(x1=α)

v(x1=α)
+(∂2v)(x1=α)

u(x1=α)
.

Similarly, ∂3 g = (∂3u)(x1=α)
v(x1=α)

+(∂3v)(x1=α)
u(x1=α)

.

Since both ∂2 g and ∂3 g are non-zero, then the last two equations imply that the gcd
of u(x1=α)

and v(x1=α)
(which is non-trivial, by Claim 3.15) divides the LHS of both

the equations. But this leads to a contradiction as the LHS of the two equations are
univariates in x2 and x3 respectively.

Proof of Claim 3.15.
Suppose g1 = ∂1 g , u1 = ∂1u and v1 = ∂1v, and let w = gcd(g1, u1, v1) which is a

univariate in x1 as g1 is a univariate. Consider the following equation

0 6= g1

w
=
�u1

w

�
v +

�v1

w

�
u.

Note that neither of u1 and v1 is zero. is is because, if u1 = 0 then g1 = v1 · u. is
then forces u to be a univariate in x1, which is not possible as u is also a factor of g .

Since x1-degree of u1 is less than that of g1, the univariate g1/w has degree in x1 at
least one. Let α ∈ F̄ be a root of g1/w. Substituting x1 = α in the above expression,
we get an equation of the form

ũ · v(x1=α)
+ ṽ · u(x1=α)

= 0, (3.3)

where ũ = (u1/w)(x1=α)
and ṽ = (v1/w)(x1=α)

. Since u and v are factors of g which
depends non-trivially on other variables, it follows that u(x1=α)

and v(x1=α)
are non-

zero. Further, ũ and ṽ cannot both be zero as g
w , u

w and v
w do not share any common

factor (in particular x1−α). Hence, the above equation is a non-trivial equation.
Since u is monic in x2 (by Observation 3.13), degree of x2 in u1 is strictly less than

that in u. Which means, degree of x2 in ũ is also strictly less than degree of x2 in
u(x1=α)

. erefore, by treating the terms ũ, ṽ, u(x1=α)
, v(x1=α)

as polynomials in x2 over
the function field F̄�x3, . . . , xn

�
, we can conclude from Equation 3.3 that u(x1=α)

and
v(x1=α)

must share a nontrivial factor.

.. S P . 39

3.4.3 Finishing the argument

eorem 3.11 and 3.12 essentially give the solution to Problem 3.2. Although, e-
orem 3.12 justifies our assumption of gi ’s being essentially coprime when gi depends
on three or more variables, we need to slightly change our strategy for gi ’s that are
bivariates or univariates. In this case, we first take pairwise gcd of the bivariates (sim-
ilarly, pairwise gcd of the univariates) and factorize accordingly till all the bivariates
(similarly, the univariates) are mutually coprime. Taking gcd of two bivariate (monic)
polynomials takes only polynomial time using Euclidean gcd algorithm (by long divi-
sion). Once coprimeness is ensured, we can directly check if a bivariate g di

i divides f

by expressing f as f =
∑

j f j m j , where f j ’s are bivariate polynomials depending on the
same two variables as gi , and m j ’s are monomials in the remaining variables. en,

g di
i | f if and only if g di

i | f j for all j .

Once again, just like gcd, bivariate divisibility is a polynomial time computation (sim-
ply by long division). Finally, we can use chinese remaindering to complete the argu-
ment in a similar fashion as in Section 3.4.1. We now summarize this as a theorem.

eorem 3.16. Let f , g1, . . . , gt be n-variate polynomials given explicitly as a sum of at most
s monomials, each of whose degrees are bounded by d and each gi being a sum of univariates.
en, we can check if f = g1 . . . gt in deterministic time poly(n, d , t , s).

40 C . C  

4Identity testing via algebraic independence

4.1 Introduction

During the past decade, the quest for derandomization of PIT has yielded several re-
sults on restricted models of circuits. But, fortunately, the search has been made more
focussed by a result [AV08, VSBR83] which states that a polynomial time blackbox
derandomization of identity testing for depth-4 circuits (via a certain pseudo-random
generator) implies a quasi-polynomial time derandomization of PIT for poly-degree1

circuits.
With depth-4 as the final frontier, the results that have been achieved so far include

polynomial time hitting-set generators for the following models:

• depth-2 (ΣΠ) circuits (or sparse polynomials) [KS01, AB99],

• depth-3 (ΣΠΣ) circuits with constant top fanin [SS11],

• depth-4 (ΣΠΣΠ) multilinear circuits with constant top fanin [SV11],

• constant-depth constant-read multilinear formulas [AvMV11],

• circuits generated by sparse polynomials with low transcendence degree [BMS11a].

To our knowledge, these are the only instances for which polynomial time hitting-
set generators are known. e result on depth-3 bounded top fanin circuits is based
upon the Chinese Remaindering technique of [KS07] and the ideal-theoretic frame-
work studied in [SS10b]. eir work followed after a sequence of developments in
rank bound estimates [DS05, KS08, SS09, KS09b, SS10b], some using results from
incidence geometry (although, this result [SS11] in particular is not rank based). On

1Circuits computing polynomials with degree bounded by a polynomial function in the size of the
circuit.

42 C . I    

the other hand, the results on constant-depth multilinear formulas [AvMV11, SV11]
is obtained by building upon and extending the techniques of other earlier results
[KMSV10, SV09, SV08] on ‘read-once’ models. At a high level, this involved a study
of the structure of multilinear formulas under the application of partial derivatives
with respect to a carefully chosen set of variables and invoking depth-3 rank bounds
(cf. [SY10] for details). More recently, a third technique has emerged in [BMS11a]
which is based upon the concept of algebraic independence of polynomials. ey showed
that for any given circuit C of polynomial degree and sparse polynomials f1, . . . , fm

with constant transcendence degree, a hitting-set generator for C (f1, . . . , fm) can be con-
structed in polynomial time.

4.1.1 Contribution of this chapter

With these diverse techniques floating around the study of hitting-set generators, one
wonders: Could there be one single tool that is sufficiently powerful to capture all
these models? Is there any unique feature underlying these seemingly different models
that can lend itself to the conception of such a unifying tool? e answer to both
these questions, as we shall see in this chapter, is yes. e key to this lies in studying
the properties of the Jacobian, a mathematical object lying at the very core of algebraic
independence. And as for the ‘unique feature’, notice that in the above four models
some parameter of the circuit is bounded – be it bounded top fanin, bounded read of
variables, or bounded transcendence degree. At an intuitive level, it seems to us that it
is this ‘bounded parameter’-ness of the circuit that makes the Jacobian perform at its
best.

In the process of finding a universal technique, we strengthen the earlier results
significantly thus giving the first blackbox PIT for these generalized models. Besides
ΣΠΣ(k) circuits, we construct blackbox PITs for circuits of the form C (T1, · · · ,Tm)
where C is any polynomial of polynomial degree and Ti ’s are products of linear func-
tions with bounded transcendence degree. Further, we remove the multilinear restric-
tion completely from the constant-depth constant-read models. e notion of ‘read’
is also replaced by a general notion of ‘occur’ , which additionally generalizes PIT on
multilinear ΣΠΣΠ(k) circuits as well.

.. I 43

At this point, one is faced with a natural question: how effective is this new tool
in proving lower bounds? e intimate connection between efficient algorithms and
lower bounds has recurrently appeared in various contexts [Wil11, Rag08, Uma03,
PSZ00, IW97]. For arithmetic circuits, this link is provably tight [KI03, Agr05,
AV08]: Derandomizing identity testing is equivalent to proving circuit lower bounds.
is suggests that one might have to look for techniques that are powerful enough to
handle the dual worlds of algorithm design and lower bounds with equal effectiveness.
For example the partial derivative technique has been used to prove lower bounds and
identity testing (albeit non-blackbox) on restricted models (survey [CKW11]); the τ-
conjecture is another such example [GKPS11]. In this chapter, we shall see that the
Jacobian is yet another tool using which we can prove exponential lower bounds for
the determinant/permament on the same depth-3 and depth-4 models for which we
give efficient PIT algorithms. In particular, this includes depth-4 constant-occur for-
mulas, depth-4 circuits with constant transcendence degree of the underlying sparse
polynomials (which significantly generalizes the lower bound result in [GKPS11]), and
depth-3 circuits with constant transcendence degree of the polynomials computed by
the product gates.

To state the results more formally, we would need the following definition.

Definition 4.1. A set of polynomials f= { f1, · · · , fm} ⊂ F[x1, · · · , xn] is algebraically inde-
pendent over F if there is no nonzero polynomial H ∈ F[y1, · · · , ym] such that H (f1, · · · , fm)
is identically zero.

A maximal subset of f that is algebraically independent is a transcendence basis of f and
the size of such a basis is the transcendence degree2 of f (denoted trdegFf).

e first result is the generalization of PIT on ΣΠΣ(k) circuits.

eorem 4.2. Let C be a poly-degree circuit of size s and each of T1, . . . ,Tm be a product
of d linear polynomials in F[x1, . . . , xn] such that trdegF{T1, . . . ,Tm} ≤ r . A hitting-set for
C (T1, . . . ,Tm) can be constructed in time polynomial in n and (s d)r , assuming char(F) = 0

or larger than d r .

2Since algebraic independence satisfies the matroid property cf. [Oxl92], transcendence degree is
well-defined.

44 C . I    

If C is a single + gate, we get a hitting-set generator for depth-3 circuits with constant
transcendence degree of the polynomials computed by the product gates (there is no
restriction on top fanin).

e second result uses the following generalization of read-k formulas (where ev-
ery variable appears in at most k leaf nodes of the formula) to occur-k formulas. Two
reasons behind this generalization are: Firstly, to accommodate the power of expo-
nentiation — if we take the e-th power of a read-k formula using a product gate, the
‘read’ of the resulting formula goes up to ek. We would like to avoid this superfluous
blow up in read. Secondly, a read-k formula has size O(kn), which severely hinders
its power of computation - for instance, determinant and permanent cannot even be
expressed in this model when k is a constant [Kal85b]. is calls for the following
definition.

Definition 4.3. An occur-k formula is a rooted tree with internal gates labelled by + and
×̂. A ×̂ gate, on inputs g1, . . . , gm with incoming edges labelled e1, . . . , em ∈ N, computes
g e1

1 · · · g em
m . At the leaves of this tree are depth-2 formulas computing sparse polynomials (leaf

nodes), where every variable occurs in at most k of these sparse polynomials.

We shall define the size and depth of circuits slightly differently. Since the point
of a ×̂ gate was to simulate powering along with multiplication, we shall define the
size of such a ×̂ gate as (e1+ · · ·+ em) (akin to the number of wires feeding into a ×
gate that simulates this product). e size of each + gate, as usual, is counted as 1.
e size of each leaf node is the size of the corresponding depth-2 circuit. With these
conventions, the size of the circuit is the sum of sizes of each of its gates (and leaves).
e depth of the circuit is the number of layers of + and ×̂ gates plus 2 (to account
for the depth-2 circuits at the leaves).

us, occur-k is more relaxed than the traditional read-k as it packs the “power of
powering” (to borrow from [GKPS11]), and the leaves are sparse polynomials (at most
kn many) whose dependence on its variables is arbitrary. E.g. (x3

1 x2 + x2
1 x2

3 + x1x4)
e

is not read-1 but is trivially depth-3 occur-1. is relaxation is also similar to “sparse-
substituted variants” in the earlier results on read-k formulas.

eorem 4.4. A hitting-set for a depth-D occur-k formula of size s can be constructed in
time polynomial in s R, where R= (2k)4D ·2D (assuming char(F) = 0 or > s R).

.. I 45

A tighter analysis for depth-4 occur-k formulas yields a better time complexity.
Note that a depth-4 occur-k formula allows unbounded top fanin. Also, it can be
easily seen to subsume ΣΠΣΠ(k) multilinear circuits studied by [SV11, KMSV10].

eorem 4.5. A hitting-set for a depth-4 occur-k formula of size s can be constructed in
time polynomial in s k2 (assuming char(F) = 0 or > s 2k).

For constant-depth, the above theorems not only remove the restriction of mul-
tilinearity (and relax read-k to occur-k), but further improve upon the time com-
plexity of [AvMV11] and [SV11]. e hitting-set generator of [AvMV11] works
in time nkO(k2)+O(kD), which is super-exponential when k = Ω(sε/2D ·2D) for any pos-
itive ε < 1 and a constant D, whereas the generator in eorem 4.4 runs in sub-
exponential time for the same choice of parameters. e running time of [SV11] is
sO(k3), which is slightly worse than that of eorem 4.5. However, the hitting-set gen-
erator of [AvMV11] is quasi-polynomial sized even for non-constant depth whereas
eorem 4.4 does not give anything non-trivial for O(log n) depth.

Since any polynomial has an exponential-sized depth-2, occur-1 formula (just the
sparse representation), proving lower bounds on this model is an interesting proposi-
tion in its own right.

eorem 4.6. Any depth-4 occur-k formula that computes Detn or Permn must have size
s = 2Ω(n/k

2) over any field of characteristic zero.

Our next result is an exponential lower bound on the model for which hitting-set was
developed in [BMS11a] (but no lower bound was shown). It is also an improvement
over the result obtained in [GKPS11] which holds only for more restricted depth-4
circuits over reals.

eorem 4.7. Let C be any circuit. Let f1, . . . , fm be sparse polynomials (of any degree)
with sparsity bounded by s and their trdeg bounded by r . If C (f1, . . . , fm) computes Detn or
Permn, then s = 2Ω(n/r) over any field of characteristic zero.

e next result is on the model for which hitting-set is given by eorem 4.2.

eorem 4.8. Let C be any circuit and T1, . . . ,Tm be products of linear polynomials. If
C (T1, . . . , Tm) computes Detn or Permn then trdegF{T1, . . . ,Tm} = Ω(n) over any field of
characteristic zero.

We shall now see the main ideas used in all the above results.

46 C . I    

4.1.2 e main ideas

To a set of polynomials {T1, . . . ,Tm} we associate a polynomial, called the Jacobian
J (T1, . . . ,Tr) (assuming this to be a transcendence basis of the Ti ’s), that captures the
algebraic independence of T1, . . . ,Tr .

