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K
ernel learning algorithms have received much attention in the past two decades

and occupy a prominent position within machine learning having given state-of-

the-art performance in several domains. Much of the power of kernel methods

comes from their ability to implicitly represent complex functions in high dimensional

spaces that enables algorithms to learn and predict without having to worry about the

dreaded “curse of dimensionality”.

This, however, comes at a price of increased hypothesis complexity that causes these

algorithms to be slow during training as well as at prediction time. With an increase in

demand for real time applications, this prevents kernel algorithms from being applied to

several domains. A second drawback of kernel-based learning methods is the problem of

choosing an appropriate kernel for a given learning task. In several learning situations,

much can be gained by appropriately choosing a suitable kernel before applying kernel

learning methods. This problem is somewhat more severe for traditional kernel learning

methods due to their dependence on so-called “Mercer kernels” that prevents them from

fully utilizing rich domain-specific knowledge in the learning process.

Our work makes three contributions in these directions that we briefly describe below.

Subsequently, we give a more detailed account of each contribution.

1. We propose a method (Kar and Karnick, 2012) that allows kernel learning algo-

rithms using dot product Mercer kernels to offer fast prediction routines by way of

learning approximate predictors. Our method has a desirable side-effect of offering

fast training times as well.
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2. We develop a learning framework that allows efficient use of non-Mercer kernels in

the learning process. We show that our learning framework admits fast training and

prediction routines as well as crisp learning theoretic generalization guarantees (Kar

and Jain, 2011) and (Kar and Jain, 2012).

3. We develop an online learning framework that allows us to learn multivariate func-

tions (Kar et al., 2013). Among other things, this allows us to perform kernel

selection by way of Multiple Kernel Learning as well as learn (indefinite) similarity

functions.

Accelerated Learning with Dot Product Kernels

As we have noted, kernel methods owe their power to their ability to implicitly represent

points in arbitrarily high dimensional function spaces. This however, comes at a cost of

increased complexity of the resulting predictor. A typical kernel predictor (for learning

tasks such as classification, regression, principal component analysis etc) has the following

form

h(x) =

n∑
i=1

αiK(x,xi)

where xi are the training points. Typically αi 6= 0 for a large fraction of the training set,

a fact that has been confirmed theoretically as well. This can cause the predictor to be

slow at test time due to the large number of kernel computations involved. However, we

notice that this predictor has a simple alternate form. Indeed, applying the kernel trick

gives us K(x,y) = 〈Φ(x),Φ(y)〉, and we get

h(x) = 〈w,Φ(x)〉

for some w ∈ HK where HK is the Reproducing Kernel Hilbert Space corresponding to

the kernel K and Φ : X → HK is the corresponding feature map. The main idea behind

our work is the following: the predictor is expressible as a unit operation albeit in a high

(possibly infinite) dimensional RKHS. If one could reduce the dimensionality of the RKHS

while approximately preserving inner products by devising some map, then one would be

able to express the predictor as a single inner product in a small(er) dimensional space.

More specifically, our goal is to devise a map Ψ : HK → RD for some finite D such that

for all x,y ∈ X , we have K(x,y) ≈ 〈Ψ(Φ(x)),Ψ(Φ(y))〉. We shall call such a map an

approximate feature map for the kernel K.

The proposed scheme is concisely represented in Figure 1. The motivation for the

existence of such inner product preserving maps comes from results such as the Johnson-

Lindenstrauss Lemma. However, algorithmically, one cannot apply the maps Φ and Ψ in

succession as the intermediate step involves working in a high dimensional space HK . In

our work Kar and Karnick (2012), we provide an alternate map Z : X → RD for some

small D such that it implicitly encodes the composition of the maps Φ and Ψ.
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Figure 1: Approximate Feature maps for Kernels

Our maps work for Dot Product Kernels which are kernels of the form K(x,y) =

f(〈x,y〉) for some analytic function f : R→ R. This takes into account a large family of

kernels including the Polynomial kernels K(x,y) = (〈x,y〉+ c)p for some c ≥ 0, p ∈ Z+,

Exponential kernel K(x,y) = exp
(
〈x,y〉
σ2

)
for some σ > 0 (which is simply the non-

normalized Gaussian kernel) and Vovk’s kernel K(x,y) = 1−〈x,y〉p
1−〈x,y〉 for some p ∈ Z+ ∪ {0}.

Our method relies on (an extension of) a result in functional analysis due to Schoenberg

Schoenberg (1942). Our basic result ensures that if X is a compact subset of Rd and

K(x,y) = f(〈x,y〉), then if D = Ω

(
d

ε2
log

(
1

εδ

))
, then the feature map Z : X → RD

is an ε-approximate feature map for K with probability 1 − δ i.e. for all x,y ∈ X ,

|K(x,y)− 〈Z(x),Z(y)〉| < ε.

Our experiments show that our technique offers impressive speedups for the SVM

classification problem with respect to both training as well as test times.

Supervised Learning with Similarity Functions

Kernel learning has traditionally advocated the use of Mercer (or positive definite) ker-

nels. Although these kernels allow us algorithmic as well as analytic advantages leading

to fast training routines and clean generalization guarantees, their strict mathematical

form excludes several notions of similarity or distance that are prevalent in various do-

mains. Examples include the Earth-mover’s distance in image retrieval, BLAST scores

in bio-informatics and a variety of graph-based metrics that can be defined on graphical

structures such as social networks.

However, the indefiniteness of these kernels prevents them from being directly used

in kernel methods such as the SVM. For the same reason, they lack the nice geometric

interpretation that Mercer kernels possess that makes proving generalization guarantees

easier. Our work addresses both these problems in a unified manner.

At the heart of our work is the notion of a good kernel. More specifically, we devise

notions that formally capture the suitability of a given (possibly indefinite) kernel to a

given learning task. It is worthwhile noting that such notions of goodness also exist for
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Mercer kernels where typically, a Mercer kernel is considered good for a given learning

task such as classification or regression if there exists a good predictor in the RKHS of

the kernel with a large functional margin. We extend this notion to indefinite kernels1

wherein for any supervised learning task (we address different learning tasks separately

below) and any kernel, we are able to state if the kernel is (ε,B)-good for the learning

task for some ε,B > 0.

Having established this notion, our work provides two types of guarantees:

1. Utility Guarantee: we are able to guarantee that if we are given an (ε,B)-good

similarity function K for a learning task, then using poly (1/ε1, log(1/δ)) training

samples, we can, with probability at least 1− δ, learn a hypothesis that has general-

ization error bounded by ε+ ε1. We show this by giving an algorithm that samples

landmark points from the domain, constructing a feature map out of them and then

solving a linear prediction problem in this new feature space. Since solving a linear

prediction problem is computationally simple, this gives our framework fast training

routines.

2. Admissibility Guarantee: we are able to show that if a Mercer kernel K is good

for a particular learning task by virtue of having a large margin predictor in its

RKHS, then there exist ε,B > 0 such that K is (ε,B)-good as a similarity function

as well. This effectively demonstrates that our notions of goodness are not artificial

or too restrictive but in fact, extend known notions of Mercer kernel goodness. We

prove these results using (extensions of) a technique given by Srebro (2007).

Large margin
Mercer kernel

(ε,B)- good
Similarity fn.

(ε+ ε1)-accurate
predictor

U
tility

A
dm

is
si
bi

lit
y

Figure 2: Utility and Admissibility guarantees

Figure 2 concisely presents these guarantees. Such notions of goodness for indefinite

kernels (or similarity functions) were first proposed by Balcan and Blum (2006) for the

problem of binary classification. In the first part of our work (Kar and Jain, 2011), we

extend the notion of goodness proposed by Balcan and Blum in order to make it more

flexible to diverse learning scenarios. Our method involves sampling labeled landmark

points from the domain and creating random classifier stumps out of pairs of positive and

1 ↑ We shall use the terms indefinite kernel and similarity function interchangeably.
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negative landmark points. Our proposed method outperforms the method of Balcan and

Blum in experiments as well as enjoys good generalization (utility) properties with respect

to the misclassification loss function.

In the next part of the work (Kar and Jain, 2012), we extend the above framework to

other supervised learning problems. It turns out that the notions of similarity goodness

proposed for classification in (Balcan and Blum, 2006; Kar and Jain, 2011) assume the

presence of discrete labels which restricts them to classification-like scenarios. We propose

a new notion of goodness that can be used in arbitrary supervised learning situations. We

also show that our notion of goodness reduces to that of Balcan and Blum when labels

are indeed binary. We also propose learning algorithms that can take a good similarity

function and a few unlabeled landmark points and learn a good predictor.

Using this new framework, we are able to prove utility and admissibility guarantees for

several supervised learning problems such as regression, ranking and ordinal regression.

In each case, our utility guarantee holds with respect to a widely used loss function. For

instance, for regression, our utility guarantee holds with respect to the mean squared error

and for ranking, it holds with respect to the NDCG loss function. We are also able to, in

each case, show that good Mercer kernels for these problems are also good with respect

to our notion of goodness, thus providing an admissibility guarantee.

For the case of real valued regression, we are additionally able to devise a framework

that can learn sparse predictors that are faster at test time. Our learning method is a

pursuit type algorithm that uses a variant of Forward Greedy Selection (Shalev-Shwartz

et al., 2010b) to learn a sparse predictor. We show that this framework still enjoys utility

and admissibility properties.

In our experiments, which intend to demonstrate the effectiveness of the proposed

framework, our methods outperform a baseline method of Kernel regression on both re-

gression and ordinal regression tasks with the sparse learning formulation giving especially

attractive results for the case of real-valued regression.

Online Learning with Pairwise Loss Functions

For learning problems such as regression and classification, the loss functions used in

these settings, for example hinge loss, squared loss, ε-insensitive loss, take as input a

labeled point and a hypothesis and output how well the hypothesis performs on that point.

However, in several learning scenarios such as Mahalanobis metric learning, multiple kernel

learning and bipartite ranking, the hypothesis must be evaluated on two input points. For

instance, in metric learning, a hypothesis is evaluated on the basis of how well is it able

to keep oppositely labeled instances apart while keeping together similarly labeled points

Jin et al. (2009). In such situations, the loss function has the following form

` : H×Z ×Z → R



xii

where H is the hypothesis space and Z = X × Y is the (labeled) domain. Learning with

pairwise loss functions entails several algorithmic and learning theoretic challenges. From

an algorithmic point of view, seldom does the learning algorithm receive i.i.d pairs from

the domain Z × Z. Instead, what one receives is a set of n i.i.d. points from the domain

Z. Consequently, the learning algorithm has to create pairs out of these points. Since

processing all Ω
(
n2
)

pairs is usually prohibitive, this presents a challenge.

From a learning theoretic point of view, such pair creation creates difficulties for gener-

alization error bounds since the pairs constructed out of the training points are no longer

i.i.d. owing to the intersection between pairs. This problem is well known in learning

theory literature as the coupling problem.

Online learning methods are very well suited to domains where training data is too

voluminous to be stored in memory. This motivates the idea of extending existing online

learning techniques to devise algorithms that can learn from pairwise loss functions. To do

so, one would have to overcome the problems of pair creation and coupling in the online

setting. Our main contribution in this work (Kar et al., 2013) is an online learning frame-

work for learning with pairwise loss functions. We propose memory efficient algorithms

for which we prove crisp learning theoretic guarantees such as regret and online-to-batch

conversion guarantees.

Our learning framework consists of a learner that is given a finite memory buffer. The

learner observes data points as they arrive in a continuous data stream. However, he can

store at most s points in the buffer at any given time. At each time instant t, the learner

receives the incoming point zt, pairs it up with points present in the buffer, and uses these

pairs to update its hypothesis. We give simple algorithms for updating the hypothesis

as well as the buffer at each time step – the buffer update algorithm is a randomized

algorithm. We give the following bounds for our algorithms

1. At any fixed time step t > s, the contents of the buffer represent s i.i.d. samples

from the set {z1, . . . , zt−1} where s is the buffer size.

2. With probability at least 1− δ over the randomness used to update the buffer, the

learning algorithm incurs regret no more thanO
(√

logn
s

)
with respect to algorithms

that have unbounded sized buffers. Here n is the total number of steps in the online

learning process and s is the buffer size. Consequently, to achieve a non-trivial regret

bound, we only need s > ω (log n) which demonstrates the space-effectiveness of our

framework.

We also prove online-to-batch conversion bounds that can give generalization error

bounds for online learning algorithms that learn from pairwise loss functions in terms of

their regret bounds. Our bounds are tighter and are applicable to more diverse learning

scenarios than those of a recent result in the same area (Wang et al., 2012). We give below

some salient points of our bounds:
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1. Dimension independence: for a large class of learning algorithms, our bounds

have no dependence on the input dimensionality. This allows us to apply our bounds

to kernelized situations (which operate in infinite dimensional spaces) as well. This

is in contrast with the bounds of Wang et al. that have a linear dependence on input

dimensionality.

2. Sparse learning: we are also able to give bounds for algorithms that try to learn

sparse functions such as sparse vectors or trace norm bounded matrices using sparsity

promoting regularizers such as the Manhattan norm or the Trace norm.

3. Bounded memory algorithms: our results apply to a large class of algorithms

that maintain finite buffers to store (a subset of) previously seen points in order to

learn within a memory budget. This is in contrast with the bounds of Wang et al.

which only address algorithms that have unbounded buffers.

4. Fast rates: we are able to guarantee fast Õ
(

1
n

)
rates of convergence for algorithms

that use strongly convex loss functions.

Our learning techniques are applicable to problems such as two-stage multiple ker-

nel learning, metric learning, maximizing the area under the ROC curve (equivalent to

bipartite ranking) and similarity (indefinite kernel) learning.
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Abstract This chapter gives a gentle introduction to machine learning. Various learn-

ing frameworks are considered and examples are given for each of them to both motivate the

learning methodology as well as establish the notation. The empirical and regularized risk

minimization principles are introduced that are embodied in the kernel learning framework

in later chapters. The chapter also gives an introduction to basic statistical learning theory

that is used in the thesis to provide generalization bounds for various learning algorithms.

1.1 Introduction

Before presenting a mathematically precise formulation of learning, we motivate the need

for machine learning in the present world. This is being included to make the discussion

self contained and complete.1

Our society has, in the past few decades, seen a shift from economies relying on tra-

ditional manufacturing industries to economies based on harnessing information. This

1 ↑ The ↑ symbol at the beginning of footnotes links back to the occurrence of the footnote in the text.
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neo-industrial revolution has ushered in the Information Age (Wikipedia) where manip-

ulation of knowledge is crucial to both societal as well as industrial growth. In this new

setup however, the gap between information and knowledge has widened.

Today we are nothing short of flooded with information: mobile devices, online so-

cial media and electronic transactions generate terabytes of data every single day, all of

which contain valuable insight about consumer trends, market forces and profitable av-

enues. Online medical records hold the key to identifying outbreaks of epidemics and other

socio-medical statistics that can play a critical role in policy making and implementation.

Scientific data from astronomical observatories and particle accelerators (for example the

Large Hadron Collider) has the potential to pave the way for new scientific discoveries.