If we could find an r -variate linear map Ψ such that Ψ(T1), . . . ,Ψ(Tr) algebraically
independent, then it can be shown that for any C : C (T1, . . . ,Tm) = 0 if and only if
C (Ψ(T1), . . . ,Ψ(Tm)) = 0. Turns out that to find such a map Ψ, it suffices to find an
r -variate linear map Φ such that Φ ◦ J (T1, . . . ,Tr) 6= 0. For generic Ti ’s, the Jacobian
is usually a difficult polynomial to work with, and so is finding Φ. However, for the
special models in this chapter we shall be able to design Φ. e construction of Φ
ultimately provides a hitting-set for C (T1, . . . ,Tm), as we reduce to a situation where r

is constant.
e initial idea for lower bounds is similar. Suppose Detn = C (T1, . . . ,Tm). en,

by algebraic dependence, J (Detn,T1, . . . ,Tr) = 0. e proofs then exploit the nature of
this identity for the special models. is part requires proving several combinatorial
properties of the determinant/permanent.

4.2 Algebraic independence and the Jacobian

is section shall develop the main tools required for the variou results. e first
definition we need is that of the Jacobian.

Definition 4.9 (Jacobian). e Jacobian of a set of n-variate polynomials f= { f1, · · · , fm}
is the matrix Jx(f) = (∂x j

fi)m×n, where ∂x j
fi = ∂ fi/∂ x j . Let S ⊆ x = {x1, . . . , xn} and

|S | = m. en JS(f) denotes the minor of Jx(f) formed by the columns corresponding to the
variables in S.

e Jacobian of a set of polynomials has a very useful “linearizing effect”. e linear
rank (over the function field) of the Jacobian exactly captures their algebraic rank i.e.
transcendence degree.

Fact 4.10 (Jacobian criterion). Let f⊂ F[x] be a finite set of polynomials of degree at most
d , and trdegFf≤ r . If char(F) = 0 or char(F)> d r , then trdegFf= rankF(x)Jx(f).

.. A    J 47

e proof of this fact may be seen in [BMS11b].

e next definition we need is that of a faithful homomorphism.

Definition 4.11 (Faithful homomorphism). A homomorphism Φ : F[x] → F[y] (y is
another set of variables) is said to be faithful to a finite set of polynomials { f1, . . . , fm} ⊂ F[x]
if

trdegF { f1, . . . , fm}= trdegF {Φ(f1), . . . ,Φ(fm)} .
e intuition is that trdegF {f}measures the number of “effective variables” present

amongst them. All the PITs in this chapter would try to construct a faithful homo-
morphism to F[y1, . . . , yr] where r ≈ trdegF {f}.

e following result asserts that faithful homomorphisms for f do not change non-
zeroness any polynomial combination of f.

eorem 4.12 (Faithful preserves nonzeroness). Let f = { f1, · · · , fm} ⊂ F[x] and Φ
be a homomorphism faithful to f. For any polynomial C ∈ F[y1, · · · , ym], C (f) = 0⇔
C (Φ(f)) = 0.

Before we see the proof, it would be useful to illustrate why this result is surprising.
Let us say { f1, . . . , fr } is one maximal algebraically independent and Φ is a map that
ensures that {Φ(f1), . . . ,Φ(fr)} continue to remain algebraically independent. However,
the circuit C could involve only fs+1, . . . , fm and it is far from obvious why just this
suffices to preserve relations between them. But the fact that { f1, . . . , fs} is a maximal
algebraically independent set forces all relations amongst the fi ’s to be preserved exactly
by Φ.

e first proof of was by Beecken, Mittmann and Saxena [BMS11b] and used a
deep theorem from algebraic geometry called Krull’s hauptidealsatz. e following is
an alternate elementary proof of the above theorem using only basic field theory.

Proof of eorem 4.12. Since Φ is faithful to f, there is a transcendence basis (say,
f1, . . . , fs) of f such that Φ(f1), . . . ,Φ(fs) is a transcendence basis of Φ(f). e function
field K= F(f) essentially consists of elements that are polynomials in fs+1, . . . , fm with
coefficients from F(f1, . . . , fs). Treating C (f) as a nonzero element of K, there is an
inverse Q ∈K such that Q ·C = 1. Since Q is a polynomial in fs+1, . . . , fm with coeffi-
cients from F(f1, . . . , fs), by clearing off the denominators of these coefficients in Q, we

48 C . I    

get an equation Q̃ ·C = P (f1, . . . , fs), where Q̃ is a nonzero polynomial in f and P is a
nonzero polynomial in f1, . . . , fs . ApplyingΦ to both sides of the equation, we conclude
that C (Φ(f)) = Φ(C (f)) 6= 0, otherwise P (Φ(f1), . . . ,Φ(fs)) = Φ(P (f1, . . . , fs)) = 0 which
is not possible as Φ(f1), . . . ,Φ(fs) are algebraically independent and P is a nontrivial
polynomial.

A recipe for constructing faithful maps

Given a set of polynomials { f1, . . . , fm}, the goal is to construct a map Φ such that
{Φ(f1), . . . ,Φ(fm)} continue to stay algebraically independent. By the Jacobian Crite-
rion (Fact 4.13), we want to ensure that the rank of J (Φ(f1), . . . ,Φ(fm)) is equal to the
rank of J (f1, . . . , fm). e first step forward would be to understand how the Jacobian
evolves under such a homomorphism.

Fact 4.13 (Chain rule). For any finite set of polynomials { f1, . . . , fm} ⊂ F[x] and a homo-
morphism Φ : F[x]→ F[y], we have

Jy(Φ(f1), . . . ,Φ(fm)) = Φ
�Jx(f1, . . . , fm)

� · Jy(Φ(x1), . . . ,Φ(xn)) (4.1)

e proof of this fact follows directly from the chain-rule for differentiation.

e matrix Φ(Jx(f1, . . . , fm)) is an m×n matrix, andJy(Φ(x1), . . . ,Φ(xn)) is an n× r

matrix. Suppose we ensure that Φ(Jx(f)) has the same rank as Jx(f), we additionally
need to ensure that post-multiplication byJy(Φ(x)) does not change the rank. Similar
questions have been studied earlier in the context of rank extractors by Gabizon and
Raz [GR05], and it is known that post-multiplication by a (suitable) Vandermonde
matrix preserves the rank.

Lemma 4.14 ([GR05]). Let A be a m×n matrix with entries in a field F, and let t be an
indeterminate. en, rankF(t)

�
A · (t i j)i∈[n], j∈[m]

�
= rankFA.

e next theorem shall simulate this by augmenting the map Φ slightly to make
the matrix on the right of Equation (4.1) a Vandermonde matrix (essentially).

Lemma 4.15 (Composition Lemma). Let f⊂ F[x] be a finite set of polynomials of degree
at most d , trdegFf≤ r , and char(F) = 0 or> d r . Let Φ : F[x]→ F[z] be a homomorphism

.. D-3      49

such that rankF(x)Jx(f) = rankF(z)Φ(Jx(f)). en, the map Ψ : F[x]→ F[z, t , y1, . . . , yr]
such that

Ψ(xi) 7→
 r∑

j=1

y j t
i j

+Φ(xi) for 1≤ i ≤ n

is a homomorphism faithful to f.

Proof. Without loss of generality, let trdegF(f) = r , which (by Jacobian criterion) is the
rank of Jx(f). We intend to show that the matrix Jy(Ψ(f)) is of rank r , which would
imply (by Jacobian criterion) that trdegF(t ,z) Ψ(f) = r . Consider the projection J ′ of
Jy(Ψ(f)) obtained by setting y1 = · · ·= yr = 0.

J ′ = �Jy(Ψ(f))
�

y=0
=

�
Ψ(Jx(f)) · Jy(Ψ(x))

�
y=0

(By chain rule)

= Φ(Jx(f)) · Jy(Ψ(x))

Observe that the matrix Jy(Ψ(x)) is exactly the Vandermonde matrix that is present
in Lemma 4.14. Also, Φ(Jx(f)) has entries in F(z), and by assumption has the same
rank as Jx(f). Hence, by Lemma 4.14,

rankF(t ,z)J ′ = rankF(t ,z)

�
Φ(Jx(f)) · Jy(Ψ(x))

�
= rankF(z)Φ(Jx(f)) = r.

And since J ′ is just a projection of Jy(Ψ(f)), the rank of the latter must also be r .
Hence, Ψ is indeed faithful.

e different results in this chapter would be constructions of such a map Φ that
preserves the rank of the Jacobian, which by the above lemma can be augments to give
a faithful map.

4.3 Depth-3 circuits of bounded transcendence degree

Let C be any circuit of polynomial degree and D = C (T1, · · · ,Tm), where each Ti is
of the form

∏d
j=1 `i j , every `i j is a linear polynomial in F[x1, . . . , xn]. Denote by T

the set {T1, . . . ,Tm} and by L(Ti) the multiset of linear polynomials that constitute Ti .
is section shall present a hitting set for such circuits where trdegF {T} is bounded
by a constant. Note that ΣΠΣ(k) circuit is a special case of such a circuit where the
circuit D =C (T1, . . . ,Tk) where C is a + gate.

50 C . I    

Suppose trdegF {T} = k ≤ r and Tk = {T1, . . . ,Tk} be a transcendence basis of
T. Since Jx(Tk) has full rank (char(F) = 0 or char(F) > d r), without loss of gen-
erality assume that the columns corresponding to xk = {x1, · · · , xk} form a nonzero
k × k minor of Jx(Tk). By Lemma 4.15, if we construct a Φ : F[x] → F[z] that
keeps Jxk

(Tk) nonzero then Φ can easily be extended to a homomorphism Ψ : F[x]→
F[z, t , y1, . . . , yr] that is faithful to T. And hence, by eorem 4.12, it would follow
that Ψ(D) = 0 if and only if D = 0.

4.3.1 Preserving non-zeroness of Jxk
(Tk)

Let us first understand the structure of Jxk
(Tk). If Ti =

∏d
j=1 `i j then

∂xTi = Ti ·
 d∑

j=1

∂x`i j

`i j


By expanding, using this additive structure of ∂xTi and the linearity of determinant
with respect to rows, the determinant Jxk

(Tk) takes the following form,

Jxk
(Tk) =

∑
`1∈L(T1),...,`k∈L(Tk)

T1 · · ·Tk

`1 · · ·`k

· Jxk
(`1, · · · ,`k). (4.2)

We shall call a set of linear polynomials independent if the correponding homoge-
nous linear parts (i.e. the constant-free parts) are F-linearly independent. e term
Jxk
(`1, · · · ,`k) ensures that the above sum is only over those {`1, · · · ,`k} that are in-

dependent linear polynomials (otherwise Jxk
(`1, . . . ,`k) is zero). e sum in equa-

tion (4.2) has the form of a depth-3 circuit. We shall call it H0, and we intend to
construct a low-variate Φ such that Φ(H0) 6= 0. We show that this is achieved by a Φ
that preserves the independence of a ‘small’ set of linear polynomials. In other words,
we would like to construct a certificate of non-zeroness of H0.
Certificate of H0: We can assume that the terms Jxk

(`1, · · · ,`k) in equation (4.2) are
non-zero field constants. Let L (H0) be the set of all linear polynomials occurring in
the denominator terms “`1 · · ·`k” of all the summands in sum (4.2). By adjusting the
field constants at the numerators, we can assume that no two linear polynomials in
L (H0) are constant multiple of each other. is means, the depth-3 circuit H0 has the

.. D-3      51

form
H0 = T ·∑

L

αL

`1 · · ·`k

where T :=
∏k

i=1 Tk , each αL is a nonzero field constant and the sum runs over sets
L= {`1, · · · ,`k} of k independent linear polynomials in L (H0).

Let us define the content of a depth-3 circuit, G =
∑

i Pi where Pi is a product of
linear polynomials, as cont(G) := gcdi{Pi}. Also, let the simple part of G be defined as
sim(G) :=G/cont(G). Hence cont(H0) = gcdL{T /`1 · · ·`k} and

sim(H0) = F0 ·
∑

L

αL

`1 · · ·`k

, where F0 =
T

cont(H0)
, (4.3)

Note that, since ` ∈L (H0) if and only if `||F0, we see that F0 is simply the product
of the linear polynomials in L (H0) and hence deg(F0) = |L (H0)|. erefore, for any
` ∈ L (H0), the terms in sim(H0) that survive modulo `1 are those with `1 in the
denominator “`1 · · ·`k” of the above expression. Hence,

H1 := sim(H0)mod `1 =
F0

`1

· ∑
`2,··· ,`k

αL

`2 · · ·`k

We can treat H1 as a depth-3 circuit in one less variable: if `1 = c1x1+
∑n

i=2 ci xi where
ci ’s ∈ F and c1 6= 0, then going modulo `1 is equivalent to replacing x1 by−∑n

i=2 ci xi/c1

in sim(H0). Hence, H1 becomes a depth-3 circuit in F[x2, . . . , xn]. erefore, it makes
perfect sense to talk about cont(H1) and sim(H1). Observe that `2, · · · ,`k remain in-
dependent linear polynomials modulo `1, and so H1 is a depth-3 circuit of the ‘same
nature’ as H0 but with one less linear polynomials in the denominators. Also, the linear
polynomials in L (H1) is a subset of the linear polynomials in L (H0) modulo `1.

Extending the above argument, we can define the following sequence of circuits:
Hi := sim(Hi−1) mod ˜̀

i , (1≤ i ≤ k) where ˜̀
i ∈L (Hi−1). Further, L (Hi) is a subset

of L (Hi−1) modulo ˜̀
i , which implies that essentially there are independent linear

polynomials, say `1, . . . ,`k , inL (H0) such that ˜̀
i = `i mod (`1, . . . ,`i−1) and therefore

Hi = sim(Hi−1) mod (`1, . . . ,`i).

Lemma 4.16 (Certifying path). Suppose H0 6= 0. en there exists independent linear
polynomials {`1, · · · ,`k} ⊆L (H0) such that Hi 6= 0 mod (`1, . . . ,`i), ∀i ∈ [k], and Hk is
a nonzero product of linear polynomials in L (H0) modulo (`1, · · · ,`k).

52 C . I    

Proof. e proof is by induction on k and follows the above sketch. e degree of the
nonzero polynomial sim(H0) is |L (H0)|−k. By Chinese remaindering, there exists an
`1 ∈L (H0) such that H1 := sim(H0)mod `1 6= 0. In the base case (k = 1), it is easy to
see that H1 is a nonzero product of linear polynomials modulo `1. For any larger k, the
depth-3 polynomial H1 has exactly the same form as H0 but with k − 1 independent
linear polynomials in the denominators. us we can induct on this smaller value
k − 1, keeping in mind that L (Hi)⊂L (H0) modulo (`1, . . . ,`i).

A set {`1, . . . ,`k}, satisfying Lemma 4.16, shall be called a certifying path of H0. Fix
a certifying path {`1, · · · ,`k}. We shall now see that any map that preserves the linear
independence of the certifying path also preserves the non-zeroness of H0.

eorem 4.17 (Preserving the certificate). Let {`1, . . . ,`k} be a certifying path for H0 and
Φ : F[x]→ F[z1, . . . , zk+1] be a linear map such that

∀` ∈L (H0) : rank{`,`1, . . . ,`k}= rank{Φ(`),Φ(`1), . . . ,Φ(`k)}
en Φ(H0) 6= 0.

Proof. We shall denote by I j the ideal generated by the linear forms
¦
`1, . . . ,` j

©
. e

proof would proceed by backward induction on k: Assuming Φ(Hi) 6= 0 mod Φ(Ii),
we shall see that Φ(Hi−1) 6= 0 mod Φ(Ii−1) for k ≥ i ≥ 1.

e base case: By Lemma 4.16, Hk is a nonzero product of linear polynomials in
L (H0) modulo Ik , so the definition Φ, we have that Φ(Hk) 6= 0 mod Φ(Ik).

e inductive step: By construction, Hi−1 = cont(Hi−1) · sim(Hi−1) = cont(Hi−1) ·
[qi`i+Hi] mod Ii−1, for some polynomial qi . By applying Φ throughout, this implies
that Φ(Hi−1) = Φ(cont(Hi−1)) · [Φ(qi)Φ(`i)+Φ(Hi)]mod Φ(Ii−1).

By the definition of a certifying path, Hi−1 6= 0 modIi−1 which then implies
that cont(Hi−1) 6= 0 modIi−1. is implies that none of the linear polynomials in
cont(Hi−1) are present in Ii−1, and Φ continues to preserve this by definition. Hence
we infer that Φ(cont(Hi−1)) 6= 0 mod Φ(Ii−1). Also, if [Φ(qi)Φ(`i) + Φ(Hi)] = 0 mod

Φ(Ii−1), then Φ(Hi) = 0 mod Φ(Ii) contradicting the induction hypothesis. Hence we
have that Φ(Hi−1) 6= 0 mod Φ(Ii−1).

Constructing Φ: Such a map Φ is almost immediate from Lemma 4.14. For any
` ∈L (H0), let A` be the (k+1)×n matrix whose rows are the coefficients of the linear

.. C- -  53

forms {`,`1, . . . ,`k}. If Φt is defined to be the map that sends xi to
∑k+1

j=1 z j t
i j , the

images of {`,`1, . . . ,`k} under Φt can be read off from the rows of the matrix product
A′
`

:=A` · (t i j)i∈[n], j∈[k+1]. Lemma 4.14 asserts that the rank of A′
`
is equal the the rank

of A`. As A′
`

is an (k + 1)× (k + 1) matrix, any non-zero minor of A′
`

is a non-zero
polynomial in t of degree at most n(k+1)2 and hence has at most n(k+1)2 roots in F.
us rankF(t)(A

′
`
) = rankF((A

′
`
)(t=α)) for all but n(k+1)2 many α ∈ F. By running over

all ` ∈L (H0), for all but n(k + 1)2 · |L (H0)| values of α ∈ F, we infer that Φα satisfies

rank{`,`1, . . . ,`k} = rank{Φ(`),Φ(`1), . . . ,Φ(`k)} ∀` ∈L (H0)

We shall refer to one such Φα by simply Φ. We can now finish the proof by appealing
to the Lemma 4.15.

eorem 4.2 (restated). Let C be a poly-degree circuit of size s and each of T1, . . . ,Tm

be a product of d linear polynomials in F[x1, . . . , xn] such that trdegF{T1, . . . ,Tm} ≤ r .
A hitting-set for C (T1, . . . ,Tm) can be constructed in time polynomial in n and (s d)r ,
assuming char(F) = 0 or larger than d r .

Proof. As r ≥ k, we can assume that the map Φ is map from F[x] to F[z1, . . . , zr+1]
as above. erefore, by Lemma 4.15, the map Ψ : F[x]→ F[y1, . . . , yr , t , z1, . . . , zr+1]
defined as

Ψ : xi 7→ Φ(xi)+
k∑

j=1

y j t
i j

ensures that D = 0 if and only if Ψ(D) = 0. Since C is a poly-degree circuit of size s ,
Ψ(C (T1, . . . ,Tm)) is a polynomial of degree n r d s O(1) in the variables y,z and t . Using
Corollary 2.2, we can construct a hitting-set for Ψ(D) in time polynomial in n(s d)r .
Since construction ofΨ takes time poly(nd r), the total time taken is poly(n, (s d)r).

4.4 Constant-depth constant-occur formulas

is section shall focus on constant-depth constant-occur formulas. Recall that an
occur-k formula (Definition 4.3) is a tree comprising of + and ×̂ gates, with leaves
consisting of sparse plynomials such that each variable occurs in at most k of the sparse
polynomials.

54 C . I    

e top fan-in of an occur-k formula could be unbounded. However, for the
purpose of identity testing, we can assume that the top fan-in is bounded as well by a
simple trick.

Observation 4.18 (Top fan-in reduction). Let C be a non-constant polynomial. en,
there is an i such that C̃ :=C (x1, · · · , xi−1, xi+1, xi+1, · · · , xn)−C (x1, · · · , xn) 6= 0, assum-
ing char(F)> deg(C).

Proof. If C depends non-trivially on xi and d = degxi
(C), it is easy to see that the

coefficient of xd−1
i in C̃ is non-zero.

If C has a + gate on top then C (x) =
∑m

i=1 Ti , where Ti ’s are computed by ×̂ gates
at the next level. Since xi occurs in at most k of the Ti ’s, C̃ has top fanin at most 2k. If
C has a ×̂ gate on top then C̃ has a + gate on top with fanin 2 and depth(C̃) =D+1.
erefore, C̃ belongs to the class of depth-(D + 1) occur-2k formulas of size at most
(s 2+ s), and a + gate on top with fanin bounded by 2k. Suppose H̃ is a hitting-set
for C̃ , we can form a new setH ⊃H̃ by including points (α1+1,α2, . . . ,αn), (α1,α2+
1, . . . ,αn), . . . , (α1, . . . ,αn−1,αn+1) inH for every (α1,α2, . . . ,αn) ∈ H̃ . It is easy to see
that H is a hitting-set for C and size(H) = n · size(H̃). erefore, it is sufficient if
we construct H̃ . By reusing symbols, assume that C is a depth-D occur-k formula of
size s with a + gate on top having top fanin at most k.

Let C (x) =
∑k

i=1 Ti . e goal is to construct aΨ that is faithful to T= {T1, . . . ,Tk}.
Let Tr = {T1, . . . ,Tr } be a transcendence basis of T. Since Jx(Tr) has full rank (if
char(F) = 0 or > s D r), assume that the columns corresponding to xr = {x1, . . . , xr }
form a nonzero minor of Jx(Tr). By Lemma 4.15, it suffices to construct a Φ that
keeps Jxr

(Tr) 6= 0.

Proof idea - Suppose C = T1+ · · ·+Tk where each Ti =
∏

P
e j

i j . Since C is an occur-k
formula, it follows that the variables x1, . . . , xr occurs in at most k r of the Pi , j ’s, say
Pi ,1, . . . Pi ,k r . Hence,

∂ j Ti =

d∏

`=k r+1

P ei ,`

i ,`

!
·

∂ j

k r∏
`=1

P ei ,`

i ,`

!
for every 1≤ i , j ≤ r

.. C- -  55

erefore, we have that

Jxr
(T1, . . . ,Tr) =

r∏

i=1

d∏
`=k r+1

P ei ,`

i ,`

!
Jxr
(T ′1 , . . . ,T ′r)

where T ′i =
k r∏̀
=1

P ei ,`

i ,`
for 1 ≤ i ≤ r . We wish to construct a map Φ to preserve the

non-zeroness of the above expression. e Jacobian term on the RHS, notice that
Jxr
(T ′1 , . . . ,T ′r) is a polynomial in Pi ,` and ∂ j Pi ,`, for 1 ≤ i , j ≤ r and 1 ≤ ` ≤ k r (and

the exponents ei ,`’s are rather irrelevant besides contributing to the degree). So, if Φ is
faithful to the set P := {Pi ,`,∂ j Pi ,` : 1 ≤ i , j ≤ r, 1 ≤ ` ≤ k r } and the singleton sets
{Pi ,`} for 1≤ i ≤ r , k r + 1≤ `≤ d , then Φ(Jxr

(Tr)) 6= 0.
Observe that the polynomials inP and the singleton sets are (zeroth and first order)

derivatives of the gates at lower levels, and further these sets involve (the derivatives
of) disjoint groups of polynomials. is disjointness ensures that the number of such
sets is at most s .

us, we have reduced the problem of constructing a faithful map Φ for T to the
problem of constructing a mapΦ′ that is faithful to at most s many sets each containing
derivatives of gates at lower levels. By applying the argument recursively, we eventually
reach the level of the sparse polynomials (the leaf nodes) where a faithful map can be
constructed using Lemma 2.3.

As an illustrative example, we shall restrict to depth-4 occur-k formulas first. e
general case proceeds exactly along these lines.

4.4.1 Restriction to the case of depth-4

eorem 4.5 (restated). A hitting-set for a depth-4 occur-k formula of size s can be
constructed in time polynomial in s k2 (assuming char(F) = 0 or > s 2k).

Proof. Let C =
∑k

i=1 Ti be a depth-4 occur-k formula, where Ti =
∏d

j=1 P
ei j

i j and Pi j ’s
are sparse polynomials. Observation 4.18 justifies the assumption that top fanin is k.
Once again, assuming Tr to be a transcendence basis of T, we need to design a Φ such
that Φ(Jxr

(Tr)) 6= 0.
Let us count the number of Pi j ’s that depend on the variables xr , the remaining

P
ei j

i j ’s can be taken out common from every row of Jxr
(Tr) while computing its deter-

minant. Let ci` be the number of Pi j ’s present in Ti that depend on x`, and ci :=
∑
` ci`

56 C . I    

is the number of Pi j ’s in Ti that depend on xr . e total number of sparse polyno-
mials depending on xr is therefore

∑
1≤i ,`≤r ci`. Since we have an occur-k formula,∑

i ci` ≤ k and hence
∑

i ,` ci` ≤ r k ≤ k2.
For an xr -dependent Pi j , we can also take P

ei j−1

i j common from the i-th row of
Jxr
(Tr). e sparsity of every entry of the i-th row of the residual matrix M is bounded

by ci s ci , where s is the size of C . us, det(M) has sparsity at most r !·∏r
i=1 ci s ci = sO(k2),

which implies that Jxr
(Tr) is a product of at most s + 1 powers of sparse polynomi-

als, each of whose sparsity is bounded by sO(k2) and degree bounded by s k. Hence,
by Lemma 2.3, we have our desired Φ that preserves the non-zeroness of Jxr

(Tr).
Lemma 4.15 and Corollary 2.2 gives the hitting set.

4.4.2 Generalizing to larger depth

e ideas of the depth-4 case carry over to higher depth as well. We shall need some
notation to proceed further. For any multiset of variables S, let ∆S f denote the par-
tial derivative of f with respect to the variables in S (including repetitions, as S is a
multiset). Let var(S) denote the set of distinct variables in S.

One of the crucial properties used in the earlier proof was that each row of the
Jacobian minor shared a large gcd which could be pulled out. e following lemma
formalizes that notion for larger depth.

Lemma 4.19 (Content removal). Let G be any gate in an occur-k formula and S1, · · · , Sw

be multisets of variables. en there exists another occur-k formula G′ for which, the vector
of polynomials

�
∆S1

G, · · · ,∆Sw
G
�
=VG ·

�
∆S1

G′, · · · ,∆Sw
G′
�
such that

1. IfG is a+ gate thenG′ is also a+ gate whose children consist of at most k ·
���∪w

i=1var(Si)
���

of the children of G, and VG = 1.

2. IfG is a ×̂ gate, thenG′ is also a ×̂ gate whose children consist of at most k ·
���∪w

i=1var(Si)
���

of the children of G, and VG =G/G′.

Further, the gates constituting G′ and VG are disjoint.

Proof. 1. Suppose G = H1 + · · ·+Hm. en at most k · | ∪ var(Si)| of its children
depend on the variables present in ∪var(Si); let G′ be the sum of these children.
en, ∆Si

G =∆Si
G′ as the other gates are independent of the variables in ∪Si .

.. C- -  57

2. Suppose G = H e1
1 · · ·H em

m . Since G is a gate in an occur-k formula, at most
k · |∪var(Si)| of the Hi ’s depend on the variables in ∪Si ; call these H1, · · · , Ht . Let
G′ :=H e1

1 · · ·H et
t and VG :=G/G′. en, ∆Si

G =VG ·∆Si
G′ as claimed.

We shall say that a map is faithful to a collection of sets if it is faithful to every set
in the collection. Also, we shall say that a gate is at level ` if its distance to the root
is `. Going by the ‘proof idea’, suppose at the `-th level of the recursion we want to
construct a Ψ` that is faithful to a collection of (at most) s sets of polynomials, each
set containing at most r` partial derivatives (of order up to c`) of the gates at level `.
Moreover, the sets involve derivatives of disjoint groups of gates. By Lemma 4.15, it
suffices to find a map Φ` that preserves the non-zeroness of a jacobian minor of each
of the sets of polynomials. To begin with: ` = 2 and we wish to construct a Φ2 that
preserves the non-zeroness of a jacobian minor of just one set T := {T1, . . . ,Tk}, so
r2 ≤ k and c2 = 0. e next lemma captures the evolution of the recursion.