This, ironically, is exactly where the gap emerges: it is a challenge to be able to extract

useful, actionable knowledge out of this sea of information. More often than not this

information is too voluminous for manual processing. In several domains, most notably in

the case of scientific data and online user data, the rate at which this information is made

available to us is too high to allow all the information to even be stored.

Just to put things in perspective, a study reported in the journal Science put the total

storage capacity of our planet in 2007 at a figure just shy of 300 exabytes (Hilbert and

López, 2011). If one goes by past trends, the figure is expected to enter the zettabyte

range in the next 4-5 years. Our combined computation abilities in the same year were

estimated at about 6 EIPS (exa or billion billion instructions per second) with Moore’s law

still holding on, more or less. Compared to this, we generated about 0.8 exabytes of data

on the Internet every day on an average during 2012 (Mashable). This included posts on

blogs, online social fora like Facebook and Twitter, content uploads such as photographs

and video and electronic mail. A quick calculation tells us that we would have used up all

300 exabytes available to us within 2012 itself.

1.2 Common Learning Tasks

The previous discussion clearly indicates a need for automated routines to process all the

data available to us. More specifically, there is a need to efficiently utilize the computa-

tional power available to us in order to solve the problem of knowledge extraction.

The area of machine learning concerns itself with precisely this question. Given some

raw data, machine learning algorithms try to discover various types of interesting struc-

tures or patterns within the data that help us to 1) understand various properties of the

data as well as 2) predict future behavior. Thus machine learning techniques can pro-

vide us with both deductive as well as inductive abilities that can be utilized for various

tasks such as data analytics, mathematical modeling, data mining and prediction. As

examples we consider a few popular machine learning tasks below (refer to Figure 1.1 for

illustrations):

1. Binary Classification: as the name suggests, this task concerns itself with iden-

tifying a discrete pattern within the data. For instance take the example of spam
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(a) Binary Classification (b) Multi-class Classification (c) Regression

(d) Clustering (e) Principal Component Analysis

Figure 1.1: Illustrations for some common learning tasks.

classification. An average email user gets a fair amount of undesirable emails which

may range anywhere from innocuous promotional offers to sinister phishing attempts.

It is very desirable to have spam filters that can automatically dump such mails into

a specially designated spam folder. However, the notion of spam varies from person

to person - some people are not offended by promotional offers whereas some are -

which is why spam filters have to adapt themselves to the (several) idiosyncrasies of

each email user to deliver efficient spam filtering. This poses an interesting binary

classification problem where the task is to correctly assign each object (mail) to its

class (spam/non-spam).

2. Multi-class Classification: whereas the pattern underlying the spam classification

example is binary valued (every email is designated either spam or non-spam), in

general one can talk about a multi-valued pattern. For instance, consider the problem

of handwriting recognition where we are expected to classify digitized images of

handwritten characters into one of 36 classes: 26 alphabets {a,. . . ,z} and 10 numerals

{0,. . . ,9}.

3. Regression: this is historically one of the most well studied learning tasks and has

immense applications in economics and the sciences. The task here is quite similar to
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that of curve fitting: given a set of points in some space and a real value associated

with each of them, our goal is to figure out some real valued function over the space

that can accurately match the values associated with each of the points. This real

value is usually some quantity that we are interested in predicting for points in the

space. For instance, if we are interested in predicting family expenditure of a certain

population, we can do so by encoding each family as a three tuple by considering its

monthly income, number of members in the family and their median age and then

posing the problem of predicting the average monthly expenditure of the family as

a real valued regression problem.

4. Clustering: in this task, the aim is to discover some (possibly hierarchical) structure

in the data. This can help in performing a taxonomic analysis of a given dataset. For

instance, given genome sequences of a set of organisms, an application of clustering

can help us club organisms with similar genomic structure together thus aiding in

identification of species, genera and families.

5. Component Analysis: this task has several applications in signal processing do-

mains such as image and speech processing. Given a set of signals as a time/space

sampled series, it may be necessary to extract useful components out of the data.

This can help in noise reduction as well as dataset size reduction both of which are

desirable from the point of view of increasing accuracy and processing speed. For

instance, Independent Component Analysis can help identify distinct speech or voice

patterns in a recording. Principal Component Analysis is very widely used as a data

dimensionality reduction technique and in face recognition tasks.

There are several other learning tasks such as multi-label classification, ordinal re-

gression and ranking which we have not discussed above but which are nevertheless well

studied as well as useful in modeling practical scenarios.

1.3 The Learning Methodology

The various learning tasks studied in machine learning have been divided into broad

learning frameworks for ease of study. Two most commonly studied learning frameworks

are Supervised Learning and Unsupervised Learning. The first three tasks discussed above

fall into the supervised category whereas the last two are unsupervised learning tasks.

There are several other learning frameworks, some which are modifications of these two

such as Semi-supervised Learning, Online Learning, Active Learning and Reinforcement

Learning which we shall not discuss in detail here. The reader is referred to one of several

standard texts in machine learning such as (Duda et al., 2000) and (Mitchell, 1997) for

an introduction to other learning frameworks. We shall however, discuss online learning

in Chapter 6. In the sections below, we briefly introduce the supervised and unsupervised

learning frameworks.
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1.3.1 Supervised Learning

This framework involves the abstraction of a teacher-student interaction and the learning

process is seen as a one round game. The basic setting consists of a domain X and a label

set Y: the domain is simply the space from where all data points are arriving whereas the

label set is the set of all possible labels that can be assigned to domain elements.

For instance, in the spam filtering case, the domain is simply the set of all possible

emails (i.e. texts in the English language). The label set has just two elements {non-

spam,spam} which can be succinctly represented as the set {0, 1}: 0 indicating non-spam

and 1 indicating spam. For multi-class classification, the label set contains more than just

two elements but is still a discrete and finite set. For regression, the label set is usually

some contiguous interval of the real line i.e. Y ⊂ R.

The teacher holds two quantities with itself which it hides from the student. The first

quantity is a Target Function f t : X → Y which mathematically captures the notion

of “correct” labels. For example, in the spam classification case, this function encodes

whether the email user views the emails as spam or not. The second quantity is a distri-

bution D on the domain X which would be used to sample points from the domain2. The

student has no direct access whatsoever to either of these two objects.

In the first round, the teacher samples n data points x1,x2, . . . ,xn from the distri-

bution, calculates their true labels yi = f t(xi) and sends the collection T = {(xi, yi)}ni=1

as Training Data to the student. For instance, in the spam classification, the email user

might himself act as the teacher by specifically marking certain emails as spam and leaving

others as non-spam. The task of the student is to use this training data to come up with

a Hypothesis Function h : X → Y. Usually the student is restricted to choose a hypoth-

esis from a Hypothesis Class H. As we shall see later, this is essential since allowing the

hypothesis class H to be unrestricted can mislead the student. The learning game ends

when the student has arrived at a hypothesis: the student is said to have learned this

hypothesis.

The aim of the student is to come up with a hypothesis that “agrees” with the target

on “most” domain elements - in some sense, the student’s goal is to read the teacher’s

mind (just as the spam filter’s goal is to read the email user’s mind). This is formalized by

the notion of a Loss Function ` : Y×Y → R+ which tells us what price we pay for making

a wrong prediction. For instance, in the spam classification case (where Y = {0, 1}), a

natural loss function is the zero-one loss function which is defined as follows:

`zero-one(y1, y2) =

{
0 if y1 = y2

1 if y1 6= y2

Thus, in case the student correctly classifies an email, he does not encounter any loss. On

2 ↑ The more informed reader might complain that this model does not address the possibility that the
label might be a non-deterministic function of the data point. A more general model would, instead of
having a target function and a distribution, simply have a distribution on the product domain X ×Y. For
sake of simplicity we continue to assume noiseless models for now.



6 Chapter 1. Introduction to Learning

the other hand, classifying a spam email as non-spam or the other way round incurs the

student a unit loss. In case of problems such as regression, it might be too restrictive to

expect the student to output exactly the true value (such as the exact monthly expenditure

of a family) - it is much more reasonable to expect the student to output a value close to

the true value. The widely used quadratic loss or least squares loss function encodes this

intuition. Not surprisingly, this is also the loss function behind the popular least squares

learning algorithm for real valued regression.

`quad(y1, y2) = (y1 − y2)2

Note that in certain situations, the student is allowed to output hypotheses with a

range set Y ′ different from Y. In such cases, the loss function is appropriately modified

to look like ` : Y ′ × Y → R+. Whatever be the case, the student is penalized according

to the expected loss (or population risk) incurred by his hypothesis. This is defined using

the Risk Functional

R : h 7−→
∫
X
`(h(x), f t(x)) dD(x)

The risk functional encodes the extent to which the student’s hypothesis “agrees” with the

target on average - thus the goal of the student is to minimize R(h) as much as possible.

The risk functional satisfies certain interesting properties such as non-negativity i.e. for

all h ∈ H, we have R(h) ≥ 0 and some sort of an identity property i.e. R(f t) = 0.

Usually, in order to make the learning model realistic, the teacher is given no restric-

tions on how to choose the target function f t and neither is the student allowed to make

any such assumptions. This is known as the Agnostic Setting of learning. There are more

restricted settings such as the Proper Learning setting where the teacher is constrained

to choose the target function from some hypothesis class i.e. f t ∈ Ht and the student

is made aware of the class Ht in advance. In the agnostic case, since the student is not

allowed to make any such assumptions, his goal becomes to do as well as his hypothesis

class allows him to do i.e. achieve a risk as close to R(H) := inf
h∈H
R(h). Note that in

case of proper learning where H = Ht, we have R(H) = 0 which is a consequence of the

identity property3.

The techniques that the student uses to learn the hypothesis from the training data is

the subject of much research within machine learning. We shall look at some of these in

a subsequent section in this chapter. The problem of giving guarantees on the excess risk

or R(h) −R(H) for the hypothesis learned by the student shall also be discussed in this

chapter within the broad framework of Statistical Learning Theory.

3 ↑ This is no longer true in the noisy model where one is bound to incur the Bayes Risk (see for example
Steinwart and Christmann, 2008b, Definition 2.3) no matter what.
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(a) Clustering (b) Principal Component Analysis

Figure 1.2: Illustrations for some unsupervised learning tasks.

1.3.2 Unsupervised Learning

In this learning framework, the task is to extract useful structures within the data. This

framework is characterized by the absence of “labels” and a well-defined teacher that

the supervised learning framework had. The only “supervision” allowed in this learning

framework is the specification of the type of structures to be found. A common way

of discovering these structures is by establishing a cost function or a potential function

that associates with each possible structure, a real number that tells us how suitable that

structure is. One then tries to find the structure that optimizes this cost or potential

function or some approximation of it.

To make things concrete, let us take the example of clustering: we are provided with a

set of points S = {x1, . . . ,xn} from some metric space (X , d) with an associated distance

function d. Our job is to partition the set S into k disjoint subsets, each of which is called

a cluster (refer to Figure 1.2a for an illustration). More specifically, we want a collection

of k disjoint subsets C = {C1, . . . , Ck} such that the union of the subsets is S itself. The

objective behind this is to be able to club together, in the same cluster, points that have

a greater affinity to each other than to points outside the cluster. For instance, this can

help us cluster organisms with similar genetic material to identify a particular species.

A potential function that encodes this intuition is the well known k-means objective.

This objective assigns a cost to any clustering C = {C1, . . . , Ck} of the set S by checking

how spread out are points within each cluster : ideally we would want points in a cluster

to be tightly bound together. To do this we first define cluster centers as follows

µi = arg min
x∈X

∑
j:xj∈Ci

d(xj ,x)

and then calculate the potential of this clustering as follows

cost(C) =
k∑
i=1

∑
j:xj∈Ci

d(xj , µi)
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Although this potential function is known to be NP-hard to optimize (Mahajan et al.,

2012), the popular Lloyd’s algorithm is able to obtain local minima efficiently.

The other example we discuss here is that of principal component analysis. In this

case one is given a set of points in some vector space (say Rd) and the goal is to identify

components in the data that correspond to uncorrelated directions. These components

are identified such that the first component has the largest possible variance and each

subsequent component in turn has the highest variance possible in the subspace orthogonal

to the space spanned by the preceding components. This ensures that the components are

uncorrelated in a pairwise manner (refer to Figure 1.2b for an illustration).

Thus, if the n data points are arranged in an d × n matrix X, the goal is to find an

orthonormal set of directions w1, . . . ,wd such that

w1 = arg max
‖w‖=1

Var
r
w>X

z

and for each subsequent principal component wk, the following holds

wk = arg max
‖w‖=1

Var
r
w>X(k−1)

z

where X(0) = X and Xk = X

(
I −

k∑
i=1

wiw
>
i

)
. The implicit potential function being

minimized here is the residual variance in the undiscovered components.

Having components laid out in decreasing order of variance has several benefits since

the first few principal components can be said to encode most of the information in the

data. In fact, discarding all but the first few principal components is a very popular

method of feature space compression and dimensionality reduction. Principal component

analysis can also be used as a preprocessing step to get guaranteed convergence for the

Llyod’s algorithm for k-means clustering (Kumar and Kannan, 2010) which otherwise does

not enjoy any convergence guarantees and can get stuck in local optima.

1.3.3 Other Learning Frameworks

We briefly discuss below some of the other learning frameworks mentioned previously:

1. Semi-supervised Learning: this framework is an extension of the supervised

learning framework in which the teacher, apart from the labeled training set T =

{(xi, yi)}ni=1, also provides the student with unlabeled data U =
{

xuj

}m
j=1

. The

idea behind this is to allow the student to have a better glimpse of the distribution

D by means of having more samples. Typically we have m � n which models

practical scenarios where obtaining clean and correct labeled data is expensive but

obtaining unlabeled data is cheap. For instance, in the handwriting recognition

problem it is very easy to assemble a collection of hundreds of thousands of digitized

handwritten characters but it is very expensive to manually tag them with the letter
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they represent.

2. Online Learning: in this framework, the number of rounds of interaction between

the teacher and the student are increased. The teacher presents the student with

only a single training point in each round and expects the student to revert back

with a hypothesis. The teacher then reveals the true label of the point and the

student incurs a loss if the label predicted by his hypothesis in this round does not

match the true label. The teacher is not restricted to sample points according to any

distribution in this framework and can possibly behave in an adversarial manner in

an effort to maximize the loss incurred by the student. We will discuss the online

learning framework in detail later and refer the reader to Chapter 6 for a more

detailed introduction to online learning.

3. Active Learning: in this framework, there are multiple rounds of interaction be-

tween the teacher and the student as well as the interactions are made bi-directional.

The student is now allowed to query the teacher about the true labels of arbitrary

points. Frequently, this is implemented by means of first having the teacher provide

a large number of unlabeled samples to the student and the student then requesting

labels for a small subset of them. Alternatively one can have the student generate

the samples on his own. The ability to query the teacher greatly eases the learning

problem for the student in several domains such as automata learning (Angluin,

1987) and offers reduced sample complexity in others (Gilad-Bachrach et al., 2006).

See (Settles, 2012) for a nice survey of existing work on active learning.