Lemma 4.20 (Evolution via factoring). Let U be a set of r` derivatives (of orders up to
c`) of a set of gates G` at level `, and U ′ be a transcendence basis of U . Any |U ′| × |U ′|
minor of Jx(U ′) is of the form ∏

i V ei
i , where Vi ’s are polynomials in at most r`+1 :=

(c` + 1) · 2c`+1k · r`2 many derivatives (of order up to c`+1 := c` + 1) of disjoint groups of
children of G`.
Proof. Let G ∈G` be a gate at level ` and {U1, . . . , UtG

} ⊂U ′ be the set of all the deriva-
tives of G present in U ′. Fix any |U ′| × |U ′| sub-matrix M of Jx(U ′). Consider the
tG rows of M that contain the derivatives of U1, . . . , UtG

. ese rows together contain
a total of w := tG · |U ′| elements that are derivatives of G of order up to (c`+ 1). Let
us view all the elements of these tG rows as a single vector

�
∆S1

G, · · · ,∆Sw
G
�

and ap-

ply Lemma 4.19 to express it as VG ·
�
∆S1

G′, · · · ,∆Sw
G′
�
. To bound

���∪w
i=1Si

���, observe
that each of the tG rows could potentially be derivatives of G with respect to disjoint
sets of c` variables, and the different columns of the Jacobian minor additionally takes
derivatives of |U ′| variables. Hence,

���∪w
i=1var(Si)

��� ≤ tG · c` + |U ′| ≤ tG · c` + r`. So,
in det(M) we can take VG common from each of these tG rows such that the elements
present inside the determinant are of the form∆Si

G′, where G′ has at most k(tGc`+ r`)
children.

Since |Si | ≤ c`+ 1, at most k(c`+ 1) children of G′ depend on var(Si). If G′ is a +
gate, then ∆Si

G′ is the sum of the derivatives of at most k(c`+ 1) of its children (that

58 C . I    

depend on var(Si)). If G′ is a ×̂ gate computing H e1
1 · · ·H et

t (where t ≤ k(eGc`+ r`)),
then ∆Si

G′ is a polynomial combination of the Hi ’s and
¦
∆T H j

©
;6=T⊆Si

for each H j

depending on var(Si). Hence in either case, ∆Si
G′ is a polynomial in the children of

G′ and at most (2c`+1 − 1) · k(c` + 1) of their derivatives (of order between one and
(c`+ 1)).

Summing over all the w elements ∆Si
G′, the elements of the tG rows of M are

polynomials in at most k(tG c`+ r`)+w · (2c`+1−1)k(c`+1) = k(tG c`+ r`)+ tG · |U ′| ·
(2c`+1−1)k(c`+1) derivatives of the children of G′. Going over all G ∈G`, det(M) can
be expressed as a product

∏
G∈G`V tG

G and a polynomial V in at most k(r`c` + r 2
`
) +

r 2
`
· (2c`+1− 1)k(c`+ 1)≤ r`+1 derivatives (of order up to c`+ 1) of a group of gates in

level `+ 1. Further, the groups of gates whose derivatives constitute the VG’s and V

are mutually disjoint (by Lemma 4.19).

To begin with, let C2 = {{T1, . . . ,Tk}} and we would like to construct a map Φ2

that preserves the non-zeroness of a non-zero Jacobian minor of the Ti ’s. Applying
Lemma 4.20 (with U = {T1, . . . ,Tm}), any Jacobian minor of a set U can be written
as a product of Vi ’s that are polynomials in a set of the derivatives at lower levels. Let
us denote this set of derivatives by Elem(Vi), and define C`+1 as the collection of sets
Elem(Vi) as U varies over all the sets in the collection C`. It follows from the lemma
that the groups of gates whose derivatives form the different Elem(Vi)’s are disjoint and
therefore

��C`+1

��≤ s . Using Lemma 4.15 & 4.20, we can lift a map Φ`+1 to construct
Φ` via the following corollary.

Corollary 4.21. If Φ`+1 is faithful to C`+1 then Φ` : xi 7→
�∑r`

j=1 y j ,` · (t`)i j
�
+Φ`+1(xi)

is faithful to C`, where
¦

y1,`, · · · , yr`,`
, t`
©
is a fresh set of variables.

Finally, we can obtain our hitting set by repeating the above process until C` con-
sists only of sparse polynomials.

eorem 4.4 (restated). A hitting-set for a depth-D occur-k formula of size s can be
constructed in time polynomial in s R, where R = (2k)4D ·2D (assuming char(F) = 0 or
> s R).

Proof. Unfolding the above recursion, we eventually reach the level of the sparse poly-
nomials at depth D − 2 and are required to construct a map ΨD−2 that is faithful to

.. R   59

a collection CD−2 of at most s sets of derivatives of sparse polynomials, each set con-
taining at most rD−2 elements. Using the relation between r`+1 and r` from Lemma
4.20, it is easy to bound

∑
r` by R= (2k)4D ·2D .

Let U ∈CD−2 with transcendence basis U ′. Any |U ′| × |U ′| minor of Jx(U ′) is
a sparse polynomial with sparsity bounded by s R and degree bounded by s R. Using
Corollary 2.3, the nonzeroness of this determinant is maintained by one of the maps
∆p : xi 7→ u (s R+1)i mod p as p varies from 1 to a fixed poly(s R). Since

��CD−2

��≤ s , one of
the maps ∆p preserves the rank of the Jacobian of all U in CD−2 — fix such a ∆p .
Lemma 4.15 implies that ΦD−2 : xi 7→∑rD−2

j=1 y j ,D−2t i j
D−2 +∆p(xi) is faithful to CD−2.

Using Corollary 4.21, we can lift this to a map Φ2 defined as

Φ2 : xi 7→
D−2∑
`=2

 r∑̀
j=1

y j ,`t
i j
`

 + ∆p(xi)

that is faithful to {T1, . . . ,Tk}. e map Φ2 reduces the number of variables to O(R)
and hence an application of Corollary 2.2 leads to a hitting-set generator with running
time poly(s R). For the Jacobian criterion to work we need char(F) = 0 or > s R.

4.5 Related lower bounds

As mentioned earlier, polynomial identity tests are intimately related to lower bounds.
We shall now see a few lower bounds for the determinant/permanent for the models
studied in this chapter. e following two lemmas are at the heart of the approach to
proving lower bounds. Let x := {xi j : 1 ≤ i , j ≤ n} and T := {T1, . . . ,Tm}, where Ti ’s
are polynomials in F[x]. ough all the following results work for Permn as well, we
shall state and prove them for the Detn for simplicity.

Lemma 4.22. Suppose Detn = C (T1, . . . ,Tm), where C is any circuit and suppose Tr =
{T1, . . . ,Tr } be a transcendence basis of Tr with r < n. en, there exist a set of r + 1

variables xr+1 ⊂ x and an equation
∑r+1

i=1 ci fi ·Mi = 0 such that Mi ’s are distinct first order
principal minors of M , fi ’s are distinct r × r minors of Jxr+1

(Tr), not all fi ’s are zero, and
ci ∈ F∗.
Lemma 4.23. If M1, · · · , Mt are distinct first order principal minors of M and

∑t
i=1 fi ·Mi =

0 (not all fi ’s are zero) then the total sparsity of the fi ’s is at least 2n/2−t .

60 C . I    

We shall defer the proofs of these technical lemmas to the end of the section and
proceed to see how they imply the lower bounds.

4.5.1 Lower bound on depth-4 occur-k formulas

eorem 4.6 (restated). Any depth-4 occur-k formula that computes Detn must have
size s = 2Ω(n/k

2) over any field of characteristic zero.

Proof. Let C be a depth-4 occur-k formula of size s that computes Detn. Since Detn is
irreducible we can assume a top + gate in C . en C̃ :=C (x11+1, x12, . . . , xnn)−C (x)
is a depth-4 occur-2k formula of size at most 2s 2 and top fanin bounded by 2k (similar
argument as at the beginning of Section 4.4). Moreover, C̃ computes the minor of M

with respect to x11 which is essentially Detn−1. By reusing symbols, assume that C is a
depth-4 occur-k formula with top fanin bounded by k, and C computes Detn.

Let C =
∑k

i=1 Ti = Detn, where Ti =
∏d

j=1 P
ei j

i j , Pi j ’s are sparse polynomials. Let
Tr be a transcendence basis of T= {T1, . . . ,Tk}. By Lemma 4.22, we have an equation∑r+1

i=1 ci fi · Mi = 0 such that fi ’s are distinct r × r minors of Jxr+1
(Tr) for some set

of r + 1 variables xr+1. Arguing in the same way as in the proof of eorem 4.5 (in
Section 4.4.1), we can throw away certain common terms from the minors fi ’s and get
another equation

∑r+1
i=1 gi Mi = 0, where the sparsity of each gi is s O(k2). If we apply

Lemma 4.23 on this equation, we get our desired result.

It is also natural to ask for similar lower bounds for occur-k depth-D formulas, and
such a property can be shown under a conjecture about determinant of determinants.
e conjecture is a little cumbersome to explain and omitted here. e interested
reader can see the formulation in the published version of the contents [ASSS12].

4.5.2 Lower bound on circuits generated by ΣΠ polynomials

eorem 4.7 (restated). Let C be any circuit. Let f1, . . . , fm be sparse polynomials (of
any degree) with sparsity bounded by s and their trdeg bounded by r . If C (f1, . . . , fm)
computes Detn, then s = 2Ω(n/r) over any field of characteristic zero.

Proof. In Lemma 4.22, take the Ti ’s to be sparse polynomials with sparsity bounded
by s . en, in the equation

∑r+1
i=1 ci fi ·Mi = 0, each fi has sparsity sO(r). Finally, apply

Lemma 4.23 to obtain the desired lower bound.

.. R   61

4.5.3 Lower bound on circuits generated by ΠΣ polynomials

eorem 4.8 (restated). Let C be any circuit and T1, . . . ,Tm be products of linear
polynomials. If C (T1, . . . , Tm) computes Detn then trdegF{T1, . . . ,Tm}=Ω(n) over any
field of characteristic zero.

Proof of eorem 4.8. Let T = {T1, · · · ,Tm} be products of linear polynomials such
that C (T1, · · · ,Tm) = Detn with Tk = {T1, · · · ,Tk} being a transcendence basis. By
Lemma 4.22, we get

∑k+1
i=1 ci fi Mi = 0 where the fi ’s are k × k minors of Jxk+1

(Tk)
and wlog f1 6= 0. Like in Section 4.3, we can rewrite this equation in the form
H0 := T ·∑LαL(Mk+1)/`1 · · ·`k = 0 where αL(Mk+1) :=

∑k+1
i=1 αL,i Mi is an F-linear

combination of Mk+1 :=
�

M1, · · · , Mk+1

	
. Observe that H0 is a sum of products of lin-

ear polynomials, with ‘coefficients’ being F-linear combinations of Mk+1. And since
f1 6= 0, the ‘coefficient’ of M1 in H0 is a nonzero depth-3 circuit.

e idea is to apply a similar treatment as in Section 4.3 to evolve H0. e invariant
that shall be maintained is that the coefficient of M1 (modulo some linear polynomials),
which is a depth-3 circuit, would stay nonzero. is would finally yield a non-trivial
linear combination αL(Mk+1) = 0 mod `k whence we can apply the following lemma.

Lemma 4.24. If M1, · · · , Mt are distinct first order principal minors of M and
∑t

i=1αi Mi =
0 mod `k (not all αi = 0) for independent linear polynomials `k , then t + k ≥ n.

We shall refer the proof of this lemma to the end of the section as well. Formally, define
the content of a circuit H = T

∑
LαL(Mk+1)/`1 · · ·`k as cont(H) := gcdL

n
T

`1···`k

o
, and

define sim(H) := H/cont(H). Let sim(H0) have the form F0

∑
LαL(Mk+1)/`1 · · ·`k .

e coefficient of M1 in the above expression is a nonzero depth-3 circuit, whose de-
gree is |L (H0)| − k. erefore by Chinese remaindering, ∃`1 ∈ L (H0) such that this
coefficient is nonzero modulo `1. Hence, we can define H1 := sim(H0)mod `1 which
has the form H1 = F0/`1 ·∑L3`1

αL(Mk+1)/`2 · · ·`k = 0 mod `1. And like in Section 4.3,
the above equation can be rewritten by replacing a variable occuring in `1 by a suit-
able linear combination of the rest. us, we may write H1 = F1

∑
LαL(Mk+1 mod

`1)/`2 · · ·`k = 0, and maintaining the invariant that the coefficient of M1 mod `1 is
nonzero. Repeating this argument, we eventually obtain Hk := Fk ·αL(Mk+1 mod `k) =
0 while the coefficient of M1 mod `k is nonzero. is implies that αL(Mk+1) = 0 mod `k

62 C . I    

is a non-trivial equation. And Lemma 4.24 asserts that this is not possible unless
2k + 1≥ n or k ≥ (n− 1)/2.

4.5.4 Proofs of the technial lemmas

All the following lemmas hinge on this basic fact about the determinant — if less
than c entries of a symbolic n × n matrix is replaced by arbitrary polynomials, the
determinant remains non-zero.

Fact 4.25. Let M = (xi j)1≤i , j≤n and M ′ be the matrix obtained by setting c < n entries of
M to arbitrary polynomials in F[x]. en we have det(M ′) 6= 0.

Proof. We shall say an entry of M ′ is corrupted if it is one of the c entries of M that has
been replaced by a polynomial. We shall prove this by carefully rearranging the rows
and columns so that all the corrupted entries are above the diagonal. en, since all
entries below the diagonal are free, we may set all of them to zero and the determinant
reduces to a single nonzero monomial.

Since less than n entries of M ′ have been altered, there exists a column that is free
of any corrupted entries. By relabelling the columns if necessary, let the first column
be free of any corrupted entry. By relabelling the rows if necessary, we can assume
that the first row contains a corruption. is ensures that the first column is free of
any corrupted entry, and the (n − 1)× (n − 1) matrix defined by rows and columns,
2 through n, contain less than c − 1 corruptions. By induction, the c − 1 corruptions
may be moved above the diagonal by suitable row/column relabelling. And since the
first column is untouched during the process, we now have all c corruptions above the
diagonal. Now setting all entries below the diagonal to zeroes reduces the determinant
to a single nonzero monomial.

Lemma 4.22 (restated). Suppose Detn =C (T1, . . . ,Tm), where C is any circuit and let
Tr = {T1, . . . ,Tr } be a transcendence basis of T with r < n. en, there exist a set of
r + 1 variables xr+1 ⊂ x and an equation

∑r+1
i=1 ci fi ·Mi = 0 such that Mi ’s are distinct

first order principal minors of M , fi ’s are distinct r × r minors of Jxr+1
(Tr), not all fi ’s

are zero, and ci ∈ F∗.

.. R   63

Proof. Every column of a Jacobian Jx(·) consists of entries that are differentiated with
respect to a specific variable x; we shall say that the column is indexed by x. Let
Tr = {T1, · · · ,Tr } be a transcendence basis of T. Amongst the nonzero r × r minors
of Jx(Tr), let us pick one (and call the matrix associated with the minor as N) that
maximizes the number of diagonal variables {xi i : 1≤ i ≤ n} indexing the columns of
N . Let S denote the set of variables indexing the columns of N .

Since r < n, there exists a diagonal variable x j j /∈ S. Consider the (r + 1)× (r + 1)
minor of Jx({Detn} ∪Tr) corresponding to the columns indexed by S ′ := S ∪ ¦x j j

©
-

call the associated (r+1)×(r+1)matrix Ñ . Since, Detn =C (T), the polynomials Detn

and T1, . . . ,Tr are algebraically dependent and hence det(Ñ) = 0. Expanding det(Ñ)
along the first row of Ñ , which contains signed first order minors (cofactors) of M , we
have an equation

∑r+1
i=1 ci fi Mi = 0, where Mi ’s are distinct minors of M , fi ’s are distinct

r × r minors of JS ′(Tr), and ci ∈ F∗. If Mi is the principal minor of M with respect
to the variable x j j then fi = det(N) 6= 0 (by construction).

It suffices to show that if Mi is a non-principal minor of M then fi = 0. Consider
any non-principal minor Mi in the above sum, say it is the minor of M with respect to
xk`. e corresponding fi is precisely the r × r minor of JS ′(Tr) with respect to the
columns S ′ \{xk`}=

�
S \ {xk`}

�∪¦x j j

©
. Hence, by the maximality assumption on the

number of diagonal elements of M in S, fi = 0.

Lemma 4.23 (restated). If M1, · · · , Mt are distinct first order principal minors of M

and
∑t

i=1 fi ·Mi = 0 (not all fi ’s are zero) then the total sparsity of the fi ’s is at least
2n/2−t .

Proof. e proof is by contradiction. e idea is to start with the equation
∑t

i=1 fi Mi =
0 and apply two steps — sparsity reduction and fanin reduction — alternatively, till we
arrive at a contradiction in the form of an equation f j ·M j = 0, where neither f j nor
M j is zero if the total sparsity of the fi ’s is less than 2n/2−t .

With an equation of the form
∑τ

i=1 gi Ni = 0, we associate four parameters τ, s , η
and c . ese parameters are as follows: τ is called the fanin of the equation, s is the
total sparsity of the gi ’s (we always assume that not all the gi ’s are zero), every Ni is a
distinct first order principal minor of a symbolic η× η matrix N = (xi j), and c is the
maximum number of entries of N that are set as constants. To begin with, gi = fi and
Ni =Mi for all 1≤ i ≤ t , so τ = t , η= n, N =M and c = 0.

64 C . I    

In the ‘sparsity reduction’ step, we start with an equation
∑τ

i=1 gi Ni = 0, with
parameters τ, s , η, c and arrive at an equation

∑τ′
i=1 g ′i N ′i = 0 with parameters τ′, s ′,

η′, c ′ such that τ′ ≤ τ, s ′ ≤ s/2, η− 1≤ η′ ≤ η, and c ′ ≤ c + 1.
In the ‘fanin reduction’ step, we start with an equation

∑τ
i=1 gi Ni = 0, with pa-

rameters τ, s , η, c and arrive at an equation
∑τ′

i=1 g ′i N ′i = 0 with parameters τ′, s ′, η′,
c ′ such that one of the two cases happens — either (τ′ ≤ τ−1, s ′ ≤ s ,η′ = η−1, c ′ = c)
or (τ′ = 1, s ′ ≤ s ,η′ = η, c ′ ≤ c +τ).

Naturally, starting with
∑t

i=1 fi Mi = 0, the ‘sparsity reduction’ step can only be
performed at most log s many times (since the total sparsity of the gi ’s reduces by at
least a factor of half every time this step is executed), whereas the ‘fanin reduction’ step
can be performed at most t −1 times (as the fanin goes down by at least one for every
such step). Finally, when this process of alternating steps ends, we have an equation
of the form gi ·Ni = 0, where gi 6= 0 and Ni is a principal minor of a symbolic matrix
N of dimension at least n− (log s + t −1) such that at most (log s + t) entries of N are
set as constants. Now, if log s + t ≤ n − (log s + t) the Ni can never be zero (by Fact
4.25) and hence we arrive at a contradiction. erefore, s > 2n/2−t . Now, the details
of the sparsity reduction and the fanin reduction steps.

Suppose, we have an equation
∑τ

i=1 gi Ni = 0 as mentioned above. Without loss of
generality, assume that the minor Ni is the minor of N with respect to the i t h diagonal
element of N . Call all the variables xi j in N with both i , j > τ as the white variables.
ese are the variables that are present in every minor Ni in the sum

∑τ
i=1 gi Ni . e

variables xi j where both i , j ≤ τ are called the black variables, and the remaining are
the grey variables. By assumption, c of the variables in N are set as constants.

Sparsity reduction step - Say x is a white variable that one of the gi ’s depends on.
Writing each gi as a polynomial in x, there must be two distinct powers of x amongst
the gi ’s (for if not, then x can be taken common across all gi ’s). Let x` be the lowest
degree and x h be the highest. Dividing the entire equation

∑τ
i=1 gi Ni = 0 by x`,

we can further assume that ` = 0. Each of the gi ’s and Ni ’s can be expressed as,
gi = gi ,0+ x · gi ,1+ · · ·+ x h · gi ,h and Ni =Ni ,0+ x ·Ni ,1, where gi , j ’s and Ni , j ’s are x-free.
Looking at the coefficients of x0 and x h+1 in the equation yields

∑τ
i=1 gi ,0 ·Ni ,0 = 0 and∑τ

i=1 gi ,h ·Ni ,1 = 0. Note that Ni ,0’s can be thought of as principal minors of the η×η
matrix N ′ obtained by setting x = 0 in N . And each of the Ni ,1’s can be thought of

.. R   65

as minors of the (η− 1)× (η− 1) matrix N ′ which is the matrix associated with the
minor of N with respect to x. Since the monomials in gi ,0 and x h gi ,h are disjoint,
either the total sparsity of the gi ,0’s or the total sparsity of the gi ,h ’s is ≤ s/2. us,
one of the equations

∑τ
i=1 gi ,0 ·Ni ,0 = 0 or

∑τ
i=1 gi ,h ·Ni ,1 = 0 yields an equation of

the form
∑τ′

i=1 g ′i N ′i = 0 with parameters τ′, s ′, η′, c ′ as claimed before. (In case, we
choose

∑τ
i=1 gi ,h ·Ni ,1 = 0 as our next equation, we also set the variables in the same

columns and rows of x to constants in such a way that a gi ,h stays nonzero. is is
certainly possible over a characteristic zero field (Lemma 2.1) e sparsity reduction
step is performed whenever the starting equation

∑τ
i=1 gi Ni = 0 has a white variable

among the gi ’s. When all the gi ’s are free of white variables, we perform the fanin
reduction step.

Fanin reduction step - When we perform this step, all the gi ’s consist of black and
grey variables. Pick a row R from N barring the first τ rows. Let y1, · · · , yτ be the
grey variables occuring in R (these are, respectively, the variables in the first τ columns
of R). Starting with y2, divide the equation

∑τ
i=1 gi Ni = 0 by the largest power of y2

common across all monomials in the gi ’s, and then set y2 = 0. is process lets us
assume that there exists at least one gi which is not zero at y2 = 0. On the residual
equation, repeat the same process with y3 and then with y4 and so on till yτ. us, we
can assume without loss of generality that in the equation

∑τ
i=1 gi Ni = 0 there is at

least one gi that is not zero when y2, . . . , yτ are set to zero. Observe that if g1 is the only
gi that stays nonzero under the projection y2 = . . .= yτ = 0 then (g1N1)(y2=...=yτ=0) = 0,
implying that N1 = 0 under the same projection - this is Case 2 of the fanin reduction
step mentioned earlier. Now, assume that there is a gi other than g1 (say, g2) that is
nonzero under the projection y2 = . . .= yτ = 0. Set all the remaining variables of row
R to zero except y1 - these are the white variables in R. Since the gi ’s are free of white
variables (or else, we would have performed the ‘sparsity reduction’ step), none of the
gi ’s is effected by this projection. However, N1 being a minor with respect to the first
diagonal element of N , vanishes completely after the projection. Any other Ni takes
the form y1 ·N ′i , where N ′i is a principal minor of a (η− 1)× (η− 1) matrix N ′ which
is the matrix associated with the minor of N with respect to y1. erefore, after the
projection, the equation

∑τ
i=1 gi Ni = 0 becomes

∑τ
i=2 g̃i · y1N ′i = 0⇒∑τ

i=2 g̃i ·N ′i = 0,
where g̃i is the image of gi under the above mentioned projection and further g̃2 6= 0.
e g̃i ’s might still contain variables from the first column of N . So, as a final step,

66 C . I    

set these variables to values so that a nonzero g̃i remains nonzero after this projection
(Lemma 2.1 asserts that such values exist in plenty). is gives us the desired form∑τ′

i=1 g ′i N ′i = 0 with parameters τ′, s ′, η′, c ′ as claimed before (Case 1 of the fanin
reduction step mentioned earlier).

Lemma 4.24 (restated). If M1, · · · , Mt are distinct first order principal minors of M

and
∑t

i=1αi Mi = 0 mod `k (not all αi = 0) for independent linear polynomials `k ,
then t + k ≥ n.

Proof. Assume that t + k < n (with t ≥ 1 it means k ≤ n− 2). Since `1, · · · ,`k are in-
dependent linear polynomials, the equation may be rewritten as

∑t
i=1αi M

′
i = 0 where

(M ′i)s are minors of the matrix M ′ obtained by replacing k entries of M by linear poly-
nomials in other variables. We shall call these entries as corrupted entries. Without loss
of generality, we shall assume that M ′i is the minor corresponding to the i-th diagonal
variable and that all the αi ’s are nonzero.

Claim 4.26. Each of the first t rows and columns must have a corrupted entry.

Pf. Suppose the first row (without loss of generality) is free of any corrupted entry.
en, setting the entire row to zero would make all M ′i = 0 for i 6= 1. But since∑
αi M

′
i = 0, this forces M ′1 to become zero under the projection as well. is leads to

a contradiction as M ′1 is a determinant of an (n−1)× (n−1) symbolic matrix under a
projection, and this can not be zero unless k ≥ n− 1 (by Fact 4.25). (Claim)

Since n− k > t , there must exist a set of t − 1 rows
�

R1, · · · , Rt−1

	
of M that are free

of any corrupted entries. For each of these rows, set the i-th variable of row Ri to 1,
and every other variable in R1, · · · , Rt−1 to zero. ese projections make M ′i = 0 for
all i 6= t (as in these minors an entire row vanishes). And since

∑t
i=1αi M

′
i = 0, this

forces M ′t to become zero under this projection as well. But under this projection, M ′t
just reduces (up to a sign) to the minor obtained from M ′ by removing the columns
{1, · · · , t} and rows

�
R1, · · · , Rt−1

	∪ {t}. is is a determinant of an (n− t)× (n− t)
symbolic matrix, containing at most k − t corrupted entries, thus k − t ≥ n − t (by
Fact 4.25). But then k ≥ n, which contradicts our initial assumption.

5Approaching the chasm at depth four

5.1 Introduction

As mentioned in Chapter 1, the main motivating question in the field of arithmetic
circuit complexity is proving super-polynomial lower bounds for the permanent. e
permanent, by virtue of being complete for the class VNP (an algebraic analogue of
the class NP, defined in [Val79]), occupies a central position in the study of the com-
plexity of counting problems. e best known circuit for the permanent is actually a
depth three homogeneous circuit of size O(n2 ·2n) and is called the Ryser’s formula. Its
illustrious sibling, the determinant, is widely believed to be comparatively easy, being
complete for a subclass of VP (an algebraic analogue of P, also defined in [Val79]). It
is conjectured (cf. [AV08]) that any arithmetic circuit computing the n × n perma-
nent must be of exp(n) size. Meanwhile, the arithmetic complexity of computing the
determinant equals Õ(nω), whereω is the exponent of matrix multiplication. Resolv-
ing the arithmetic complexity of computing the permanent and the determinant (i.e.
determining the exponent of matrix multiplication) are two of the most fascinating
open problems of our times.

5.1.1 Prior Work

Lower bounds have been obtained earlier for depth three arithmetic circuits (with some
restrictions) and constant depth multilinear circuits. Specifically, Nisan and Wigder-
son [NW97] showed that any homogeneous depth three circuit computing the per-
manent (also the determinant) must be of exponential size. Following that, Grigoriev
and Karpinski [GK98] showed that any depth three arithmetic circuit over a finite field
computing the permanent (also the determinant) requires exponential size but prov-
ing lower bounds for depth three circuits over fields of characteristic zero (or even over
the algebraic closure of a finite field) remains an outstanding open problem. In this

68 C . A     

direction Shpilka and Wigderson [SW01] proved quadratic lower bounds for depth
three circuits over arbitrary fields (without the homogeneity restriction). Meanwhile,
Raz [Raz09] showed that any multilinear formula computing the permanent (also the
determinant) must be of superpolynomial size. Following this, Raz and Yehudayoff
[RY08] proved exponential lower bounds for constant depth multilinear circuits.