4. Reinforcement Learning: this framework is inspired by behaviorist psychology

and is concerned with optimizing the behavior of an agent in an interactive environ-

ment that responds to the actions of the agent with rewards and punishments. The

learning framework is characterized by a state space that models the environment, a

set of actions that the agent can take and a set of (stochastic) rules and polices that

govern state transitions, actions taken by the agent at each state and the expected

rewards to be gained upon performing a particular action in a particular state. The

learning process proceeds in stages with the environment responding to the user’s

actions by changing it’s state and offering various rewards to the user. The aim of

the user is to formulate policies so as to maximize the cumulative reward.

At this point we conclude our broad discussion on machine learning. We shall restrict

ourselves to supervised learning tasks for the rest of this chapter with the aim of building

enough background to introduce kernel learning in Chapter 2.

1.4 Common Learning Strategies

One of the questions we left unanswered in the previous section was how to learn a hypoth-

esis using the training set. Continuing with our focus on the supervised learning model,
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we now briefly present certain common learning strategies used in this model. We note

that these strategies dictate the learning process at a very abstract level and in practice,

learning algorithms have to make several efforts to efficiently implement these strategies.

We recall that the supervised framework involves the student getting a labeled training

set T = {(xi, yi)}ni=1 from the teacher. The student is then supposed to use the training

data to learn a hypothesis h from some hypothesis class H.

1.4.1 Empirical Risk Minimization

In absence of any other information, it seems natural to choose the hypothesis that seems

to fit the training data well. For any hypothesis h ∈ H, define the Training Error or

Empirical Risk as follows:

R̂(h) =
1

n

n∑
i=1

`(h(xi), yi),

where ` is the loss function being used. Since the empirical risk encodes how well a

hypothesis is doing on the training set, it seems natural to choose the following function

as the hypothesis:

ĥ = arg min
h∈H

R̂(h).

This policy of minimizing the empirical risk is known as the Empirical Risk Minimization

principle (ERM) and is one of the most popular learning techniques known for its sim-

plicity and efficiency. A crucial choice that one has to make while implementing the ERM

principle is that of the hypothesis class H with respect to its capacity.

If the hypothesis class is too weak then the learning process will not be able to offer

good performance due to underfitting : the hypothesis class is said to suffer from a large

bias in this case. On the other hand, if the hypothesis class is too diverse (for instance, if

it contains all possible functions h : X → Y, then the empirical risk minimizer will overfit

terribly (see Section 1.5 for a discussion). Several strategies have been developed in order

to address this overfitting problem. We discuss below a few of them.

1.4.2 Structural Risk Minimization

Structural risk minimization (SRM) (Vapnik, 2000) is an effective means of enforcing the

Occam’s Razor principle which states that the simplest hypothesis offering a reasonable

explanation of the observed data is usually the “correct” one. To do this, SRM works with

a nested hierarchy of hypothesis classes of different complexities.

More formally, one considers the classes H1 ⊂ H2 ⊂ . . . along with a penalty function

C associated with each hypothesis class that measures its capacity. For instance, in classi-

fication problems, one can use the VC dimension of the hypothesis classes as the penalty

function. Thus, the SRM principle decides upon the hypothesis as follows:

ĥ = arg min
ht∈Ht,t≥1

R̂(ht) + C(Ht).
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1.4.3 Regularized Risk Minimization

The SRM principle suffers from the cost of having a multitude of hypothesis classes over

which empirical risk minimization must be performed in order to output the hypothesis.

Regularized Risk Minimization (RRM) overcomes this by enforcing the penalization on a

per-function basis rather than on a per-class basis. More specifically, RRM works with a

single hypothesis class H and chooses a Regularizer r : H → R+ thus assigning a measure

of complexity to each function in the hypothesis class. The hypothesis is then chosen as

follows:

ĥ = arg min
h∈H

R̂(h) + λr(h),

where λ > 0 is a regularization parameter. This allows the RRM principle to implement

the Occam’s Razor but with several additional advantages

1. Efficiency: RRM requires only a single ERM step as opposed to SRM that requires

several. Moreover, in several cases, the regularizers allow one to directly use efficient

optimization routines to learn the hypothesis.

2. Low Bias: because of its independence to the capacity of the hypothesis class H,

RRM allows one to work with classes with very large capacity directly. This is

indispensable for kernel-based learning algorithms that typically work in very high

dimensional spaces.

3. Sparsity: With a proper choice of regularizer, the RRM principle allows one to

learn sparse predictors that allow faster predictions at test time.

There are several other learning strategies that overcome the problem of overfitting

such as Minimum Description Length (MDL), Bayesian Information Criterion (BIC) and

Cross Validation (CV) that we shall not discuss here. Of course one is still faced with the

question of how to implement these strategies on various hypothesis classes. In this thesis,

we shall mostly focus on regularized risk minimization as it emerges naturally within the

framework of large margin predictors. This shall be the topic of discussion in Chapter 2

where we shall use the kernel learning framework to implement this principle.

For now, we move on to look at some properties of these learning strategies. In partic-

ular, we shall be interested in knowing if these learning techniques offer any generalization

guarantees. In order to do so we introduce in Section 1.5 below, the framework of statistical

learning theory using which we will try to prove generalization guarantees for hypotheses

learned using the empirical and regularized risk minimization principles.

1.5 Statistical Learning Theory

A learning algorithm is said to offer a Generalization Guarantee if it produces a hypothesis

ĥ ∈ H such that the excess risk i.e. R(ĥ)−R(H) is bounded. Note that since the learning

algorithm only gets to see a finite sample of points, it is not trivial to argue about such
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bounds. In the following discussion we shall first analyze the ERM principle from the

point of view of generalization guarantees and then briefly look at the RRM principle.

Consider a fixed function h ∈ H. The strong law of large numbers (see for example

Dudley, 2002) tells us that in the limit, the empirical risk of h converges to its true risk (or

Population Risk) with probability one. To see this, suppose we have a training set T =

{(xi, yi)}ni=1 of n randomly chosen points. Construct the function h̃ : x 7→ `(h(x), f t(x)).

Since the training points are randomly chosen, applying the strong law of large numbers

gives us

lim
n→∞

P

[
1

n

n∑
i=1

`(h̃(xi))− E
r
h̃(x)

z
= 0

]
= 1,

which gives us

lim
n→∞

P
[
R̂(h)−R(h) = 0

]
= 1,

which in turn indicates that in the limit of having infinite training data, the empirical risk

will converge to the true risk. This seems to indicate that the ERM principle, which selects

the hypothesis with the minimum empirical risk, does offer a generalization guarantee. In

the following discussion, we see how to formally prove such a generalization bound.

However, this result applies only to the fixed function h. The hypothesis ĥ, on the

other hand depends upon the training points and hence is not a fixed function. To get

generalization bounds out of such an argument, we would have to apply such a result

uniformly over the hypothesis class H.

1.5.1 From Pointwise to Uniform Convergence

The strong law of large numbers guarantees, as we saw, that for any fixed function h ∈ H,

we have the empirical risk converging to the population risk. However, since the empirical

risk minimizer ĥ is not known a priori and depends upon the training set, it is not a

fixed function and hence this result cannot be applied directly to ĥ. To get around this

problem, instead of considering pointwise convergence, we consider uniform convergence.

More specifically, instead of looking at the quantity R̂(h) − R(h) for a fixed function

h ∈ H, we instead look at the quantity

sup
h∈H

{
R̂(h)−R(h)

}
.

It turns out that proving uniform convergence bounds for hypothesis classes allows us to

give generalization guarantees for algorithms implementing the ERM principle over those

hypothesis classes. This is formalized in the theorem below:

Theorem 1.1. Suppose the hypothesis class H that demonstrates uniform convergence

i.e.

lim
n→∞

P
[

sup
h∈H

{
R̂(h)−R(h)

}
= 0

]
= 1
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Let ĥ = arg min
h∈H

R̂(h) be the empirical risk minimizer over H. Then we have

lim
n→∞

P
[
R(ĥ)−R(H) = 0

]
= 1

Proof. The proof proceeds in three steps outlined below:

1. Use the fact that R̂(ĥ)−R(ĥ) ≤ sup
h∈H

{
R̂(h)−R(h)

}
to conclude that

lim
n→∞

P
[
R̂(ĥ)−R(ĥ) = 0

]
= 1

2. Let h∗ = arg min
h∈H

R(h). Apply the law of large numbers on the fixed function h∗ to

conclude

lim
n→∞

P
[
R̂(h∗)−R(h∗) = 0

]
= 1

3. Combine the two results obtained above with the factsR(ĥ) ≥ R(H), R(h∗) = R(H)

and R̂(ĥ) ≤ R̂(h∗) to conclude that

lim
n→∞

P
[
R(ĥ)−R(H) = 0

]
= 1

What this result tells us is that in the limit of the number of training samples increas-

ing to infinity, we will almost surely learn a hypothesis that achieves the best possible

performance within the hypothesis class. Some properties of this result are noteworthy:

1. The result only holds in the limit - this is not very satisfactory since in practice

we always have finite training sets. This can be remedied by using quantitative or

effective versions of the strong law of large numbers such as the Hoeffding bound or

McDiarmid’s inequality (McDiarmid, 1989).

2. Although in its asymptotic form the result holds with probability one, this will

rapidly decay to a high probability bound once we invoke any effective version of

the strong law of large numbers. This tells us that there may exist training sets

which will mislead us into learning a bad hypothesis. However it turns out that

the probability of encountering such training sets can be made vanishingly small by

choosing large enough training sets.

The preceding discussion shifts the focus onto hypothesis classes that demonstrate

uniform convergence. It turns out that only hypothesis classes that are not too powerful

can demonstrate uniform convergence. To see this, consider the hypothesis space Hall that

contains all functions mapping points from X to Y. For any given training set T , there

exists a function hT ∈ Hall such that

hT (x) =

{
f t(x) if x ∈ T
0 if x /∈ T
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Figure 1.3: Overfitting to the training data.

Clearly R̂(hT ) = 0 but R(hT ) is very large: this happens since the function hT , owing

to the power of the hypothesis class H, is simply able to memorize whatever information

is present in the training set but fails to acquire any inductive capabilities. Thus, the

hypothesis class Hall fails to demonstrate uniform convergence and empirical risk mini-

mization will fail for this hypothesis class. This example demonstrates some important

issues with the ERM principle:

1. Overfitting: this happens when the learning algorithm implementing the ERM

principle tries to fit the hypothesis too closely to the training data unmindful of

its responsibility to generalize to unseen points. This especially hurts the learning

algorithm if there is noise in the training data. Figure 1.3 illustrates this for the

case of real-valued regression: although a quadratic function is able to provide a

close approximation to the training set, a blind pursuit of the ERM principle led

the algorithm to fit a degree 7 curve to the data. This will usually lead to poor

generalization properties for the learned predictor.

2. Capacity of Hypothesis Class: the ERM principle is more prone to overfitting

when working with hypothesis classes that have large capacity. For instance, notice

that we were able to learn a poor hypothesis such as hT precisely because the hy-

pothesis class Hall contained all possible functions from X to Y. This could not have

happened had we restricted H to be a set of “smooth” functions. The overfitting

in Figure 1.3 could also have been prevented if the hypothesis class was constrained

to contain only low degree polynomials. Informally, the explaining power of the

functions inside a hypothesis class is known as its Capacity and having a very high

capacity hypothesis class can be counter-productive. This notion will be made formal

when we discuss generalization bounds for kernel learning algorithms in Chapter 2.

For sake of completeness, we give below, uniform convergence bounds for a toy hy-

pothesis class to both motivate the notion of capacity a bit more formally as well as to

introduce some well known results that shall be used in the rest of the thesis. First of all

we introduce the McDiarmid’s inequality below.
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Theorem 1.2 (McDiarmid’s inequality (McDiarmid, 1989)). Let X1, . . . , Xn be indepen-

dent random variables taking values in some set X . Furthermore, let f : X n → R be a

function of n variables that satisfies, for all i ∈ [n] and all x1, . . . , xn, x
′
i ∈ X ,

∣∣f (x1, . . . , xi, . . . , xn)− f
(
x1, . . . , x

′
i, . . . , xn

)∣∣ ≤ ci
then for all ε > 0, we have

P [f − E JfK > ε] ≤ exp

(
−2ε2∑n
i=1 c

2
i

)

Taking the special case f(x1, . . . , xi, . . . , xn) = 1
n

n∑
i=1

g(xi), we get the Hoeffding bound.

Theorem 1.3 (Hoeffding’s inequality (Hoeffding, 1963)). Let X1, . . . , Xn be independent

random variables taking values in some set X . Furthermore, let g : X → R be a function

that satisfies, for all x ∈ X , |g(x)| ≤ c then for all ε > 0, we have

P

[
1

n

n∑
i=1

g(Xi)− E JgK > ε

]
≤ exp

(
−nε2

2c2

)

Note that both inequalities can be made two sided by an independent invocation of

the inequalities with f = −f and g = −g respectively.

1.5.2 A Toy Uniform Convergence Bound

Consider the hypothesis class H = {h1, . . . , hm} with only a finite number of functions i.e.

m <∞. Suppose we have n points in the training set. Applying the Hoeffding’s inequality

to each hi individually we get

P
[
R(hi)− R̂(hi) > ε

]
≤ exp

(
−nε2

B2

)
where we have assumed that the loss function ` takes values in [0, B]. Taking a union

bound over the entire hypothesis class and rearranging gives us

P

sup
h∈H

{
R(h)− R̂(h)

}
> B

√
logm+ log 1

δ

n

 ≤ δ
A few observations are in order here:

1. In the limit n → ∞, the hypothesis class H does indeed demonstrate uniform con-

vergence. The result gives effective finite sample convergence bounds for the same.

2. The excess risk term depends upon the size of the hypothesis class (notice the logm

term). This gives us some indication that the more voluminous the hypothesis

class, the greater the risk of learning a bad hypothesis. There exist other notions of
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capacity that are able to handle infinite hypothesis classes as well. Some of these

will be introduced in Chapter 2.

1.5.3 Generalization Guarantees for Regularized Risk Minimization

We now address the problem of generalization guarantees for algorithms implementing the

RRM principle. Recall that the RRM principle chooses the hypothesis as

ĥ = arg min
h∈H

R̂(h) + λr(h).

Previously, using uniform convergence, we were able to bound R(ĥ) in terms of R̂(ĥ) and

the capacity of the class H. Since here the notion of a capacity is function dependent

and not class dependent, we expect bounds on R(ĥ) in terms of R̂(R̂) and r(ĥ). Since

the hypothesis ĥ and its complexity r(ĥ) are not known a priori, this poses a problem.

A precise answer to this problem requires a rather delicate argument. Such arguments

were first given for the SVM algorithm in (Shawe-Taylor et al., 1998) by constructing data

dependent class hierarchies and simulating structural risk minimization upon them. This

method and its properties are beyond the scope of this thesis.

However, it turns out that one can still give weaker guarantees using a simple argument.

The trick here is to obtain an a priori bound on r(ĥ) by obtaining an effective capacity

bound on the class H. To do this, consider a fixed hypothesis h0 ∈ H. Due to the

minimization step carried out by the RRM principle, we have

R̂(ĥ) + λr(ĥ) ≤ R̂(h0) + λr(h0).