5.1.2 e model

In this chapter, we focus our attention on depth four homogeneous circuits. From the
discussion in Section 2.2.1, as computation by polynomial-sized arithmetic circuits
of unbounded depth is concerned one can assume without loss of generality that the
circuit is homogeneous. Specifically, if a homogeneous polynomial f of degree d can
be computed by an (unbounded depth) arithmetic circuit of size s , then it can also be
computed by a homogeneous circuit of size O(d 2 · s). General depth-4 circuits could use
polynomials of arbitrary degree during the intermediate computations. is chapter
shall study a sub-class of homogeneous depth-4 circuits whose bottom multiplication
gates have fan-in bounded by a parameter t ; we shall denote this class byΣΠΣΠ[hom](t)
circuits.
A ΣΠΣΠ[hom](t) circuit computes a polynomial of the form

C =
s∑

i=1

�
Qi1 ·Qi2 · . . . ·Qi d

�
(5.1)

where each Qi j is homogeneous polynomial of degree bounded by t , and every sum-
mand has the same degree. Our motivation for investigating representations of the
form (5.1) stems from a recent result of Agrawal and Vinay [AV08], and a subsequent
strengthening by Koiran [Koi10].

eorem 5.1. [AV08, Koi10] If f is a degree-d N -variate polynomial computed by a poly-
nomial size homogeneous circuit, then there is a ΣΠΣΠ[hom](

p
d) circuit computing f of size

exp(O(
p

d log2 N)) computing f .
Similarly, if f is computed by a polynomial sized homogeneous formula, then there is a

ΣΠΣΠ[hom](
p

d) circuit computing f of size exp(O(
p

d logN)).

e contrapositive of the above statement for Permn is that it suffices to show a
exp(ω(

p
n log2 n)) lower bound for ΣΠΣΠ[hom](

p
n) circuits computing the Permn to

.. B I  O 69

prove a super-polynomial circuit lower bound. us, a good enough lower bound for
ΣΠΣΠ[hom](

p
n) circuits would imply super-polynomial lower bounds for Permn. In

this chapter, we give a lower bound for the permanent (or determinant) that comes
very close to the above threshold.

eorem 5.2. AnyΣΠΣΠ[hom](t) that computes the polynomial Permn (or Detn) must have
size exp

�
Ω
�

n
t

��
.

Corollary 5.3. Any ΣΠΣΠ[hom](
p

n) that computes the polyomial Permn (or Detn) must
have size exp

�
Ω
�p

n
��
.

Remark. e results of Agrawal-Vinay [AV08] and Koiran [Koi10] depth-reduce any
polynomial sized circuit computing a degree n polynomial to a ΣΠΣΠ[hom](t) formula
with top fanin exp

�
n
t log2 n

�
. e above theorem infact is a bound on the top fanin

of ΣΠΣΠ[hom](t) circuits computing the permanent or determinant. In Section 5.5,
we shall prove a prove a generalization of eorem 5.2 by extending the lowerbound
for all circuits that are sums of arbitrary powers of O

�
n
t

�
-many degree t polynomials.

Further, the proofs are completely elementary and self-contained. Also, though the
above theorem gives a lower bound for both the determinant and permanent, there is
a subtle difference between the two and we discuss this in Section 5.6.

5.2 Basic Idea and Outline

e key idea is to exploit the shifted derivatives of a polynomial, which we shall now
define. Recall some notations (from Section 2.1): For an n-tuple i = (i1, i2, . . . , in) ∈
Zn
≥0, xi denotes the monomial (x i1

1 · x i2
2 · . . . · x in

n) which has degree |i| def= (i1+ i2+ . . .+ in).
Also, ∂ i f denotes the partial derivative of f with respect to the monomial xi,

∂ i f def=
∂ i1

∂ x i1
1

 ∂ i2

∂ x i2
2

· · ·

∂ in f

∂ x in
n

!
· · ·
! .

For a finite subset of polynomials S ⊆ F[x], the F-span of S, denoted F-span (S), is the
set of all possible F-linear combinations of polynomials in S. i.e.

F-span (S) def=

 |S|∑
i=1

αi · fi : αi ∈ F, fi ∈ S

 .

70 C . A     

With these notational preliminaries in hand, we are now ready to define the key con-
cept.

Definition 5.4 (Shifted Derivatives). Let f (x) ∈ F[x] be a multivariate polynomial. e
span of the `-shifted k-th order derivatives of f , denoted 〈∂ =k f 〉≤`, is defined as

〈∂ =k f 〉≤` def= F−span
¦
xi · (∂ j f) : i, j ∈Zn

≥0 with |i| ≤ ` and |j|= k
©

Since the set 〈∂ =k f 〉≤` forms an F-vector space, we shall denote by dim(〈∂ =k f 〉≤`) the di-
mension of this space.

Recent work in arithmetic complexity has shown how 〈∂ =k f 〉≤` can give insights
into the structure and complexity of f in ways that are sometimes surprising and un-
expected. e dimension of partial derivatives employed by Nisan and Wigderson
[NW97] in their lower bound proofs corresponds to looking at dim(〈∂ =k f 〉≤0). Kayal
[Kay12a] showed that 〈∂ =1 f 〉≤1 yields a lie algebra that can help efficiently determine
if f is equivalent (via an affine change of variables) to the permanent (or determi-
nant). For `=∞, note that 〈∂ =k f 〉≤` is precisely the ideal generated by the k-th order
derivatives of f . Gupta, Kayal and Qiao [GKQ12] recently exploited the structure of
〈∂ =1 f 〉≤∞ to devise an efficient reconstruction algorithm for random arithmetic for-
mulas. Closer to the present application, Kayal [Kay12b] showed how dim(〈∂ =k f 〉≤`)
(for suitably chosen ` and k) can be used to prove an exponential lower bound for
representing a polynomial as a sum of powers of bounded degree polynomials. We
shall see in this chapter that for suitably chosen values of ` and k, we can establish a
large gap between dim(〈∂ =kPermn〉≤`) and dim(〈∂ =k f 〉≤`) when f is computed by a
small ΣΠΣΠ[hom](t) circuit. is separation shall give the lower bound.

5.2.1 Outline of the chapter

We shall execute this idea as follows. In Section 5.3 we shall give an upper bound
on dim(〈∂ =kC 〉≤`) for C being a polynomial computed by a ΣΠΣΠ[hom](t) circuit,
i.e. when C is of the form given in equation (5.1). In Section 5.4, we shall present
a lower bound estimate for dim(〈∂ =kPermn〉≤`). We then combine these bounds to
obtain a proof of our main theorem in Section 5.5. Finally, in Section 5.6, we discuss
the possibility of improving the estimates for dim(〈∂ =kPermn〉≤`) obtained here.

.. S   ΣΠΣΠ[hom](t)  71

5.3 Shifted partials of ΣΠΣΠ[hom](t) circuits

In this section we give an upper bound on dim(〈∂ =kC 〉≤`) when C is computed by a
depth four circuit, i.e. C is of the form given in equation (5.1). We begin by noting
that dim(〈∂ =k f 〉≤`) is sub-additive.

Proposition 5.5. For all k ,` ≥ 0, we have dim(〈∂ =k(f + g)〉≤`) ≤ dim(〈∂ =k f 〉≤`) +
dim(〈∂ =k g 〉≤`).
Proof. By linearity of partial derivatives, we have xi · ∂ j(f + g) = xi · ∂ j f + xi · ∂ j g .
Hence,

〈∂ =k(f + g)〉≤` ⊆ F-span
�〈∂ =k f 〉≤` ∪ 〈∂ =k g 〉≤`

�
e proposition follows.

Let C be a depth-4 circuit computing a polynomial of the form1

C =
s∑

i=1

Q ei1
i1 ·Q ei2

i2 . . .Q ei d

i d
where deg(Qi j)≤ t .

By Proposition 5.5, it suffices to understand the growth of dim(〈∂ =kC 〉≤`) of a single
term (Q e1

1 . . .Q ed

d
).

Proposition 5.6. If f = Q e1
1 . . .Q ed

d
where each Qi ∈ F[xN] is a polynomial of degree

bounded by t . en, for any `≥ 0,

dim(〈∂ =k f 〉≤`) ≤
�d + k − 1

k

��N +(t − 1)k + `

N

�
Proof. Let j ∈Zd

≥0 be any d -tuple satisfying |j|= k. Using the product rule of differen-
tiation,

∂ j
�

Q e1
1 . . .Q ed

d

�
=

∑
j1+···+jd=j

�
∂ j1Q e1

1

�
. . .
�
∂ jd Q ed

d

�
Let ji be the sum of the entries of the tuple ji . Note that since |j|= k we have

∑d
i=1 ji =

k. Hence, each term in the above sum can be written as
�

Q e1− j1
1 . . .Q ed− jd

d

� · Q̃ where∑
ji = k and Q̃ has degree at most (t k−k). us, every element of x≤`∂ =k(Q e1

1 · · ·Q ed

d
)

can be written as a linear combination of
�

Q e1− j1
1 . . .Q ed− jd

d

�
xr where

∑
ji = k and xr

1is is slightly more general than the form described in Equation (5.1).

72 C . A     

is a monomial of degree at most `+(t−1)k. e total number of monomials of degree
at most `+ (t − 1)k over N variables is

�N+(t−1)k+`
N

�
, and the total number of choices

for j1+ · · ·+ jd = k is
�d+k−1

k

�
. Hence we obtain,

dim(〈∂ =k(Q e1
1 · · ·Q ed

d
)〉≤`) ≤

�d + k − 1

k

��N +(t − 1)k + `

N

�

e following corollary follows directly from the above observation via sub-additivity.

Corollary 5.7. If C =
∑s

i=1

∏d
j=1 Q

ei j

i j where each Qi j ∈ F[xN] is a polynomial of degree
bounded by t , then for any k ≤ d

dim(〈∂ =k(C)〉≤`) ≤ s ·
�d + k − 1

k

��N +(t − 1)k + `

N

�
Since our lower bound results are for homogeneous depth four formulae, we would

require an upper bound on d used in Corollary 5.7. Suppose the degree of the polyno-
mial computed is D. It is possible that in a ΣΠΣΠ[hom](t) circuit, several Qi j ’s could
have degree much smaller than t and hence d could potentially be much larger than
D/t . However, by multiplying low degree Qi j ’s together and thereby ensuring that
every Qi j (except perhaps one) have degree at least t/2, we can assume without loss
of generality that d ≤ 2(D/t) + 1. Note that this process may blow up the size of the
formula, nevertheless we need this only for upper bounding dim(〈∂ =k(C)〉≤`), which
does not change since the polynomial computed by C does not change. us, we have
the following corollary,

Corollary 5.8. If C =
∑s

i=1

∏di
j=1 Qi j is a degree D polynomial, where each Qi j ∈ F[xN]

is a homogeneous polynomial of degree bounded by t , then for any k ≤ 2(D/t)+ 1

dim(〈∂ =k(C)〉≤`) ≤ s ·
�2(D/t)+ k

k

��N +(t − 1)k + `

N

�
In the next section we give a reasonable lower bound for dim(〈∂ =k(Permn)〉≤`) for
suitable choice of parameters k and `.

.. S    P 73

5.4 Shifted partials of the Permanent

Reducing dimension computation to counting leading monomials. In this section,
we shall present a lower bound for dim(〈∂ =k(Permn)〉≤`). Let � be any admissible
monomial ordering2. Recall that the leading monomial of a polynomial f ∈ F[x],
denoted LM(f), is the largest monomial xi under the ordering �.

Proposition 5.9. Let S ⊆ F[x] be any finite set of polynomials. en

dim(F-span (S)) = #{LM(f) : f ∈ F-span (S)}.
e proof is a simple application of Gaussian elimination. As a corollary we obtain

Corollary 5.10. For any polynomial f (x) ∈ F[x] we have
dim(〈∂ =k f 〉≤`) ≥ #{xi · LM(∂ j f) : i, j ∈Z|x|≥0, |i| ≤ ` and |j|= k}

e lower bound given by this corollary is usually a severe underestimate but fortu-
nately even this will suffice for our purpose for the case when f = Permn.

Reduction to counting monomials with increasing subsequences. Let us fix � to
be the lexicographic monomial ordering induced by the following ordering on the
variables: x11 � · · · � x1n � x21 � · · · � xnn. Now note that any partial derivative of
Permn is just the corresponding permanental minor (or just ‘P-minor’). Hence by the
above corollary we have

dim(〈∂ =k(Permn)〉≤`) ≥ #

¨
xi · LM(M) :

xi is a monomial of degree at most ` and
M is an (n− k)× (n− k) P-minor

«
Now note that the leading monomial under � of any (n − k)× (n − k) P-minor

M is just the product of the variables along the principal diagonal of M . Now if the
variables along the principal minor of M are (xi1 j1

, · · · , xin−k jn−k
) then the indices satisfy

i1 < i2 < . . .< in−k and j1 < j2 < . . .< jn−k

is naturally leads to the following definition.
2For more on monomial orderings and their applications in algebraic geometry, we refer the inter-

ested reader to Chapter 2 of the text by Cox, Little and O’Shea [CLO07]

74 C . A     

Definition 5.11 (Increasing sequence). A sequence of variables (xi1 j1
, · · · , xit jt

) is called
increasing sequence if the indices satisfy

i1 < i2 < . . .< it and j1 < j2 < . . .< jt .

We will say that a monomial A= xj contains an increasing sequence of length t if there
exists an increasing sequence (xi1 j1

, · · · , xit jt
) wherein every variable xir jr

(r ∈ [t]) divides A.

In this terminology we would then say that the leading monomial of any (n−k)×
(n − k) P-minor is exactly the product of the variables in an increasing sequence of
length (n−k). Consequently for any P-minor M of size (n−k) we have that xi ·LM(M)
contains an increasing sequence of length (n − k). Conversely, every monomial of
degree at most (n − k + `) that contain an increasing sequence of length (n − k) can
be written as the leading monomial of xi ·M for some monomial xi of degree at most
` and a (n− k)× (n− k) P-minor M . Hence we have:

Corollary 5.12. dim(〈∂ =k(Permn)〉≤`) is lower bounded by the number of distinct mono-
mials of degree at most (n− k + `) over n2 variables that contain an increasing sequence of
length (n− k).

In order to count the number of monomials of degree bounded by n− k + ` that
contain an increasing sequence, we shall restrict ourselves to a very small set of vari-
ables to contribute the increasing sequence, and “fill-up” the remaining degree using
the other variables. e “small set” that we consider here is just two diagonals – the
principal diagonal and the one above it.

5.4.1 Restricting to two diagonals

We shall focus on the variables D2,n = {xi i : 1≤ i ≤ n}∪¦xi(i+1) : 1≤ i ≤ n− 1
©
. To

get a lower bound on monomials containing an (n − k)-length increasing sequence,
we shall fix an increasing sequence Q ⊆D2,n and count all monomials m that contain
Q as the “leading increasing sequence” i.e. amongst all possible increasing sequences
contained in m, the predefined Q is highest under the lexicographic order defined
earlier. e following lemma counts the number of increasing sequences contained in
D2,n.

.. S    P 75

Lemma 5.13. e number of length r increasing sequences in contained in D2,n is exactly�2n−r
r

�
.

Proof. Consider the (2n−1) variables in D2,n in the sequence x11, x12, x21, . . . , xnn. Pick-
ing an increasing sequence of length r is the same as picking r of the (2n−1) variables
such that no two adjacent variables (in the above order) are chosen. is can be thought
as distributing the (2n− r −1) variables that won’t be picked such that there is at least
one between any two variables that are picked, and this is exactly equal to�(2n− r − 1− (r − 1))+ (r + 1)− 1

(r + 1)− 1

�
=
�2n− r

r

�

For any variable xi j , define its companions to be the variables to its right in the same
row, or below it in the same column, i.e.

¦
xi j ′ : j ′ > j

© ∪ ¦xi ′ j : i ′ > i
©
. Fix an

increasing sequence Q =
¦

xi1 j1
, . . . , xir jr

© ⊆ D2,n. Let Q ′ be the set of all companions
of variables in Q which are in D2,n. e key observation is that adding elements of Q ′

to Q does not alter the leading increasing sequence. For any increasing sequence that
uses elements of Q ′, replacing every xi ′ j ′ ∈Q ′ by the corresponding xi j ∈Q for which
it is a companion for yields a “higher” increasing sequence. Hence adding any subset
T ⊆Q ′ to Q does not alter the leading increasing sequence. Let us call the remaining
variables D2,n \ (Q ∪Q ′) as potentially forbidden variables. us, any monomial that
does not include any potentially forbidden variable cannot alter the leading increasing
sequence.

Note that every element of D2,n besides xnn has exactly one companion in D2,n.
Hence, if Q is a length r increasing sequence, the set of companions its Q ′ has cardi-
nality at least (r − 1) and hence the set of forbidden variables has cardinality at most
2(n− r). Using this, the following bound follows almost immediately.

Corollary 5.14. For every n, k ,`≥ 0,

dim(〈∂ =kPermn〉≤`) ≥
�n+ k

2k

�
·
�n2+ `− 2k

n2− 2k

�
Proof. For any fixed length (n − k) increasing sequence Q, there are 2k potentially
forbidden variables. us, any monomials of degree at most ` that does not include

76 C . A     

the 2k potentially forbidden variables can be adjoined to Q without altering the leading
increasing sequence. e number of monomials on n2−2k variables of degree at most
` is exactly

�n2+`−2k
n2−2k

�
, and multiplying by the number of choices of Q (by Lemma 5.13)

gives the required lower bound.

5.5 Putting it all together

We shall require a few technical lemmas about the growth of binomial coefficients,
factorials etc.

5.5.1 Growth of binomial estimates

Almost all bounds on the binomial coefficients follow from Stirling’s approximation.

Proposition 5.15 (Stirling’s Formula, cf. [Rom00]). ln(n!) = n ln n−n+O(ln n)

Using Stirling’s approximation for binomial coefficients eventually yield expressions
involving the entropy function.

Definition 5.16 (Entropy). e binary entropy function H2 is defined as

H2(x) = −x · log2(x)− (1− x) · log2(1− x)

e natural-log version of the entropy function, denoted by He is defined analogously as

He(x) = −x · ln(x)− (1− x) ln(1− x)

Lemma 5.17. For any 0< x < 1, we have x ln 1
x ≤He(x)≤ x ln 1

x + x.

Lemma 5.18. For any constants α≥β> 0,

ln
�
αn

βn

�
= aHe

�
β

α

�
n+O(ln n)

Proof. By Stirling’s approximation (Proposition 5.15),

ln
(αn)!

(βn)!((α−β)n)! = (αn) ln(αn)−αn− (βn) ln(βn)+βn

− (α−β)n ln((α−β)n)+ (α−β)n+O(ln n)

= n(α lnα−β lnβ− (α−β) ln(α−β))+O(ln n)

= αn ·He

�
β

α

�
+O(ln n)

.. P    77

e following lemma would be useful for estimating the growth of ratio of binoimial
coefficients.

Lemma 5.19. Let a(n), f (n), g (n) : Z>0 → Z>0 be integer valued function such that
(f + g) = o(a). en,

ln
(a+ f)!

(a− g)!
= (f + g) lna ± O

�
(f + g)2

a

�
Proof.

(a+ f)!

(a− g)!
= (a+ f)(a+ f − 1) . . . (a− g)

=⇒ a f +g
�

1− g

a

� f +g ≤ (a+ f)!

(a− g)!
≤ a f +g

�
1+

f

a

� f +g

=⇒ (f + g) ln
�

1− g

a

�
≤ ln

(a+ f)!

(a− g)!
− (f + g) lna ≤ (f + g) ln

�
1+

f

a

�
Using the fact that x

1+x ≤ ln(1+ x)≤ x for x >−1, it is easy to see that both the LHS
and RHS are bounded by O

�
(f +g)2

a

�
.

5.5.2 Proof of the main theorem

We are now ready to prove the main theorem, which is a stronger form of eorem 5.2.

eorem 5.20. Let t : Z≥0 → Z≥0 be any increasing function such that t (n) = o(n).
Suppose C is a circuit of the form C =

∑s
i=1 Q ei1

i1 · · ·Q ei d

i d
where each Qi j is a polynomial

of degree bounded by t , and d = cn/t for some constant c . If C computes the polynomial
Permn, then s ≥ exp

�
Ω
�

n
t

��
.

Proof. From Corollary 5.7, dim(〈∂ =kC 〉≤`) can be upper bounded as

dim(〈∂ =k(C)〉≤`) ≤ s ·
�d + k − 1

k

��n2+ `+(t − 1)k

n2

�
(5.2)

Also, Corollary 5.14 gives a lower bound for dim(〈∂ =kPermn〉≤`)

dim(〈∂ =kPerm〉≤`) ≥
�n+ k

2k

��n2+ `− 2k

n2− 2k

�
(5.3)

78 C . A     

Both these equations imply that

s ≥
�n+k

2k

��n2+`−2k
n2−2k

�
�d+k−1

k

��n2+`+(t−1)k
n2

�
We shall set parameters as ` = n2t and k = ε(n/t) (for an ε > 0 that shall be chosen
shortly). e proofs of the following estimates for binomial coefficients are straight-
forward applications of Lemma 5.19 and Lemma 5.18, and we shall defer its proof to
the end of the section.

Claim 5.21. For the above choice of parameters:

(a) ln
�n+ k

2k

�
= 2ε

�n

t

��
ln
� t

2ε

�
+ 1
�
±O

� n

t 2

�
(b) ln

�cn/t + k − 1

k

�
= (c + ε)He

�
ε

c + ε

�
·
�n

t

�
±O (ln n)

(c) ln

�n2+`−2k
n2−2k

�
�n2+`+(t−1)k

n2

� =−2ε
�n

t

�
ln t − 2ε

�n

t

�� t + 1

t

�
±O

� n

t 2

�
Using this, we get

ln s ≥
�

2ε ln
� 1

2ε

�
− (c + ε)He

�
ε

c + ε

�
− 2ε

t

��n

t

�
± O

� n

t 2

�
which after an application of Lemma 5.17 yields

ln s ≥
�

2ε ln
1

2ε
− ε ln

� c + ε

ε

�
− 3ε

�
=
�
ε ln

1

ε
− ε ln(4e3(c + 1))

��n

t

�
±+O

� n

t 2

�
Choosing ε small enough gives ln s =O

�
n
t

�
, i.e. s ≥ exp

�
Ω
�

n
t

��
as claimed

Remark. ough the above theorem is stated for any increasing function t (n), the
result also holds when t is a constant. e choice of parameters in that case would
be ` = n2, m = 3(n − k)/2 and k = εn. Using similar estimates on the binomial
coefficients, it can be shown that log s =Ω(n) by choosing a small enough ε > 0.

.. D 79

e above theorem, along with Corollary 5.7, completes the proof of eorem 5.2 as
well.

Proof of Claim 5.21.

(a)
�n+k

2k

�
= (n+k)!
(n−k)! · 1

(2k)! . Since k = o(n), using Lemma 5.18 and Lemma 5.19 gives

ln
�n+ k

2k

�
= 2k ln n− (2k) ln(2k)+ 2k ± O

�
k2

n

�
= 2ε

�n

t

��
ln
� t

2ε

�
+ 1
�
± O

� n

t 2

�
(b) Follows directly from Lemma 5.18.

(c) �n2+`−2k
n2−2k

�
�n2+`+(t−1)k

n2

� = (n2+ `− 2k)!

(n2+ `+(t − 1)k)!
· (n2)!

(n2− 2k)!
· (`+(t − 1)k)!

(`)!

Using the fact that t k = o(n2+ `), Lemma 5.19 can be applied on each of these
ratios to give �n2+`−2k

n2−2k

�
�n2+`+(t−1)k

n2

� = 1

(n2+ `)(t+1)k
· (n2)2k · `(t−1)k · poly (n)

=
1�

1+ n2

`

�(t+1)k
·
�

n2

`

�2k

· poly (n)

=⇒ ln

�n2+`−2k
n2−2k

�
�n2+`+(t−1)k

n2

� = −(t + 1)k · ln
�

1+
1

t

�
− 2k ln t ± O (log n)

= −2ε
�n

t

�
·
� t + 1

t

�
− 2ε

�n

t

�
· ln t ± O

� n

t 2

�

5.6 Discussion

e proof of eorem 5.2 remains valid if we replace every occurrence of Permn byDetn

but there turns out to be a very interesting distinction between these two polynomials

80 C . A     

with respect to the dimension of their shifted partial derivatives. In the particular case
of the determinant, Corollary 5.12 can be strengthened to say that the number of
monomials of degree at most n− k + ` with an increasing sequence of length (n− k)
is not just a lower bound but is exactly equal to dim(〈∂ =k(Detn)〉≤`). is follows
from the following powerful result on gröbner bases of determinantal ideals which has
been proved independently by Sturmfels[Stu90], Narasimhan [Nar86] and Caniglia,
Guccione and Guccione [CGG90].

eorem 5.22 ([Stu90], [Nar86], [CGG90]). Let � be the lexicographic ordering on
monomials defined in Section 5.4. en the set of all order r × r minors of Detn is the
reduced gröbner basis for the ideal generated by them under the monomial ordering � .

It is known that the set of 2× 2 permanental minors do not form a gröbner basis
for the ideal they generate. us it is presumable that dim(〈∂ =k(Permn)〉≤`) is much
larger compared to the determinant.

6Conclusion and future directions

e main motivation of this thesis has been to advance our understanding of poly-
nomial identity testing and lower bounds with an emphasis on a holistic approach.
By providing approaches for unification, we can hopefully gain more insight into the
general problem of performing PIT on general circuits/formulae, or lower bounds for
the permanent.

Each of the chapters leave scope for future directions. ese are some of the obvious
steps to take towards advancing the current state-of-the-art.

6.1 Composing Identity tests

e two problems studied in Chapter 3 also have natural generalizations. e first
relates to depth-4 fan-in 2 PIT.

Open Problem 3.1. Find a deterministic polynomial time algorithm to check if f =∏t
i=1 g di

i , where f is a sparse polynomial and the gi ’s are mutually coprime, bounded
degree polynomials.

One particular case of interest is when the gi ’s are quadratic forms. Observe that
a polynomial g d divides f if and only if g divides f and g d−1 divides ∂ f

∂ x1
(assuming

f depends on x1 and deg(f) > char(F)). Since ∂ f
∂ x1

is also sparse, using this obser-
vation, the problem eventually boils down to checking if g divides h, where both g

and h are sparse polynomials. Now suppose g is a quadratic form. It is known that
there exists an efficiently computable linear transformation σ on the variables such
that σ(g) =

∑r
i=1 x2

i , which is a sum of univariates. e polynomial g divides h if and
only if σ(g) divides σ(h). We have shown how to divide a sparse polynomial by a sum
of univariates. But, the issue here is that σ(h) need not be sparse - it is an image of a
sparse h under an invertible σ . Is it possible to resolve this issue?

82 C . C   

e second relates to depth-4 higher fan-in PIT.

Open Problem 3.2. Find a deterministic polynomial time algorithm to solve PIT on
depth-4 circuits with bounded top fan-in k, where each of the k multiplication gates
is a product of sums of univariate polynomials.

Note that, a solution for k = 2 easily follows from eorem 3.12 and unique fac-
torization. But, it is unclear how to solve this problem even for k = 3. e problem
can also be seen as a certain generalization of bounded top fan-in depth-3 PIT [KS07]
to the case of depth-4 circuits.

Recent results of Agrawal, Saha and Saxena [ASS12], and also by Shpilka and
Forbes [FS12] present quasipolynomial blackbox PITs for semidiagonal circuits. In
this light, it is natural to ask if the blackbox PITs for semidiagonal circuits and ΣΠΣ(k)
circuits can be composed.

OpenProblem3.3. Given blackbox access to a semidiagonal circuit f and a polynomial
p computed by a ΣΠΣ(k) circuit C , can we check if p + f ?= 0?

6.2 PITs via algebraic independence

Spurred by the success of Jacobian in solving the hitting-set problem for constant-trdeg
depth-3 circuits and constant-occur constant-depth formulas, one is naturally inspired
to investigate the strength of this approach against other ‘constant parameter’ models
- the foremost of which is constant top fanin depth-4 circuits?

Open Problem 4.1. Can the Jacobian based approach be used to construct polynomial
time hitting-set generator for constant top fanin depth-4 circuits (even fanin 2)?

Another problem, which is closely related to hitting-sets and lower bounds, is recon-
struction of arithmetic circuits [SY10, Chapter 5]. ere is a quasi-polynomial time
reconstruction algorithm [KS09a], for a polynomial computed by a depth-3 constant
top fanin circuit, that outputs a depth-3 circuit with quasi-polynomial top fanin.

Open Problem 4.2. Can the Jacobian based approach be used to design a polynomial
time reconstruction algorithm for constant top fanin depth-3 circuits?

An answer in the affirmative would further reinforce the versatility of this tool.

.. S   83

6.3 Shifted partial derivatives

ough the dimension of the shifted partial derivatives aid us get very close to the
chasm, it is not powerful enough to let us jump across. Perhaps some modifications
of the measure would be what is required to prove super-polynomial formula/circuit
lower bounds for the permanent.