Since our loss function is non-negative valued, we have R̂(ĥ) ≥ 0 which gives us

r(ĥ) ≤ r(h0) +
R̂(h0)

λ
.

Thus, one can restrict oneself to the hypothesis class

Hλ :=

{
h ∈ H : r(h) ≤ r(h0) +

R̂(h0)

λ

}

and prove generalization guarantees by showing that the class Hλ demonstrates uniform

convergence.

1.6 Concluding Remarks

At first glance, uniform convergence may seem like an overkill and milder notions of

convergence might seem possible. However, it is known (see Vapnik, 2000, for example)

that for simple learning problems such as classification and regression, uniform convergence

is both a necessary as well as sufficient condition to be able to learn from a hypothesis
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class H. In such cases, empirical risk minimization is the most natural learning principle

as well.

It should also be noted that for more general learning problems such as stochastic

convex optimization in Hilbert spaces, empirical risk minimization actually fails (Shalev-

Shwartz et al., 2010a) since these learning problems have associated hypothesis classes that

do not exhibit uniform convergence. However one can still learn from these hypothesis

classes using alternate learning paradigms. The work of Shalev-Shwartz et al. (2010a) pro-

vides one such mechanism called Stable Asymptotic Empirical Risk Minimization (stable

AERM) which is shown to characterize learnability in the “General Setting of Learning”

(introduced in (Vapnik, 2000)) considered by them. However, for our purposes, it would

be sufficient to restrict the discussion to hypothesis spaces that do exhibit uniform con-

vergence.

At this point we conclude this introductory chapter with a short glance at the organi-

zation of the thesis.

1.7 Organization of the Thesis

This thesis is organized into seven chapters (including the current one) and three ap-

pendices. In this chapter we gave a brief introduction to some learning formalisms. In

Chapter 2, we shall look at kernel-based learning techniques that utilize the regularized

risk minimization principle. We shall also look at techniques to prove excess risk bounds

for kernel learning algorithms by proving uniform convergence bounds for kernel hypoth-

esis classes. This chapter will also thrown open some questions that will be answered

subsequently as a part of this thesis.

Chapter 3 will introduce a method to accelerate the training and test times of kernel

methods. We shall focus on dot product kernels in our work, a family that includes a large

number of widely used kernels such as the polynomial kernels and the Gaussian kernel.

Our method relies on a technique to achieve uniform approximation of the kernel values

over a compact domain via a finite dimensional feature map.

In Chapters 4 and 5 we shall address the problem of learning with indefinite kernels.

We shall present a learning framework that admits the use of indefinite kernels and offers

fast training and testing routines apart from having learning theoretic generalization guar-

antees. Chapter 4 shall address the problem of classification whereas Chapter 5 will extend

the discussion to other supervised learning problems such as regression and ranking.

In Chapter 6, we shall look at the problem of kernel learning, i.e. the problem of

choosing an appropriate kernel for a given task. We shall, however, address a much more

general problem of learning with pairwise loss functions that includes problems such as

multiple kernel learning, metric learning and bipartite ranking. We shall present an online

learning framework for this task, within which we shall describe space-bounded learning

algorithms that offer regret and generalization bounds.
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Finally, in Chapter 7, we shall conclude the thesis with some directions for future

research and open problems.

Throughout this document, theorems and lemmata that were not originally proven as

a part of this work cite, as a part of their statement, the work that originally presented

the proof.



Chapter 2

Introduction to Kernel Learning
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Abstract This chapter gives an introduction to kernel-based learning algorithms. The

kernel learning method is explained with the help of popular kernel algorithms such as

Support Vector Machines and Support Vector Regression. Generalization bounds for kernel

learning algorithms are also discussed. Certain issues that shall be addressed as a part of

this thesis are motivated in preparation for the forthcoming chapters.

2.1 Introduction

In the rest of this chapter we shall instantiate the empirical risk minimization principle

within the kernel learning framework. We shall also discuss generalization bounds for

kernel learning algorithms such as the Support Vector Machine by proving uniform con-

vergence bounds for the associated hypothesis classes. We shall also briefly discuss kernel

algorithms for a few unsupervised learning problems. In order to present the essentials of

kernel learning better, we shall restrict ourselves to supervised learning tasks for most of

this chapter. We shall however, toward the end of the chapter, briefly look at how kernel

methods are applied to solve unsupervised learning tasks such as clustering and compo-

nent analysis. We recall that the supervised framework involved the student getting a
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training set T = {(xi, yi)}ni=1 from the teacher. The student was then supposed to use the

training data to learn a hypothesis h from some hypothesis class H.

2.2 Learning with Kernels

A kernel is a (real valued) bivariate function defined upon our domain of interest

K : X × X → R

Typically this kernel would be taken to encode some notion of similarity or affinity among

objects in the domain. Having access to such a notion of affinity, the most obvious learning

“algorithm” would be a nearest neighbor approach (e.g. see Duda et al. (2000) for example)

where a test point is assigned the label of the training point closest to it. However, due to

algorithmic and learning theoretic considerations, common kernel based methods choose

a more “populist” approach. For instance, if the task at hand is one of classification (i.e.

yi = ±1), then the student tries to learn a hypothesis of the following form:

h(x) =

1 if
∑

yi=1 αiK(x,xi) ≥
∑

yi=−1 αiK(x,xi)

−1 if
∑

yi=1 αiK(x,xi) <
∑

yi=−1 αiK(x,xi)

We can interpret the student as doing the following: he learns a set of weights αi ≥ 0,

one for each training point. At the time of testing, he simply takes the test object x

and calculates how similar is it to each of the training objects by calculating the values

K(x,xi). This allows him to take a vote among the training points as to which class is

similar to the test point the most, with each training point getting αi votes. The class

that wins gets to assign its own label to the test object. The above expression can also be

written succinctly as follows

h(x) = sign

(∑
i

αiyiK(x,xi)

)

A similar form of hypothesis is used in case of real valued regression

h(x) =
∑
i

αiyiK(x,xi)

where yi ∈ R and we are taking a weighted average of the training labels with the kernel

(similarity) values acting as weights. In both the examples above, the weights αi can be

interpreted as denoting the importance of the training point in the voting process. Thus

points far from the decision boundary, that are not expected to be very discriminative,

often end up getting values of αi close to zero.
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2.2.1 Learning with Mercer Kernels

Although we chose to interpret the form of the hypothesis as one implementing a vote

among the training points, mostly for sake of clarity and motivation, the classical deriva-

tion of this form of the hypothesis actually comes from the learning algorithm used with

kernels. To investigate these methods, we first need to introduce the notion of Mercer

Kernels.

Mercer kernels do indeed encode some notion of similarity among the objects in the

domain, but they have several other properties. We shall briefly discuss some of them

here, choosing to direct the reader to encyclopedic texts such as (Schölkopf and Smola,

2002) for detailed discussions. A kernel is said to be a Mercer or a Positive semi-definite

kernel if it satisfies the following two properties:

1. Symmetry: for all x,y ∈ X , we have K(x,y) = K(y,x).

2. Positive semi-definiteness: for all n ∈ N, all x1, . . . ,xn ∈ X , the Gram Matrix

Gij = K(xi,xj) is positive semi-definite i.e. for all c ∈ Rn, c>Gc ≥ 0.

Due to the work of Mercer (1909), we know that a kernel K that is continuous on

a compact domain X and satisfies the above property, admits a representation of the

following form:

K(x,y) =
∞∑
i=1

λiψi(x)ψi(y) (2.1)

where λi ≥ 0 and the functions ψi : X → R are the eigenfunctions of the integral operator

corresponding to the kernel TK : L2(X )→ R defined as

(TKf)(.) =

∫
X
K(·,x)f(x)dx

The functions ψi form an orthonormal basis of L2(X ), the space of all square integrable

functions over X . A noticeable corollary of the form of the kernel presented in Equation 2.1

is that the kernel should be representable in some Hilbert Space as an inner product since

we can conceive of a map Ψ : X → H ⊆ L2(X ) such that

Ψ(x) = (ψ1(x), ψ2(x), . . .)

which would indicate that K(x,y) = 〈Ψ(x),Ψ(y)〉. Although it would take some more

work to formally prove properties of this map such as convergence to the kernel value

and boundedness, the intuition nevertheless is correct in that every Mercer kernel can

be realized as an inner product in a Hilbert Space that is referred to as the Reproducing

Kernel Hilbert Space denoted by HK via a map ΦK . We do not go into the details of

the reproducing properties of the kernel and refer the reader to standard texts such as

(Schölkopf and Smola, 2002) for the same. Although this map and the corresponding

RKHS are not unique in general, there are canonical constructions for the same.
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Given these properties of Mercer Kernels, we can now introduce the Support Vector

Machine (SVM) and Support Vector Regression (SVR) algorithms. The SVM and SVR

algorithms rely on learning linear hypotheses. Thus, if the object of interest x is repre-

sented as a feature vector Φ(x) ∈ Rd (note that here the feature space is a Euclidean space

Rd), the SVM learns a hypothesis that looks like a hyperplane in the ambient space i.e.

h(x) = sign (〈w,Φ(x)〉) ,

for some w ∈ Rd. Correspondingly, SVR tries to fit a linear function to the regression

problem by learning a hypothesis that looks like

h(x) = 〈w,Φ(x)〉

In order to learn such hypotheses, the SVM and SVR algorithm utilize the Regularized

Empirical Risk Minimization principle (see Section 1.4.3). More specifically, if the training

set provided is T = {(xi, yi)}ni=1 then the following objective is sought to be minimized:

min
f∈Rd

n∑
i=1

`(f(xi), yi) + λ ‖f‖

where f(xi) = 〈f,Φ(xi)〉1. Note that the regularizer used here is a norm. Usually the L2

norm (or its squared version) or the sparsity inducing L1 norm is used. The loss function

` depends upon the application. For classification using SVM, the hinge loss function is

used. For logistic regression, the logistic loss function is used. For regression using SVR,

the squared loss or the ε-insensitive loss function is used.

The accuracy of the learned hypothesis depends on the feature space used. In order to

achieve high accuracy, rich feature spaces are required. However, rich and high dimensional

feature spaces present a challenge to the learning algorithm by making the problem of

solving the optimization problem given above, very expensive. In order to overcome this

challenge, we change the optimization problem by looking at the dual problem instead. We

omit the derivation of the dual problem and simply present the dual of the SVM objective

with the hinge loss function

`hinge(y1, y2) = [1− y1y2]+ .

For this loss function, the dual problem looks like the following:

max
α∈Rn

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj 〈Φ(xi),Φ(xj)〉

s.t. αi ∈ [0, λ]

1 ↑ We have omitted the bias term for sake of simplicity - this will later simplify the presentation of the
dual formulation as well
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The resulting classifier can be retrieved after solving the dual as f(α) =
∑n

i=1 αiyiΦ(xi).

Note that the above problem requires access to pairwise inner products among the training

points alone and not the feature vectors. This allows us to utilize kernels in the learning

process where, in the dual problem, we use the values K(xi,xj) instead of 〈Φ(xi),Φ(xj)〉.
Since kernels realize themselves as inner products in some RKHS, the algorithm will im-

plicitly start using the RKHS as the feature space.

Since this effectively makes the algorithm oblivious to the feature space size, we can

use very rich (even infinite dimensional e.g. the Gaussian kernel) feature spaces in the

learning process. For instance, using polynomial kernels K(x,y) = (1 + 〈x,y〉)p, we can

learn polynomial functions of an arbitrarily high degree as our classifier or regression

function. In such cases, the form of the hypothesis changes to the following:

hα(x) =
n∑
i=1

αiyiK(x,xi).

Note that this is exactly the form of the classifier we presented at the beginning of this

section.

Mercer kernel learning has been studied extensively but we do not pursue it any further.

An enormous amount of effort has been put in over the years to make various problems

such as classification, regression, ranking, PCA, k-means etc amenable to kernel learning.

A parallel line of effort has concentrated on building efficient solvers for the optimization

problems that arise in kernel learning formulations. Finally, kernel learning possesses

a deep and rich theory that explain why kernel learning algorithms and the techniques

used therein offer superior performance. We shall discuss some of these topics later -

more specifically, Chapter 3 will look at accelerating the training and test times of kernel

algorithms. In the current chapter, we briefly look at how kernel algorithms can be used

for some unsupervised problems (Section 2.4). We also touch upon the issue of providing

generalization bounds for kernel learning algorithms in Section 2.3.

For now we turn away from Mercer kernels and look at the problem of learning with

non-Mercer kernels.

2.2.2 Learning with Indefinite Kernels

If kernels are to be interpreted as measuring some form of similarity or dissimilarity without

regard to formal notions such as Mercer kernels then its roots lie in the simplest and earliest

form of the nearest neighbor classification algorithms (Duda et al., 2000) that implement

the following simple classifier

h(x) =

1 if d(x, T+) ≤ d(x, T−)

−1 if d(x, T−) ≤ d(x, T+)
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where d(x, T+) = min
yi=+1

d(x,xi) is the minimum distance of the test point from a positive

point and d(x, T−) being defined analogously. Here d can be an arbitrary notion of distance

(or even similarity if the classifier is appropriately defined). This simple classifier encodes

the intuitive idea that closeness in the feature space should more often than not, indicate

a similarity in labels.

This simple notion can be extended in several ways. For instance, one can, instead

of considering all points of a class, consider only a few representative or landmark points

while deciding upon the label. Such landmarking-based techniques have been extensively

explored (Weinshall et al., 1998; Jacobs et al., 2000). The other offshoot from this basic

procedure is one in which the distance (or similarity) measure being considered is realized

implicitly by some embedding, just as the canonical map realizes the kernel as an inner

product in the RKHS.

Such embedding based techniques have also been explored widely with work done on

properly designing the embeddings so that in the embedding space, a good NN classifier

can be learned. Such embedding spaces were used to realize several known algorithms,

making them amenable to distance functions such as SVM, quadratic discriminant and

Fisher linear discriminant (Pȩkalska and Duin, 2000; Pȩkalska et al., 2001; Pȩkalska and

Duin, 2002).

The works of von Luxburg and Bousquet (2004); Gottlieb et al. (2010) developed em-

bedding based approaches that showed how nearest neighbor algorithms can be interpreted

as large margin classifiers in appropriate Banach spaces via Lipschitz embeddings, in some

sense drawing parallels to large margin classifiers with Mercer kernels (Schölkopf, 2000).

Some approaches (for example the work of Goldfarb (1984)) recognized the link between

landmarking and embedding approaches and exploited that in the learning process.

However, some of the most focused work in distance-based classification has been in the

direction of learning a distance function, most suitable to the classification problem at hand

(for example, Mahalanobis metric learning formulations (Weinberger and Saul, 2009)).

This is akin to the kernel choice problem in Mercer kernel learning. There have been

other approaches that took landmarking based approaches forward, incorporating notions

of a “good” distance function into the landmarking step in order to give generalization

bounds for the learned classifier.