Further, as mentioned in Section 5.6, the dimension of the shifted partial deriva-
tives of the permanent is strictly larger than that for the determinant, and this begs for
the question “How much larger?”

Open Problem 5.1. ere exists choices for `, k ≥ 0 such that dim(〈∂ =k(Permn)〉≤`) is
superpolynomially larger (in n) than dim(〈∂ =k(Detn)〉≤`).

ere are lots of interesting problems and the fundamental question does appear
to be within reach. No doubt it would require a lot more new ideas but the endeavour
towards settling the “Determinant vs Permanent” problem now appears to have more
clarity. It would not be an easy journey, but that never stopped us from trying and
certainly will not stop us now.

e woods are lovely, dark, and deep,
But I have promises to keep,

And miles to go before I sleep,
And miles to go before I sleep.

– Robert Frost

84 C . C   

Bibliography

[AB99] Manindra Agrawal and Somenath Biswas. Primality and Identity Testing
via Chinese Remaindering. In FOCS, pages 202–209, 1999. [ii, 4, 5, 16,
41]

[Agr05] Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Genera-
tors. In FSTTCS, pages 92–105, 2005. [i, 4, 43]

[Agr11] Manindra Agrawal. On the arithmetic complexity of euler function. In
CSR, pages 43–49, 2011. [4]

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals
of Mathematics, 160(2):781–793, 2004. [4]

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof Verification and the Hardness of Approximation Problems.
Journal of the ACM, 45(3):501–555, 1998. [4]

[AM69] M.F. Atiyah and I.G. MacDonald. Introduction to Commutative Algebra.
Addison-Wesley Publishing Company, 1969. [27]

[ASS12] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial
Hitting-set for Set-depth-∆ Formulas. Technical Report TR12-113,
(ECCC), 2012. [5, 82]

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin
Saxena. Jacobian hits circuits: hitting-sets, lower bounds for depth-d
occur-k formulas & depth-3 transcendence degree-k circuits. In STOC,
pages 599–614, 2012. [60]

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth
four. In FOCS, pages 67–75, 2008. [ii, iii, 6, 7, 9, 10, 41, 43, 67, 68, 69]

85

86 B

[AvMV11] Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Deran-
domizing Polynomial Identity Testing for Multilinear Constant-Read For-
mulae. In IEEE Conference on Computational Complexity, pages 273–282,
2011. [ii, 6, 41, 42, 45]

[BMS11a] Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic Inde-
pendence and Blackbox Identity Testing. In ICALP (2), pages 137–148,
2011. [ii, 6, 9, 41, 42, 45]

[BMS11b] Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic Inde-
pendence and Blackbox Identity Testing. CoRR, abs/1102.2789, 2011.
[47]

[BS83] Walter Baur and Volker Strassen. e complexity of partial derivatives.
eor. Comput. Sci., 22:317–330, 1983. [3]

[CGG90] L. Caniglia, J. A. Guccione, and J. J. Guccione. Ideals of generic minors.
Commutative Algebra, 18:2633–2640, 1990. [80]

[CK97] Zhi-Zhong Chen and Ming-Yang Kao. Reducing Randomness via Irra-
tional Numbers. In STOC, pages 200–209, 1997. [4]

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arith-
metic Complexity (and beyond). Foundation and Trends ineoretical Com-
puter Science, 2011. [43]

[CLO07] D.A. Cox, J.B. Little, and D. O’Shea. Ideals, Varieties and Algorithms.
Undergraduate texts in mathematics. Springer, 2007. [73]

[DGW09] Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors And Rank Ex-
tractors For Polynomial Sources. Computational Complexity, 18(1):1–58,
2009. [5]

[DL78] Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on
Algebraic Program Testing. Inf. Process. Lett., 7(4):193–195, 1978. [4,
15]

B 87

[DS05] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and
polynomial identity testing for depth 3 circuits. In STOC, pages 592–601,
2005. [5, 41]

[DSY08] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness
tradeoffs for bounded depth arithmetic circuits. In STOC, pages 741–748,
2008. [4]

[FS12] Michael Forbes and Amir Shpilka. Quasipolynomial-time Identity Test-
ing of Non-Commutative and Read-Once Oblivious Algebraic Branching
Programs. Technical Report TR12-115, (ECCC), 2012. [5, 82]

[GK98] Dima Grigoriev and Marek Karpinski. An exponential lower bound for
depth 3 arithmetic circuits. In STOC, pages 577–582, 1998. [i, 3, 67]

[GKPS11] Bruno Grenet, Pascal Koiran, Natacha Portier, and Yann Strozecki. e
Limited Power of Powering: Polynomial Identity Testing and a Depth-
four Lower Bound for the Permanent. Proceedings of the 31st Foundations
of Software Technology and eoretical Computer Science (FSTTCS), Arxiv
preprint arXiv:1107.1434, 2011. [43, 44, 45]

[GKQ12] Ankit Gupta, Neeraj Kayal, and Youming Qiao. Random arithmetic for-
mulas can be reconstructed efficiently. Technical report, Electronic Col-
loquium on Computational Complexity (ECCC), 2012. [70]

[GR05] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources
over large fields. In FOCS, pages 407–418, 2005. [48]

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to com-
pute (extended abstract). In Proceedings of the twelfth annual ACM sympo-
sium on eory of computing, STOC ’80, pages 262–272, 1980. [4]

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E Requires Exponen-
tial Circuits: Derandomizing the XOR Lemma. In STOC, pages 220–229,
1997. [43]

[JS82] Mark Jerrum and Marc Snir. Some exact complexity results for straight-
line computations over semirings. J. ACM, 29(3):874–897, 1982. [i, 3]

88 B

[Kal85a] Kyriakos Kalorkoti. A Lower Bound for the Formula Size of Rational
Functions. SIAM J. Comput., 14(3):678–687, 1985. [3]

[Kal85b] Kyriakos Kalorkoti. A Lower Bound for the Formula Size of Rational
Functions. SIAM J. Comput., 14(3):678–687, 1985. [44]

[Kay10] Neeraj Kayal. Algorithms for Arithmetic Circuits. Technical Report TR10-
073, (ECCC), 2010. [ii, 5, 8, 20, 21, 22, 23]

[Kay12a] Neeraj Kayal. Affine projections of polynomials. In STOC, pages
643–662, 2012. [70]

[Kay12b] Neeraj Kayal. An exponential lower bound for the sum of powers of
bounded degree polynomials. Technical report, Electronic Colloquium
on Computational Complexity (ECCC), 2012. [70]

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polyno-
mial identity tests means proving circuit lower bounds. In STOC, pages
355–364, 2003. [i, 4, 43]

[KMSV10] Zohar Shay Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya
Volkovich. Deterministic identity testing of depth-4 multilinear circuits
with bounded top fan-in. In STOC, pages 649–658, 2010. [42, 45]

[Koi10] Pascal Koiran. Arithmetic circuits: the chasm at depth four gets wider.
CoRR, abs/1006.4700, 2010. [ii, iii, iv, 7, 10, 68, 69]

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity
testing of multivariate polynomials. In STOC, pages 216–223, 2001. [ii,
4, 5, 16, 41]

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial Identity Testing for Depth 3
Circuits. Computational Complexity, 16(2):115–138, 2007. [ii, 5, 8, 20,
21, 26, 27, 28, 29, 41, 82]

[KS08] Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity
testing of generalized depth-3 arithmetic circuits with bounded top fan-

B 89

in. In IEEEConference on Computational Complexity, pages 280–291, 2008.
[41]

[KS09a] Zohar Shay Karnin and Amir Shpilka. Reconstruction of Generalized
Depth-3 Arithmetic Circuits with Bounded Top Fan-in. In IEEE Confer-
ence on Computational Complexity, pages 274–285, 2009. [82]

[KS09b] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing
for depth-3 circuits. In FOCS, 2009. [5, 41]

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic Methods for Interactive Proof Systems. In FOCS, pages 2–10,
1990. [4]

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In
FCT, pages 565–574, 1979. [4]

[LV98] Daniel Lewin and Salil P. Vadhan. Checking Polynomial Identities over
any Field: Towards a Derandomization? In STOC, pages 438–447, 1998.
[4]

[MR04] T. Mignon and N. Ressayre. A quadratic bound for the determi-
nant and permanent problem. International Mathematics Research Notices,
79:4241–4253, 2004. [ii, 3]

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching Is
as Easy as Matrix Inversion. In STOC, pages 345–354, 1987. [4]

[Nar86] H. Narasimhan. e irreducibility of ladder determinantal varieties. Jour-
nal of Algebra, 102:162–185, 1986. [80]

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits
via partial derivatives. Computational Complexity, 6(3):217–234, 1997. [i,
3, 67, 70]

[Oxl92] James G. Oxley. Matroid theory. Oxford University Press, 1992. [43]

90 B

[PSZ00] Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential
lower bounds for depth three Boolean circuits. Computational Complexity,
9(1):1–15, 2000. [43]

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results
for every CSP? In STOC, pages 245–254, 2008. [43]

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of
super-polynomial size. J. ACM, 56(2), 2009. [i, 3, 68]

[Rom00] Dan Romik. Stirling’s Approximation for n!: e Ultimate Short Proof?
e American Mathematical Monthly, 107(6):556–557, 2000. [76]

[RY08] R. Raz and A. Yehudayoff. Lower bounds and separations for constant
depth mutilinear circuits. In Proceedings of the 23rd IEEE Annual Conference
on Computational Complexity, pages 128–139, 2008. [68]

[Sax08] Nitin Saxena. Diagonal Circuit Identity Testing and Lower Bounds. In
ICALP (1), pages 60–71, 2008. [ii, 5, 8, 20, 21]

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the
EATCS, 99:49–79, 2009. [6]

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Poly-
nomial Identities. J. ACM, 27(4):701–717, 1980. [4, 15]

[Sha90] Adi Shamir. IP=PSPACE. In FOCS, pages 11–15, 1990. [4]

[SS09] Nitin Saxena and C. Seshadhri. An Almost Optimal Rank Bound for
Depth-3 Identities. In IEEEConference on Computational Complexity, pages
137–148, 2009. [5, 41]

[SS10a] Nitin Saxena and C. Seshadhri. From Sylvester-Gallai Configurations to
Rank Bounds: Improved Black-box Identity Test for Depth-3 Circuits.
Technical Report TR10-013, (ECCC), 2010. [5]

[SS10b] Nitin Saxena and C. Seshadhri. From Sylvester-Gallai Configurations to
Rank Bounds: Improved Black-Box Identity Test for Depth-3 Circuits.
In FOCS, pages 21–29, 2010. [41]

B 91

[SS11] Nitin Saxena and C. Seshadhri. Blackbox identity testing for bounded top
fanin depth-3 circuits: the field doesn’t matter. In STOC, pages 431–440,
2011. [ii, 5, 41]

[Stu90] Bernd Sturmfels. Gröbner bases and stanley decompositions of determi-
nantal rings. Mathematische Zeitschrift, 209:137–144, 1990. [80]

[SV08] Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing.
In STOC, pages 507–516, 2008. [42]

[SV09] Amir Shpilka and Ilya Volkovich. Improved Polynomial Identity Testing
for Read-Once Formulas. In APPROX-RANDOM, pages 700–713, 2009.
[42]

[SV11] Shubhangi Saraf and Ilya Volkovich. Black-box identity testing of depth-4
multilinear circuits. In STOC, pages 421–430, 2011. [ii, 6, 41, 42, 45]

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields
of characteristic zero. Computational Complexity, 10(1):1–27, 2001. [3,
68]

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of
recent results and open questions. Foundations and Trends in eoretical
Computer Science, 5(3-4):207–388, 2010. [6, 42, 82]

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J.
Comput. Syst. Sci., 67(2):419–440, 2003. [43]

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In STOC, pages
249–261, 1979. [i, 2, 67]

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast
Parallel Computation of Polynomials Using Few Processors. SIAM J. Com-
put., 12(4):641–644, 1983. [41]

[vzG83] Joachim von zur Gathen. Factoring Sparse Multivariate Polynomials. In
FOCS, pages 172–179, 1983. [ii, 8, 19]

92 B

[Wil11] Ryan Williams. Non-uniform ACC Circuit Lower Bounds. In IEEE Con-
ference on Computational Complexity, pages 115–125, 2011. [43]

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. EU-
ROSAM, pages 216–226, 1979. [4, 15]

	Introduction
	Lower Bounds
	Polynomial Identity Testing
	Contributions of this thesis
	Composition of identity tests
	A unified technique for PIT
	Towards lower bounds for depth-4 circuits

	Structure of the thesis

	Preliminaries
	Notation
	Basic tools for PIT and lower bounds
	Homogenization
	The Schwartz-Zippel Lemma
	Blackbox PIT for sparse polynomials

	Composing identity tests, and sparse factorization
	Introduction
	Contribution of this chapter
	Overview of the approach

	PIT for semidiagonal circuits
	Solving Problem 3.1
	Reviewing the Kayal-Saxena test
	A brief introduction to local rings
	Reviewing the Kayal-Saxena test
	Adapting Algorithm KS-Test to solve Problem 3.1

	Solving Problem 3.2
	Checking divisibility by (a power of) a sum of univariates
	Irreducibility of a sum of univariates
	Finishing the argument

	Identity testing via algebraic independence
	Introduction
	Contribution of this chapter
	The main ideas

	Algebraic independence and the Jacobian
	Depth-3 circuits of bounded transcendence degree
	Preserving non-zeroness of Jxk(Tk)

	Constant-depth constant-occur formulas
	Restriction to the case of depth-4
	Generalizing to larger depth

	Related lower bounds
	Lower bound on depth-4 occur-k formulas
	Lower bound on circuits generated by polynomials
	Lower bound on circuits generated by polynomials
	Proofs of the technial lemmas

	Approaching the chasm at depth four
	Introduction
	Prior Work
	The model

	Basic Idea and Outline
	Outline of the chapter

	Shifted partials of [hom](t) circuits
	Shifted partials of the Permanent
	Restricting to two diagonals

	Putting it all together
	Growth of binomial estimates
	Proof of the main theorem

	Discussion

	Conclusion and future directions
	Composing Identity tests
	PITs via algebraic independence
	Shifted partial derivatives