There has been an equal, if not greater, interest in using similarity functions (that

are not necessarily Mercer kernels) in the learning process. There seem to be three main

approaches in this direction. In the first approach, an effort is made to make indefinite

kernels more suitable for algorithms such as the SVM. Since plugging in an indefinite

kernel results in a non-convex QP that is NP-hard to solve, these approaches (for example

see the work of Chen et al. (2009a); Luss and d’Aspremont (2007)) try to take the kernel

and alter its spectrum (essentially getting rid of all negative eigenvalues) to make them

suitable for the SVM formulation.

In the second approach, no care is taken to make the kernel matrix positive semi-

definite and it is used directly in the SVM formulation. Such approaches (Haasdonk, 2005;
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Ong et al., 2004) face the challenge of solving a non-convex problem at training time. The

third approach in some sense, marries the landmarking and embedding approaches and

creates an embedding out of landmark points. The work of Balcan and Blum (2006) intro-

duced the notion of a “good” similarity function and used such landmarking techniques

to give classifiers with provable generalization guarantees.

We do not review past work on indefinite kernels any further since Section 2.5 as well

as Chapters 4 and 5 will discuss related work in this area. For now we try to briefly look

at the question of how can one give generalization bounds for predictors learned using

kernels. This shall form the basis of many theoretical guarantees that we give in later

chapters.

2.3 Generalization Bounds for Kernel Predictors

The question we try to address in this section is when we can expect kernel hypothesis

classes to demonstrate uniform convergence. Recall that a hypothesis class is said to

demonstrate uniform convergence if

P
[

lim
n→∞

sup
h∈H

{
R̂(h)−R(h)

}
= 0

]
= 1

Answering the above question will lead us to formal notions of Capacity of hypothesis

classes - only classes that are not over-powerful in their explaining power will demonstrate

uniform convergence (although in the light of the result in Shalev-Shwartz et al. (2010a)

and Vapnik (2000), this corresponds to learnability only for simple learning problems such

as regression and classification).

For sake of simplicity, we shall restrict ourselves to regression problems in this section.

We shall also not consider learning formulations that utilize non-Mercer kernels since those

will be addressed in detail in Chapters 4 and 5.

We shall address the problem of uniform convergence by trying to prove finite sample

bounds instead. More specifically we will show that for any ε > 0,

P
[

sup
h∈H

{
R̂(h)−R(h)

}
> ε

]
≤ δn

such that δn ↓ 0.

2.3.1 Covering Numbers

The first technique that we present is a simple technique that works best if the feature

spaces are low dimensional and is called the method of Covering Numbers. Suppose we

are trying to solve a regression problem using SVR. Also suppose for now that there exists

a constant Λ > 0 such that our learning algorithm shall only output hypothesis with

‖f‖ ≤ Λ (note that such a bound can easily be obtained using the argument presented in
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Section 1.5.3). Thus, our hypothesis class is effectively

F =
{
f ∈ Rd, ‖f‖ ≤ Λ

}
To use the covering number argument, we need to be able to tell how far from each other

are two functions in F . This requires a metric to be established over this set. For sake

of simplicity, we present the covering number argument using the L∞ norm defined as

follows:

‖f‖∞ := sup
x∈X

|f(x)|

Thus, the distance between two functions f1, f2 ∈ F is given by

‖f1 − f2‖ = sup
x∈X

|f1(x)− f2(x)|

which is simply the maximum discrepancy between the value of the two functions on any

domain point x ∈ X . This allows us to do the following: for any fixed function f ∈ F we

know by a simple application of the Höffding bound (see Theorem 1.3) that the empirical

and population risks are very close to each other i.e. P
[
R(f)− R̂(f) > ε/2

]
≤ δ for

training set size n = Ω
(

1
ε2

log 1
δ

)
. What we do now is select a (finite) set of functions

C ⊂ F such that every function f ∈ F is at most ε/4 distance away from some function

in C. Suppose C has N functions in total.

By a simple union bound we can show that with probability at least 1− δ, for all the

functions f ∈ C, we have R(f)−R̂(f) ≤ ε/2. This requires the number of training points

to be increased to n = Ω
(

1
ε2

log N
δ

)
. However, this allows us to prove uniform convergence

guarantees in the following way. For any f ∈ F , let f̃ ∈ C be such that
∥∥∥f − f̃∥∥∥

∞
≤ ε/4.

Then we have

R(f)− R̂(f) = R(f)−R(f̃) +R(f̃)− R̂(f̃) + R̂(f̃)− R̂(f)

≤ ε/4 + ε/2 + ε/4 ≤ ε

where the bounds on the first and the third term hold due to the fact that
∥∥∥f − f̃∥∥∥

∞
≤ ε/4

and the bound on the second term holds due to the union bound over functions in C. Thus

we have proved that with high probability

P
[

sup
h∈H

{
R̂(h)−R(h)

}
> ε

]
≤ δ

which concludes the uniform convergence proof. The set C is referred to as an ε-cover or

an ε-net over the set F with respect to the L∞ norm. The minimum number of functions

N required to establish such a net or a cover is known as the Covering number of the set.

The Covering number is a widely used of notion of capacity of a set of hypothesis functions

and there are several results (see for example (Cucker and Smale, 2001)) that bound this

number for a variety of function classes. For instance, the covering number for the class
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of norm bounded linear functions in d dimensions at scale ε is of the order of O
(

1
ε

)d
.

This notion of capacity shall be used in Chapters 3 and 4 to give generalization bounds

for classifiers learned using indefinite kernels and other algorithms.

2.3.2 Rademacher Complexity

The reader would have noticed that the covering number has a strong (actually exponen-

tial) dependence on the input dimensionality. This has an adverse effect on generalization

bounds proved using this notion of capacity as they tend to have a linear dependence on

the ambient dimensionality of the feature space. This seems to prevent us from using rich

feature spaces of the kind kernel based learning algorithms offer. To overcome this we use

more refined notions of capacity. We introduce one such notion called the Rademacher

complexity. As before, we present the outline of a generalization bound proof which will

lead us to the definition of Rademacher complexity.

Recall that our aim is to bound the quantity R(ĥ) − R̂(ĥ) where ĥ is the empirical

risk minimizer. For sake of clarity we will discard the notation R(·) and R̂(·) in favor of

the more explicit E J`(·)K to denote the population risk and E J`(·, T )K to denote empirical

risk with respect to the training sample T = {(xi, yi)}ni=1. Note that, for a sample T̃ =

{(x̃i, ỹi)}ni=1 that is independent of T , we have

E
r
`(ĥ)

z
= Ẽ
T

r
E

r
`(ĥ, T̃ )

zz

where the outer expectation is over the choice of the ghost sample T̃ . This allows us to

present the following chain of (in)equalities

R(ĥ)− R̂(ĥ) = E
r
`(ĥ)

z
− E

r
`(ĥ, T )

z

= Ẽ
T

r
E

r
`(ĥ, T̃ )

zz
− E

r
`(ĥ, T )

z

≤ sup
h∈H

{
Ẽ
T

r
E

r
`(h, T̃ )

zz
− E J`(h, T )K

}
.

Now it is easy to see that the function g(T ) = sup
h∈H

{
Ẽ
T

r
E

r
`(h, T̃ )

zz
− E J`(h, T )K

}
is

perturbed by at most O
(

1
n

)
due to the perturbation of any training sample (xi, yi) ∈ T .

Thus by an application of McDiarmid’s inequality (see Theorem 1.2), we have, using the

above chain of inequalities, with probability at least 1− δ,

R(ĥ)− R̂(ĥ) ≤ E
T

s
sup
h∈H

{
Ẽ
T

r
E

r
`(h, T̃ )

zz
− E J`(h, T )K

}{
+O

√ log 1
δ

n

 .

We are thus left with the task of estimating the first term of the right hand side of the
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above inequality which we do below:

E
T

s
sup
h∈H

{
Ẽ
T

r
E

r
`(h, T̃ )

zz
− E J`(h, T )K

}{
= E

T

s
sup
h∈H

{
Ẽ
T

r
E

r
`(h, T̃ )

z
− E J`(h, T )K

z}{

≤ E
T ,T̃

s
sup
h∈H

{
E

r
`(h, T̃ )

z
− E J`(h, T )K

}{

= E
T ,T̃

t

sup
h∈H

{
1

n

n∑
i=1

(`(h(x̃i), ỹi)− `(h(xi), yi))

}|

= E
T ,T̃ ,{εi}

t

sup
h∈H

{
1

n

n∑
i=1

εi (`(h(x̃i), ỹi)− `(h(xi), yi))

}|

≤ 2 E
T ,{εi}

t

sup
h∈H

{
1

n

n∑
i=1

εi`(h(xi), yi)

}|

.

The quantityRn(H) = E
T ,{εi}

s
sup
h∈H

{
1
n

∑n
i=1 εi`(h(xi), yi)

}{
is referred to as the Rademacher

Complexity of the hypothesis setH. The preceding calculations show that with probability

at least 1− δ, we have

R(ĥ)− R̂(ĥ) ≤ 2Rn(H) +O

√ log 1
δ

n

 .

For several function classes the Rademacher Averages behave asRn(H) = O
(√

1
n

)
. There

are several ways of estimating the Rademacher complexity (one of them via calculation of

Covering Numbers). However, refined calculations are possible (for instance see the work

of Kakade et al. (2008)) that, for certain function classes, yield Rademacher Averages that

have no dependence on feature space dimensionality and very mild dependence on feature

dimensionality for some other function classes.

There are several other notions of capacity that are widely used to analyze the gener-

alization abilities of learning algorithms for various learning problems. Prominent among

these are the VC dimension that characterizes learnability for classification problems, Fat

shattering dimension that generalizes to real valued learning problems, Dudley’s integral

that is widely used to study the convergence of Gaussian processes, Gaussian complex-

ity that uses Gaussian random variables instead of Rademacher random variables and

Uniform entropy number.

These notions of capacity are interlinked and frequently one can bound one in terms of

the other. For instance, for a binary function class (for classification) with VC dimension

d, it can be shown that the Rademacher averages behave as Rn(H) = O
(√

d
n

)
(Bartlett

and Mendelson, 2002). However, these details are beyond the scope of this discussion. We

will revisit some of these techniques in the subsequent chapters to prove generalization

bounds for the algorithms proposed in this thesis. For now we move on to a brief discussion

on some kernel based algorithms for unsupervised learning problems.
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2.4 Unsupervised Learning with Kernels

Although we have only discussed supervised learning problems such as classification and

regression in this chapter so far, several unsupervised learning algorithms such as Compo-

nent analysis and clustering also admit kernel based algorithms. Here we briefly discuss

some of them, choosing to refer the reader to texts such as (Schölkopf and Smola, 2002)

for more details and other algorithms.

2.4.1 Kernel Principal Component Analysis

The classical Principal Component Analysis (PCA) algorithm is very widely used as a

dimensionality reduction and noise removal tool with applications to image processing and

other signal processing tasks. However, the linear PCA is only available to identify linear

components in data. In order to enable the algorithm to identify non linear components,

the kernel PCA algorithm was proposed by Schölkopf et al. (1998). Traditional PCA

operates on mean centered data by diagonalizing the covariance matrix C = 1
n

∑n
i=1 xix

>
i

via eigenvalue decomposition or singular value decomposition by finding (λ,v) pairs such

that

λv = Cv.

Note that the eigenvectors (corresponding to non-zero eigenvalues) of C necessarily lie in

the span of the vectors xi. Hence the previous condition is equivalent to

λ 〈xi,v〉 = 〈Cv,xi〉 , for all i.

This point is crucial in extending the PCA algorithm to kernel spaces. Consider a kernel

with an associated RKHS HK and feature map ΦK : X → HK . In this case, the covariance

matrix looks like

C =
1

n

n∑
i=1

ΦK(xi)ΦK(xi)
>.

By the above argument, finding the eigenvectors of C is equivalent to finding solutions of

λ 〈ΦK(xi),v〉 = 〈Cv,ΦK(xi)〉 , for all i.

Since v lies in the span of ΦK(xi), we can write v =
∑
αjΦK(xj). This reduces the above

problem to

λ
〈

ΦK(xi),
∑

αjΦK(xj)
〉

=

〈
1

n

n∑
k=1

ΦK(xk)ΦK(xk)
>
∑

αjΦK(xj),ΦK(xi)

〉
, for all i.

which simplifies to

NλGα = G2α
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where G is the Gram matrix of the training points and α = (α1, . . . , αn)> ∈ Rn. G

being symmetric, has eigenvectors that span the entire Rn. Consequently, we can get the

eigenvectors by solving

Nλα = Gα

which simply requires diagonalizing G. There are certain details about normalizing the

eigenvectors and mean centering the data that we skip here. However, once we have

obtained the principal components, it is easy to compute the projection of any new point

onto them using the following steps. Suppose we are considering a principal direction

v =
∑
αjΦKi(xj) and are interested in finding the projection of a new point x onto this

principal component. This can be done simply by calculating

〈ΦK(x),v〉 =
∑

αj 〈ΦK(x),ΦK(xj)〉 =
∑

αjK(x,xj).

2.4.2 Kernel Clustering

The widely used k-means clustering algorithm can also be modified easily to be made to

work in kernel feature spaces. The algorithm proceeds by alternating between 2 steps:

1. E Step: Cluster centers are fixed and each data point is assigned to its closest cluster

center

2. M Step: Cluster assignments are fixed and cluster centers are recalculated to mini-

mize the potential given by the within-cluster-sum-of-squares

To do this, we note that cluster centers are always recalculated as the mean of the

data points that belong to the cluster. This can be generalized to note that cluster centers

are always found in the span of the data points. Thus we can equivalently represent each

cluster center as c =
∑n

i=1 αixi which becomes c =
∑n

i=1 αiΦK(xi) in case we wish to

work in a kernel feature space. Thus, for each cluster center c, we need only maintain the

associated α vector.

Using this, computing the distance between a data point xj and a cluster center c =∑n
i=1 αiΦK(xi) is easily done as follows:

‖Φ(xj)− c‖2 = 〈Φ(xj)− c,Φ(xj)− c〉

= K(xjxj)− 2 〈Φ(xj), c〉+ 〈c, c〉

= K(xjxj)− 2
n∑
i=1

αiK(xj ,xi) +
n∑

i,j=1

αiαjK(xi,xj)

Once we have found out (say s) data points xi1 , . . . ,xis , we can compute the new clus-

ter center as c = 1
s

∑n
j=1 Φ(xij ) by simply updating the corresponding α vector to

1
s (1xi in cluster c)

n
i=1. To initiate the algorithm, in the beginning, we can set α to ran-

dom values.
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Kernel algorithms have been developed for a hot of other problems such as Kernel

canonical correlation analysis and Kernel Fisher discriminant analysis which we do not

discuss here. We conclude this chapter with a discussion on some of the open problems

that shall be looked at in later chapters as a part of this thesis.

2.5 Open Questions

Having reviewed existing work in kernel learning in some detail, we now present an

overview of the broad questions this thesis shall seek to address. This section will also

point to portions in subsequent chapters where further details may be found. To simplify

the presentation, we observe three broad areas wherein we seek progress:

2.5.1 Accelerated Kernel Learning

A quick look at the form of kernel classifiers

h(x) =

n∑
i=1

αiK(x,xi)

shows that the complexity of evaluating a kernel classifier depends on the number of

“support vectors” i.e. the number of points that have non zero values of αi. Such a form

is common for other kernel learning algorithms such as kernel PCA, kernel k-means etc

(see Section 2.4 and Chapter 3). This entails a phenomenon which we dub the Curse

of Support wherein a complex classifier, ideally designed to offer better accuracy, is very

slow to evaluate at test time. Moreover, for similar reasons, kernel classifiers and other

algorithms are also slow to train since they always work with implicit representations of

the hypotheses, the explicit forms being elements in a high (or infinite dimensional RKHS)

and infeasible to represent.

This brings about a need to find alternate ways of training and predicting with kernel

functions which reduces training and prediction times. Several approaches have been

proposed in this direction (see Section 3.2 for details of related work in this area) which

try to reduce the training or test time, we aim for methods that are provably accurate

and also demonstrate appreciable speedups in practice. We present one such method for

the family of dot product kernels in Chapter 3. Our work shall involve novel use of a

classical result in harmonic analysis that allows us to develop fast and provably accurate

approximations to the kernel values in a way that allows training and prediction routines

to be accelerated.

2.5.2 Indefinite Kernel Learning

We have seen in Section 2.2.2 a plethora of approaches that have been applied to allow

learning methods like SVM to use indefinite kernels. The introductory sections of Chap-

ters 4 and 5 give more details about related work in this area. However, most existing
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work in this area suffers from either of the two problem

1. Lack of Theoretical Analysis: most approaches to indefinite kernel learning discussed

above suffer from the lack of a strong theoretical analysis in the form of generalization

guarantees. This comes, partly due to the weak models that underlie these models.

2. Slow Training and Prediction routines: several techniques discussed previously in-

volve expensive operations such as nearest neighbor search in high dimensional

spaces, expensive eigenvalue decompositions and other spectral operations or solv-

ing non-convex formulations. This greatly inhibits the ability of these models to be

scaled to larger and more complex learning problems.

Some recent work in this area (Balcan and Blum, 2006; Wang et al., 2007) has addressed

these problems to a certain extent by proposing models that have properties of soundness

and that, in a principled way, extend Mercer kernel learning. In our work, that is pre-

sented in two parts in Chapters 4 and 5, we propose an extended model of learning with

indefinite kernels that embodies these desirable properties as well as admits algorithms

that are provably accurate and fast in practice. In particular, for the problem of real

valued regression, we are able to extend these models and provide complimentary learning

algorithms that, both provably as well as empirically, demonstrate a support vector like

effect. Our learning models, in general, are applicable to problems such as binary and

multi-class classification, real-valued regression, ordinal regression and ranking.

2.5.3 The Kernel Choice Problem

In all kernel learning formulations, whether they utilize Mercer kernels or indefinite kernels,

the choice of the kernel is a crucial one, frequently influencing the accuracy of the learned

predictor. Consequently, a lot of effort has been devoted to approaches that try to learn

the kernel itself. These range from Multiple kernel learning formulations for Mercer kernels

(Cortes et al., 2010a,b; Varma and Babu, 2009) all the way to Mahalanobis metric learning

formulations (Weinberger and Saul, 2009) for nearest neighbor classifiers.

In several of these formulations, for instance (Weinberger and Saul, 2009; Cortes et al.,

2010b; Kumar et al., 2012; Bellet et al., 2012), the loss functions that are used are pairwise

loss functions in that they evaluate the performance of a hypothesis on two instead of one

domain point. As Chapter 6 shows, this presents specific challenges for, both learning

algorithms as well as learning theoretic analyses.

In our work, we seek to address both of these challenges by proposing a model for online

learning with pairwise loss functions. Our work, presented in Chapter 6, presents an online

learning model, space efficient learning algorithms, and accompanying learning theoretic

guarantees. Our learning theoretic analyses improve upon existing work on similar models

and address a wider class of algorithms. We are able to instantiate our learning model

into diverse learning problems such as Mercer kernel learning, indefinite kernel learning,

Mahalanobis metric learning and bipartite ranking.
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Abstract Approximating non-linear kernels using feature maps has gained a lot of

interest in recent years due to applications in reducing training and testing times of SVM

classifiers and other kernel based learning algorithms. We extend this line of work and

present low distortion embeddings for dot product kernels into linear Euclidean spaces.

We base our results on a classical result in harmonic analysis characterizing all dot prod-

uct kernels and use it to define randomized feature maps into explicit low dimensional

Euclidean spaces in which the native dot product provides an approximation to the dot

product kernel with high confidence.
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3.1 Introduction

Kernel methods have gained much importance in machine learning in recent years due to

the ease with which they allow algorithms designed to work in linear feature spaces to

be applied to implicit non linear feature spaces. Typically these non linear feature spaces

are high (often infinite) dimensional and in order to avoid incurring the cost of explicitly

working in these spaces, one invokes the well known kernel trick which exploits the fact

that the algorithms in question interact with data solely through pairwise inner products.

For example, instead of directly learning a hyperplane classifier in Rd, one considers a non

linear map Φ : Rd → H such that for all x,y ∈ Rd, 〈Φ(x),Φ(y)〉H = K(x,y) for some

easily computable kernel K. One then tries to learn a classifier H : x 7→ w>Φ(x) for some

w ∈ H.

However, one is faced with the problem of representation in these non linear feature

spaces and is at the risk of incurring the curse of dimensionality. The solution to this

problem comes in the form of Representer Theorems (see (Argyriou et al., 2009) for recent

results) which act as an implicit dimensionality reduction step by giving us an assurance

that the object(s) of interest, for example the normal vector to the hyperplane w in the

case of classification and non-linear regression, the cluster centers in the case of kernel

k-means, or the principal components in the case of kernel PCA, would necessarily lie in

the span of the non-linear feature maps of the training vectors in the respective examples

(see (Schölkopf and Smola, 2002)). For instance, in case of the SVM algorithm, the result

ensures that the maximum margin hyperplane in H would necessarily be of the form

w =
∑

αiΦ(xi)

where xi are the training points. In case of SVM regression and classification, such a

result is arrived at by application of the Karush-Kuhn-Tucker conditions whereas in the

other two applications, the respective formulations themselves yield such a result.

Whereas this appears to solve the problem of the curse of dimensionality, it actually

paves the way for an entirely new kind of curse – one that we call the Curse of Support.

In order to evaluate the output of the algorithms on test data, say in the case of SVM

classification, one has to compute the kernel measures of the test point with all the training

points that participate in defining the normal vector w. This cost can be prohibitive if

the support is large. Unfortunately this is almost surely the case with large datasets

as demonstrated by several results (Steinwart, 2003; Steinwart and Christmann, 2008a;

Bengio et al., 2005) which predict an unbounded growth in the support sizes with growing

training set sizes. A similar fate awaits all other kernel algorithms that use the support

vector effect in order to avoid explicit representations.

This presents a dilemma where a large training set is beneficial in obtaining superior

generalization properties but is simultaneously responsible in slowing down the algorithms’

predictive routines.
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3.2 Related Work

The problem of slower prediction times has been most widely studied for the SVM algo-

rithm. Of late some efforts have been made at addressing other kernel based algorithms

(for example, see (Chitta et al., 2012)). However the most widely studied problem from the

point of view of fast prediction has undoubtedly been the SVM classification algorithm.

Research on faster SVM classifiers has progressed in mainly three directions, that can

be (roughly) classified as pre-training, in-training, and post-training based techniques.

1. Post-processing based algorithms: these techniques first learn the SVM classifier

and then try to compress the classifier by reducing the number of support vectors.

For example, very early work by Burges and Bernhard Scholkopf (1996) suggested

searching for a reduced set of support vectors such that the resultant hypothesis

closely approximates the original hypothesis. The work of Cossalter et al. (2011) ex-

tends this idea by clustering the support vectors and noting that for an appreciable

fraction of the test points, the cluster centers are themselves sufficient for classifi-

cation. For other points, the entire set of support vectors is used for classification.

These methods have been shown to offer good performance in experiments although

they seldom offer strong theoretical guarantees.

2. Approximate training algorithms: these techniques start addressing the problem at

the training phase itself by training on objectives that are (slightly) different from

the original SVM objective. For instance the work of Joachims and Yu (2009) tries

to learn the support vectors themselves (which now need not be training points)

under a budget. This turns out to be a non-convex problem that is approximately

solved using cutting plane methods. In another similar work Tsang et al. (2005)

proposed solving the SVM objective as a minimum enclosing ball problem resulting

in the Core Vector Machine formulation. There has also been work involving the use

of sparsity promoting regularizers in the training process Bi et al. (2003). Yet again,

these methods have been shown to offer attractive speedups in practice. However,

they lack theoretical analysis.

3. Kernel approximations: these techniques try to train directly with approximate

kernels that are expected to reduce prediction time. This can include approximations

to kernel matrix (Achlioptas et al., 2001; Williams and Seeger, 2000), techniques that

try to learn an efficiently computable kernel (Jose et al., 2013) or approximations to

the kernel function itself by way of random features. It is this third line of work that

we pursue in this chapter as it offers both a nice theoretical understanding behind

the approach and consequently, learning theoretic guarantees, as well as demonstrate

impressive speedups in practice. We will explain this approach in more detail in the

following section.
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3.2.1 Random Features for Accelerated Kernel Learning

As we saw in the previous discussion, there has been a lot of research on SVM formulations

with accelerated prediction routines, the techniques have neither addressed other kernel

algorithms nor approached the question behind the curse in a systematic way.

In a very elegant result, Rahimi and Recht (2007) demonstrated how this curse can

be beaten by way of low-distortion embeddings. Their result, building upon a classical

result in harmonic analysis called Bochner’s Theorem (refer to (Rudin, 1962)), shows

how to, in some sense, embed the non-linear feature space (i.e. H, the Reproducing

Kernel Hilbert Space associated with the kernel K) into a low dimensional Euclidean

space while incurring an arbitrarily small additive distortion in the inner product values.

More formally they constructed randomized feature maps Z : Rd → RD such that for

x,y ∈ Rd, 〈Z(x), Z(y)〉 ≈ K(x,y) with very high probability.

This allows one to overcome the curse of support in a systematic way for all the kernel

learning tasks mentioned before since one may now work in the explicit low dimensional

space RD with explicit representations whose complexity depends only on the dimension-

ality of the space. There are several results (see for example the work of Cortes et al.

(2010c)) that guarantee that using kernel values (given by these random feature con-

struction values) that are perturbations to the original kernel value, introduce bounded

perturbations in the solutions of algorithms such as SVM and kernel ridge regression. As

a result one can bound the loss in accuracy one faces by using these methods. This is in

stark contrast with other methods used to obtain fast prediction algorithms in that they

are seldom able to offer such guarantees.

The work of Rahimi and Recht (2007) is also reminiscent of the work of Indyk and Mot-

wani (1998) who perform low distortion embeddings (by invoking the Johnson-Lindenstrauss

Lemma) in order to overcome the curse of dimensionality for the nearest neighbor prob-

lem. Subsequently there has been an increased interest in the kernel learning community

toward results that allow one to use linear kernels over some transformed feature space

without having to sacrifice the benefits provided by non-linear ones all the while reducing

the prediction time. Rahimi and Recht considered only translation invariant kernels i.e.

kernels of the form K(x,y) = f(x − y) for some positive definite function f : Rd → R.

Subsequently Li et al. (2010) generalized this to a larger class of group invariant kernels

while still invoking Bochner’s theorem.

Maji and Berg (2009) presented a similar result for the intersection kernel (also known

as the min kernel) K(x,y) =
d∑
i=1

min {xi,yi} which was generalized by Vedaldi and Zis-

serman (2010) to the class of additive homogeneous kernels K(x,y) =
d∑
i=1

ki(xi,yi) where

ki(x, y) = (xy)
γ
2 fi(log x− log y) for some γ ∈ R and positive definite functions fi : R→ R.

Vempati et al. (2010) extended this idea to provide feature maps for RBF kernels of the

form K(x,y) = exp
(
− 1

2σ2χ
2(x,y)

)
where χ2 is the Chi-squared distance measure.

There have been approaches that try to perform embeddings in a task dependent
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manner (see for example (Perronnin et al., 2010)). The idea of directly considering low-

rank approximations to the Gram matrix has also been explored (see for example (Bach

and Jordan, 2005)). However, the approaches considered by Rahimi and Recht and Vedaldi

and Zisserman are the ones that most directly relate to this work.

3.2.2 Our Contribution

In this work we present feature maps approximating positive definite dot product kernels

i.e kernels of the form K(x,y) = f(〈x,y〉) for some real valued function f : R→ R. More

formally we present feature maps Z : Rd → RD (where we refer to Rd as the input space

and RD as the embedding space) such that for all x,y ∈ Rd, 〈Z(x), Z(y)〉 ≈ K(x,y)

with very high probability. We base our result on a characterization of real valued functions

f that yield such positive definite kernels. We also demonstrate how our methods can be

extended to compositional kernels of the form Kco(x,y) = Kdp (K(x,y)) where Kdp is

some dot product kernel and K is an arbitrary positive definite kernel.

The kernels covered by our approach include homogeneous polynomial kernels which

are not covered by Vedaldi and Zisserman’s treatment of homogeneous kernels as these

are inseparable kernels which their approach cannot handle.

In the following, vectors shall be denoted in boldface. xi denotes the ith Cartesian

coordinate of a vector x. Bp (0, r) denotes the set
{

x ∈ H : ‖x‖p ≤ r
}

for some inner

product space H (or some finite dimensional Euclidean space Rd). In particular, B1 (0, 1)

and B2 (0, 1) denote set of points with less than unit 1-norm and 2-norm respectively. ‖·‖
without any subscripts denotes the 2-norm.

3.3 A Characterization of Positive Definite Dot Product

Kernels

The result underlying our feature map constructions is a characterization of real valued

functions on the real line that can be used to construct positive definite dot product

kernels. This is a classical result in harmonic analysis due to Schoenberg (1942), that

characterizes positive definite functions on the unit sphere in a Hilbert space. Our first

observation, formalized below, is simply the fact that the restriction to the unit sphere is

not crucial.

Theorem 3.1. A function f : R → R defines a positive definite kernel K : B2 (0, 1) ×
B2 (0, 1)→ R as K : (x,y) 7→ f(〈x,y〉) iff f is an analytic function admitting a Maclaurin

expansion with only non-negative coefficients i.e. f(x) =
∞∑
n=0

anx
n, an ≥ 0, n = 0, 1, 2, . . ..

Here B2 (0, 1) ⊂ H for some Hilbert space H.

Actually Schoenberg shows that a function f need only have a non-negative expansion

in terms of Gegenbauer polynomials in order to yield a positive definite kernel over finite

dimensional Euclidean spaces (a condition weaker than that of Theorem 3.1). However,
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functions f that do not have non-negative Maclaurin expansions are not very useful be-

cause they yield kernels that become indefinite after the dimensionality crosses a certain

threshold. This is because a dot product kernel that is positive definite over all finite di-

mensional Euclidean spaces is also positive definite over Hilbert spaces (see Section 3.3.1

for a simple proof of the same).

Most dot product kernels used in practice (see (Schölkopf and Smola, 2002)) satisfy

the stronger condition of the Maclaurin expansion having non-negative coefficients and

our results readily apply to these.

We note that, as a corollary of Schoenberg’s result, all dot product kernels are neces-

sarily unbounded over non-compact domains. This is in stark contrast with translation

invariant kernels that are always bounded (see (Rudin, 1962) for a proof). Hence from

now on we shall assume that our data is confined to some compact domain Ω ⊂ Rd. In

order to study the behavior of our feature maps as this domain grows in size, we shall

assume that Ω ⊆ B1 (0, R) for some R > 0.

We shall also assume that the function f is defined and differentiable on a closed

interval [−I, I]. The value of I shall be dictated by the value of R chosen above. If f is

defined only on an open interval (−γ, γ) around zero (as is the case when the Maclaurin

series has a finite radius of convergence) then we can choose a scalar c > I
γ , define g = f

(
x
c

)
and use g to define a new kernel Kg. This has the implicit effect of scaling the data vectors

in input space Rd down by a factor of c.

3.3.1 Positive definite dot product kernels over finite dimensional spaces

As noted earlier, the original result of Schoenberg characterizing functions that yield a

positive definite dot product kernel over finite dimensional Euclidean spaces in terms of

those admitting positive Gegenbauer expansions is not very useful in practice. This is

because of two reasons. Firstly, as we shall show below, functions that have non-negative

Gegenbauer expansions include those that yield positive definite kernels only up to a

certain dimensionality i.e. these kernels are positive definite up to Rd0 for some fixed

d0 and indefinite on all Euclidean spaces of dimensionality d > d0. Secondly, from an

algorithmic perspective, the Gegenbauer expansions do not seem amenable to the type

of feature construction methods described in this chapter - this is because Gegenbauer

polynomials themselves admit negative coefficients.

The result characterizing positive definite functions over Hilbert spaces in terms of

positive Maclaurin expansions on the other hand is appealing for the very same reasons -

functions satisfying this stronger condition are positive definite over all finite dimensional

spaces and the method readily lends itself to feature construction methods.

Lemma 3.2. A function f : R → R yields positive definite dot product kernels over all

finite dimensional Euclidean spaces iff it yields positive definite dot product kernels over

Hilbert spaces.

An easy application of Theorem 3.1 then gives us the following result :
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Corollary 3.3. A function f : R → R yields positive definite kernels over all finite

dimensional Euclidean spaces iff it is an analytic function admitting a Maclaurin expansion

with only non-negative coefficients.

However, we note that even functions that have only positive Gegenbauer expansions

(and not positive Maclaurin expansions) may admit low dimensional feature maps. This

is indicated by the Johnson-Lindenstrauss Lemma (for example see (Indyk and Motwani,

1998)) that predicts the existence of low-distortion embeddings from arbitrary Hilbert

spaces (thus, in particular from the reproducing kernel Hilbert spaces of these kernels)

to finite dimensional Euclidean spaces. Interestingly, it is very tempting to view the con-

structions of Rahimi and Recht and Vedaldi and Zisserman (among others) as algorithmic

versions of the Johnson-Lindenstrauss Lemma. The challenge in all such cases, however,

is to make these constructions explicit, uniform, as well as algorithmically efficient.

3.3.2 Examples of Positive Definite Dot Product Kernels

The most well known dot product kernels are the polynomial kernels which are used in

either a homogeneous form (K(x,y) = 〈x,y〉p for some p ∈ N) or a non-homogeneous form

(K(x,y) = (〈x,y〉+ r)p for some p ∈ N, r ∈ R+). Lesser known examples include Vovk’s

real polynomial kernel (K(x,y) = 1−〈x,y〉p
1−〈x,y〉 for some p ∈ N), Vovk’s infinite polynomial

kernel (K(x,y) = 1
1−〈x,y〉) and the exponential dot product kernel (K(x,y) = exp

(
〈x,y〉
σ2

)
for some σ ∈ R).

It is interesting to note that due to a result by Steinwart (2001), the last two kernels

(Vovk’s infinite kernel and exponential dot product kernel) are universal on any compact

subset S ⊂ Rd which means that the space of all functions induced by them is dense in

C(S), the space of all continuous functions defined on S. The widely used Gaussian kernel

is actually a normalized version of the exponential dot product kernel. However Vovk’s

kernels are seldom used in practice since they are expected to have poor generalization

properties due to their flat spectrum as noted by Schölkopf and Smola (2002).

3.4 Random Feature Maps

Schoenberg’s result naturally paves the way for a result of the kind presented by Rahimi

and Recht in which we can take the Maclaurin’s expansion f(x) =
∞∑
n=0

anx
n, view the

coefficients an as a positive measure defined on N ∪ {0} and define estimators for each

individual term of the expression. However, as we shall see, estimating higher order terms

in our case will require more randomness. Thus, a set of coefficients {an} defining a heavy

tailed distribution would entail huge randomness costs in case the expansion has a large

(or infinite) number of terms. For example the sequence an = 1
n2 has a linear rather than

an exponential tail.

To address this issue we do not utilize the coefficients as measure values, rather we

impose an external distribution on N ∪ {0} having an exponential tail. The distribution
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Algorithm 1 Random Maclaurin Feature Maps

Input: A positive definite dot product kernel K(x,y) = f(〈x,y〉).
Output: A randomized feature map Z : Rd → RD such that 〈Z(x),Z(y)〉 ≈ K(x,y).

Obtain the Maclaurin expansion of f(x) =
∞∑
n=0

anx
n by setting an = f (n)(0)

n! .

Fix a value p > 1.
for i = 1 to D do

Choose a non negative integer N ∈ N ∪ {0} with P [N = n] = 1
pn+1 .

Choose N vectors ω1, . . . ,ωN ∈ {−1, 1}d selecting each coordinate using fair coin
tosses.

Let feature map Zi : x 7→
√
aNpN+1

N∏
j=1
ω>j x.

end for
Output Z : x 7→ 1√

D
(Z1(x), . . . , ZD(x)).

that we choose to impose is P [N = n] = 1
pn+1 for some fixed p > 1. In practice p = 2

is a good choice since it establishes a normalized measure over N ∪ {0}. We will, using

this distribution, obtain unbiased estimates for the kernel value and prove corresponding

uniform convergence results.

We stress that the positiveness of the coefficients {an} is still essential for us to be able

to provide an embedding into real spaces. If the coefficients are allowed to be negative,

the resulting kernels would no longer remain positive definite and we would only be able

to provide feature maps that map to pseudo-Euclidean spaces. It turns out that the

imposition of an external measure is crucial from a statistical point of view as well. As

we shall see later, it allows us to obtain bounded estimators which in turn allow us to use

Hoeffding bounds to prove uniform convergence results.

We now move on to describe our feature map : our feature map will essentially be a

concatenation of several copies of identical real valued feature maps. These copies will

reduce variance and allow us to prove convergence bounds. The following simple fact

about random projections is at the core of our feature maps.

Lemma 3.4. Let ω ∈ Rd be a vector each of whose coordinates have been chosen pairwise

independently using fair coin tosses from the set {−1, 1} and consider the feature map

Z : Rd → R, Z : x 7→ ω>x. Then for all x,y ∈ Rd,E
ω

JZ(x)Z(y)K = 〈x,y〉.

For a given dot product kernel K(x,y) = f(〈x,y〉) where f(x) =
∞∑
n=0

anx
n, we con-

struct a single real-valued feature map as follows: first, we randomly pick a number

N ∈ N ∪ {0} with P [N = n] = 1
pn+1 . Next we pick N independent Rademacher vectors

ω1 . . .ωN and output the feature map Z : Rd → R, Z : x 7→
√
aNpN+1

N∏
j=1
ω>j x.

Below, we establish that the linear kernel obtained by using this feature map gives us

an unbiased estimate of the kernel value at each pair of points chosen from the domain Ω.
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Lemma 3.5. Let Z : Rd → R be the feature map constructed above. Then for all

x,y ∈ Ω, we have E JZ(x)Z(y)K = K(x,y) where the expectation is over the choice of

the Rademacher vectors.

Having obtained a feature map giving us an unbiased estimate of the kernel value,

we move on to establish bounds on the deviation of the linear kernel given by this map

from its expected value. To do this we obtain D such feature maps independently and

concatenate them to obtain a multi dimensional feature map Z : Rd → RD,Z : x 7→
1√
D

(Z1(x), . . . , ZD(x)). It is easy to see that E J〈Z(x),Z(y)〉K = K(x,y). Moreover, such a

concatenation is expected to guarantee an exponentially fast convergence to K(x,y) using

Hoeffding bounds. However this requires us to prove that the estimator corresponding to

our feature map i.e Z(x)Z(y) is bounded. This we establish below :

Lemma 3.6. For all x,y ∈ Ω, |Z(x)Z(y)| ≤ pf(pR2).

Proof. Since Z(x)Z(y) = aNp
N+1

N∏
j=1
ω>j x

N∏
j=1
ω>j y, by Hölder’s inequality we have, for

all j,
∣∣∣ω>j x

∣∣∣ ≤ ‖ωj‖∞ ‖x‖1 ≤ R since every coordinate of ωj is either 1 or −1 and x ∈

Ω ⊆ B1 (0, R). A similar result holds for
∣∣∣ω>j y

∣∣∣ as well. Thus we have |Z(x)Z(y)| ≤

aNp
N+1R2N ≤ p ·

∞∑
n=0

anp
nR2n = pf(pR2).

We note here that the imposition of an external measure on N ∪ {0} plays a crucial

role in the analysis. In absence of the external measure, one is only able to bound the

estimator by O
(
R2N

)
and since N is a potentially unbounded random variable, this

makes application of Hoeffding bounds impossible. Although there do exist Hoeffding style

bounds for unbounded random variables, they dont seem to work in our case. However,

with the simple imposition of an external measure we obtain an estimator that is bounded

by a value dependent on the range of values taken by the kernel over the domain, a very

desirable quality.

For sake of convenience let us denote pf(pR2) by CΩ since it is a constant dependent

only on the size of the domain Ω and independent of the dimension of the input space Rd.
Note that this constant is proportional to the largest value taken by the kernel in the do-

main Ω. This immediately tells us that for any x,y ∈ Ω, P [|〈Z(x),Z(y)〉 −K(x,y)| > ε] ≤
2 exp

(
−Dε2

8C2
Ω

)
. However we can give much stronger guarantees than this – we can prove

that this loss of confidence need not be incurred over every single pair of points but rather

the entire domain at once. More formally, we can show that with very high probability,

sup
x,y∈Ω

|〈Z(x),Z(y)〉 −K(x,y)| ≤ ε.

3.4.1 Uniform Approximation

As stated before, we are able to ensure that the feature map designed above gives an

accurate estimate of the kernel value uniformly over the entire domain. For this we exploit

the Lipschitz properties of the kernel function and our estimator. A similar approach was
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adopted by Rahimi and Recht to provide corresponding uniform convergence properties

for their estimator. However it is not possible to import their argument since they were

able to exploit the fact that both their kernel as well as their estimator were translation

invariant. We, having no such guarantees for our estimator, have to argue differently.

Let E(x,y) = 〈Z(x),Z(y)〉 − K(x,y). We will first show that the function E(·, ·) is

Lipschitz over the domain Ω. Since E(·, ·) itself is differentiable (actually analytic), its

Lipschitz constant can be bounded by bounding the norms of its gradients i.e. it would

suffice to show that sup
x,y∈Ω

‖∇xE(x,y)‖ ≤ L and sup
x,y∈Ω

‖∇yE(x,y)‖ ≤ L for some constant

L. This would ensure that if the error incurred by the feature map is small on a pair of

vectors then it would also be small on all pairs of vectors that are “close” to these vectors.

This is formalized in the following theorem :

Lemma 3.7. If a bivariate function f defined over Ω ⊆ Rd is L-Lipschitz in both its

arguments then for every x,y ∈ Ω, sup
x′∈B2(x,r)∩Ω
y′∈B2(y,r)∩Ω

|f(x,y)− f(x′,y′)| ≤ 2Lr.

Proof. We have |f(x,y)− f(x′,y′)| ≤ |f(x,y)− f(x,y′)| + |f(x,y′)− f(x′,y′)| ≤ L ·
‖y − y′‖ + L · ‖x− x′‖ ≤ 2Lr where in the second step we have used the fact that both

x,y′ ∈ Ω.

What this allows us to do is choose a set of points T that set up an ε-net over the

domain Ω at some scale ε1. If we can ensure that the feature maps provide an (ε/2)-close

approximation to K at the centers of this net i.e. sup
x,y∈T

|E(x,y)| ≤ ε/2, then the above

result would show us that if the error function E(·, ·) is L-Lipschitz in both its arguments,

then sup
x,y∈Ω

|E(x,y)| ≤ ε/2 + 2Lε1 since the ε-net ensures that for all x,y ∈ Ω, there

exists x′,y′ ∈ T such that ‖x− x′‖ , ‖y − y′‖ ≤ ε1. Thus choosing ε1 = ε
4L ensures that

sup
x,y∈Ω

|〈Z(x),Z(y)〉 −K(x,y)| ≤ ε.

Now ensuring that the feature maps provide a close approximation to the kernel value

at all pairs of points taken from T would cost us a reduction in the confidence parameter

by a factor of |T |2 due to taking a union bound. It is well known (for example see

(Cucker and Smale, 2001)) that setting up an ε-net at scale ε1 in d dimensions over a

compact set of diameter ∆ takes at most
(

4∆
ε1

)d
centers. In our case ∆ ≤ 2R since

Ω ⊆ B1 (0, R) ⊂ B2 (0, R) and ε1 = ε
4L i.e. |T | ≤

(
32RL
ε

)d
.

We now move on to the task of bounding the Lipschitz constant of the error function.

Since E(·, ·) is symmetric in both its arguments, it is sufficient to bound

‖∇xE(x,y)‖ ≤ ‖∇x 〈Z(x),Z(y)〉‖+ ‖∇xK(x,y)‖ .

We will bound these two quantities separately below.
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Lemma 3.8. We have the following :

sup
x,y∈Ω

‖∇xK(x,y)‖ ≤ Rf ′(R2)

sup
x,y∈Ω

‖∇yK(x,y)‖ ≤ Rf ′(R2)

Proof. We have, by the definition of K,

∇xK(x,y) = ∇x

( ∞∑
n=0

an 〈x,y〉n
)

=

∞∑
n=0

an∇x 〈x,y〉n = y

∞∑
n=0

nan 〈x,y〉n−1 .

This gives us

‖∇xK(x,y)‖ =

∥∥∥∥∥y
∞∑
n=0

nan 〈x,y〉n−1

∥∥∥∥∥ ≤ R
∞∑
n=0

nan |〈x,y〉|n−1 ≤ R
∞∑
n=0

nan(R2)n−1 = Rf ′(R2)

where in the second and the third step we have used the fact that x,y ∈ Ω ⊆ B1 (0, R) ⊂
B2 (0, R). Similarly we can show sup

x,y∈Ω
‖∇yK(x,y)‖ ≤ Rf ′(R2).

Lemma 3.9. We have the following :

sup
x,y∈Ω

‖∇x (Z1(x)Z1(y))‖ ≤ p2R
√
df ′(pR2)

sup
x,y∈Ω

‖∇y (Z1(x)Z1(y))‖ ≤ p2R
√
df ′(pR2)

Thus we have L = sup
x,y∈Ω

‖∇xE(x,y)‖ ≤ Rf ′(R2) + p2R
√
df ′(pR2). Putting all the

results together, we first have by application of union bound that the probability that

the feature map will fail at any pair of points chosen from the ε-net is bounded by

2
(

32RL
ε

)2d
exp

(
−Dε2

8C2
Ω

)
. The covering argument along with the bound on the Lipschitz

constant of the error function ensure that with the same confidence, the feature map

would provide an ε-accurate estimate on the entire domain Ω. Thus we have the following

theorem.

Theorem 3.10. Let Ω ⊆ B1 (0, R) be a compact subset of Rd and K(x,y) = f(〈x,y〉)
be a dot product kernel defined on Ω. Then, for the feature map Z defined in Algo-

rithm 1, we have P

[
sup

x,y∈Ω
|〈Z(x),Z(y)〉 −K(x,y)| > ε

]
≤ 2

(
32RL
ε

)2d
exp

(
−Dε2

8C2
Ω

)
where

CΩ = pf(pR2) and L = Rf ′(R2) + p2R
√
df ′(pR2) for some small constant p > 1. More-

over, with D = Ω
(
dC2

Ω
ε2

log
(
RL
εδ

))
, one can ensure the same with probability greater than

1− δ.

The behavior of this bound with respect to the dimensionality of the input space,

the accuracy parameter and the confidence parameter is of the form D = Ω
(
d
ε2

log
(

1
εδ

))
that matches that of Rahimi and Recht. The bound has a stronger dependence on kernel
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specific parameters which appear as non-logarithmic terms due to the unbounded nature

of the dot product kernels. Even so, the kernel specific term CΩ is dependent on the

largest value taken by the kernel in the domain Ω, a dependence that is unavoidable for

an algorithm giving guarantees on the absolute (rather than relative) deviation from the

true value.

3.4.2 An Alternative Feature Map

An alternative method to bounding the amount of randomness being used is to truncate

the Maclaurin series after a certain number of terms and use the resulting function to

define a new kernel. Since the Maclaurin series of an analytic function defined over a

bounded domain converges to it uniformly, we can truncate the series while incurring

a uniformly bounded error. A similar approach is used by Vedaldi and Zisserman to

present deterministic feature maps. Suppose we have a positive definite dot product

kernel K defined on a domain Ω ⊂ B1 (0, R) in some Euclidean space Rd by a function

f(x) =
∞∑
n=0

anx
n. If we choose k = k(ε,R) such that

k∑
n=0

anR
2n = f(R2) − ε (or select

some set S ⊂ N ∪ {0} such that
∑
n∈S

anR
2n = f(R2) − ε and |S| = k) and create a new

kernel K̃(x,y) =
k∑

n=0
an 〈x,y〉n, then the residual error

Rk = sup
x,y∈Ω

∣∣∣K̃(x,y)−K(x,y)
∣∣∣ = sup

x,y∈Ω

∣∣∣∣∣
∞∑

i=k+1

an 〈x,y〉n
∣∣∣∣∣ ≤

∞∑
i=k+1

anR
2n ≤ ε

since Ω ⊂ B1 (0, R) ⊂ B2 (0, R) and
∞∑
n=0

anR
2n = f(R2). Thus for all x,y ∈ Ω, we have

K(x,y)−ε ≤ K̃(x,y) ≤ K(x,y)+ε. Since K̃ also satisfies the conditions of Theorem 3.1,

one can now obtain ε1-accurate feature maps for K̃ using the techniques mentioned above

and those feature maps would provide an (ε+ ε1)-accurate estimate to K.

3.5 Generalizing to Compositional Kernels

Given a positive definite dot product kernel Kdp and an arbitrary positive definite kernel

K, the kernel Kco defined as Kco(x,y) = Kdp(K(x,y)) is also positive definite. This

fact can be deduced either by directly invoking a result due to (FitzGerald et al., 1995,

Theorem 2.1) or by applying Schoenberg’s result in conjunction with Mercer’s theorem.

We now show how to extend the result for dot product kernels to such compositional

kernels.

Note that plugging a translation invariant kernel into a dot product kernel yields

yet another translation invariant kernel since the set of translation invariant kernels is

closed under powering, scalar multiplication and addition. However, a set of homogeneous

kernels not sharing the homogeneity parameter is not closed under addition. Hence the
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set of homogeneous kernels is not closed under the operations mentioned above and thus,

plugging a homogeneous kernel into a dot product kernel in general yields a novel non-

homogeneous kernel. We also note that the results obtained in the section above can be

now viewed as special cases of the result presented in this section with the dot product

being substituted into a dot product kernel.

In order to construct feature maps for the compositional kernel we assume that we

have black-box access to a (possibly randomized) feature map selection routine A which

when invoked, returns a feature map W : Rd → R for K. If we assume that the kernel K is

bounded and Lipschitz and that the feature map W returned to us is bounded, Lipschitz

on expectation and provides an unbiased estimate of K, then one can design (using these

feature maps for K) feature maps for Kco. The analysis of the final feature map in this

case is a bit more involved since we only assume black-box access to A and only expect

the feature map to be Lipschitz on expectation.

We first state our assumptions about the kernel K and the feature maps given by A :

1. K is defined over some domain Ω ⊂ Rd.

2. K is bounded i.e. we have sup
x,y∈Ω

|K(x,y)| ≤ CK for some CK ∈ R+.

3. K is Lipschitz i.e. sup
x,y∈Ω

‖∇xK(x,y)‖ ≤ LK and sup
x,y∈Ω

‖∇yK(x,y)‖ ≤ LK , LK > 0.

4. W is an unbiased estimator of K i.e. for all x,y ∈ Ω, E JW (x)W (y)K = K(x,y)

where the expectation is over the internal randomness of W .

5. W is a bounded feature map i.e. for some CW > 0, sup
x∈Ω
|W (x)| ≤

√
CW .

6. W is Lipschitz on expectation i.e. for some LW ∈ R+, sup
x∈Ω

E J‖∇xW (x)‖K ≤ LW .

Our feature map construction algorithm is similar to the one used for dot product

kernels. We pick a non-negative integer N ∈ N ∪ {0} with P [N = n] = 1
pn+1 for some

fixed p > 1 and output the feature map Z : Rd → R, Z : x 7→
√
aNpN+1

N∏
j=1

Wj(x)

where W1, . . . ,WN are independent instantiations of the feature map W associated with

the kernel K. We concatenate D such feature maps to give our final feature map.

It is clear that on expectation, the product of the feature map values is equal to

the value of the kernel i.e. E
N,W1,...,WN

J〈Z(x),Z(y)〉K = Kco(x,y) where Z : Rd → RD,

Z : x 7→ 1√
D

(Z1(x), . . . , ZD(x)). Yet again we expect that the concatenation of D such

feature maps for a large enough D would provide us a close approximation to Kco with

high probability. For this we first prove that our feature map is bounded.

Lemma 3.11. For all x,y ∈ Ω, |Z(x)Z(y)| ≤ pf(pCW ).

Proof. Z(x)Z(y) = aNp
N+1

N∏
j=1

Wj(x)
N∏
j=1

Wj(x). Using the bound on the feature maps

we get the inequality |Z(x)Z(y)| ≤ aNpN+1CNW ≤ pf(pCW )
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Algorithm 2 Random Maclaurin Feature Maps for Compositional Kernels

Input: A compositional positive definite kernel Kco(x,y) = Kdp(K(x,y)) = f(K(x,y)).
Output: A randomized feature map Z : Rd → RD such that 〈Z(x),Z(y)〉 ≈ Kco(x,y).

Obtain the Maclaurin expansion of f(x) =
∞∑
n=0

anx
n by setting an = f (n)(0)

n! .

Fix a value p > 1.
for i = 1 to D do

Choose a non negative integer N ∈ N ∪ {0} with P [N = n] = 1
pn+1 .

Get N independent instantiations of the feature map for K from A as W1, . . . ,WN .

Let feature map Zi : x 7→
√
aNpN+1

N∏
j=1

Wj(x).

end for
Output Z : x 7→ 1√

D
(Z1(x), . . . , ZD(x)).

Thus we have for any x,y ∈ Ω, P [|〈Z(x),Z(y)〉 −Kco(x,y)| ≤ ε] with probability at

least 1−2 exp
(
−Dε2

8C2
1

)
where C1 = pf(pCW ). We now investigate the Lipschitz properties

of Kco and our feature map.

Lemma 3.12. We have

sup
x,y∈Ω

‖∇xKco(x,y)‖ ≤ LKf
′(CK)

sup
x,y∈Ω

‖∇yKco(x,y)‖ ≤ LKf
′(CK)

Proof. Kcomp(x,y) =
∞∑
n=0

anK(x,y)n. Thus we have by linearity

∇xKcomp(x,y) =

∞∑
n=0

an∇x (K(x,y)n) =

∞∑
n=0

nanK(x,y)n−1∇xK(x,y)

which in turn gives us

‖∇xKcomp(x,y)‖ ≤ ‖∇xK(x,y)‖
∞∑
n=0

nanC
n−1
K ≤ LKf ′(CK).

Similarly we have sup
x,y∈Ω

‖∇yKco(x,y)‖ ≤ LKf ′(CK).

We next move on to the Lipschitz properties of Z. Since we have only made assump-

tions on the expected Lipschitz properties of W , we would only be able to give guarantees

on the expected Lipschitz properties of Z. However, as we shall see, these would be suf-

ficient to provide a uniform convergence guarantee over the entire domain Ω. As before,

by linearity of expectation, analyzing the expected Lipschitz properties of a single feature

map Z are sufficient to guarantee, on expectation, similar properties for Z as well.
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Lemma 3.13. We have

sup
x,y∈Ω

‖∇x (Z(x)Z(y))‖ ≤ LW p
2
√
CW f

′(pCW )

sup
x,y∈Ω

‖∇y (Z(x)Z(y))‖ ≤ LW p
2
√
CW f

′(pCW )

Proof. Since Z(x)Z(y) = aNp
N+1

N∏
j=1

Wj(x)Wj(y), by linearity we can write

∇xZ(x)Z(y) =

aNpN+1
N∏
j=1

Wj(y)

 N∑
j=1

∏
i 6=j

Wi(x)

∇xWj(x).

Thus we can then write

‖∇xZ(x)Z(y)‖ = aNp
N+1

∣∣∣∣∣∣
N∏
j=1

Wj(y)

∣∣∣∣∣∣
∥∥∥∥∥∥
N∑
j=1

∏
i 6=j

Wi(x)

∇xWj(x)

∥∥∥∥∥∥
≤ aNp

N+1C
N
2
W

N∑
j=1

C
N−1

2
W ‖∇xWj(x)‖ ,

which gives us, by linearity of expectation and the bound on the expected Lipschitz prop-

erties of the individual estimators,

E J‖∇xZ(x)Z(y)‖K ≤ NaNp
N+1C

N− 1
2

W LW = LW p
2
√
CW ·NaN (pCW )N−1

≤ LW p
2
√
CW f

′(pCW )

Similarly we have sup
x,y∈Ω

‖∇y (Z(x)Z(y))‖ ≤ LW p2
√
CW f

′(pCW ).

Working as before we find that the error function E(x,y) = 〈Z(x),Z(y)〉−Kco(x,y) is,

on expectation, L1-Lipschitz for L1 = LKf
′(CK) + LW p

2
√
CW f

′(pCW ). Hence the prob-

ability that the error function will not be ε
2r -Lipschitz is less than 2L1r

ε by an application

of Markov’s inequality. However if this is not the case then constructing an ε-net at scale

r over the domain Ω and ensuring that the estimator provides an ε/2-approximation at

centers of these points would ensure an ε-accurate estimation to the kernel on the entire

domain Ω. Setting up such a net would require at most
(

4R
r

)d
centers if Ω ⊆ B1 (0, R).

Adding the failure probabilities of the estimator not being accurate on the ε-net centers

to the probability of the error function not being Lipschitz gives us the total error prob-

ability of our estimator giving an inaccurate estimate over any point in the domain as

2
(

4R
r

)d
exp

(
−Dε2

8C2
1

)
+ 2L1r

ε .

Comparing this with the form k1r
−d + k2r and setting r =

(
k1
k2

) 1
d+1

gives us the error

probability as 2k
1
d+1

1 k
d
d+1

2 ≤
(

32RL1
ε

)
exp

(
− Dε2

8C2
1d

)
if ε < 8RL1. This gives us the following:
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Theorem 3.14. Let Ω ⊆ B1 (0, R) be a compact subset of Rd and Kco(x,y) = Kdp(K(x,y))

be a compositional kernel defined on Ω satisfying the necessary boundedness and Lips-

chitz conditions. Assuming we have black-box access to a feature map selection algorithm

for K also satisfying the necessary boundedness and Lipschitz conditions, for the fea-

ture map Z defined in Algorithm 2, we have P

[
sup

x,y∈Ω
|〈Z(x),Z(y)〉 −Kco(x,y)| > ε

]
≤(

32RL1
ε

)
exp

(
− Dε2

8C2
1d

)
where C1 = pf(pCW ) and L1 = LKf

′(CK) + LW p
2
√
CW f

′(pCW )

for some small constant p > 1. Moreover, with D = Ω
(
dC2

1
ε2

log
(
RL1
εδ

))
, one can ensure

the same with probability greater than 1− δ.

Yet again the dependence on input space parameters is similar to that in the case of

dot product kernel feature maps. The only non-logarithmic kernel specific dependence

is on C1 which encodes the largest possible value taken by the oracle features which is

related to the range of values taken by the kernel K.

3.6 Experiments

In this section we report results of our feature map construction algorithm on both toy

as well as benchmark datasets. In the following, homogeneous kernel refers to the kernel

Kh(x,y) = 〈x,y〉p, polynomial kernel refers to Kp(x,y) = (1 + 〈x,y〉)p and exponential

kernel refers to Ke(x,y) = exp
(
〈x,y〉
σ2

)
. In all our experiments we used p = 10 and set the

value of the “width” parameter σ to be the mean of all pairwise training data distances, a

standard heuristic. We shall denote by d the dimensionality of the original feature space

and D to be the number of random feature maps used. Before we move on, we describe

a heuristic which when used in conjunction with random feature maps gives attractive

results allowing for accelerated training and testing times for the SVM algorithm.

3.6.1 The Heuristic H0/1

Consider a dot product kernel defined by K(x,y) =
∞∑
n=0

an 〈x,y〉n. This heuristic simply

makes an observation that the first two terms of this expansion need not be estimated at

all. The first term, being a constant, can be absorbed into the offset parameter of SVM

formulations and the second term can be handled by simply adjoining the random features

with the original features. This allows us to use all our randomness in estimating higher

order terms. We refer to algorithmic formulations that use this heuristic as H0/1 and

those that use only random features as RF.

We note some properties of this heuristic. First of all, as we shall see, H0/1 offers

superior accuracies even when using a very small number of random features since we get

away with an exact estimate of the leading terms in the Maclaurin expansion. However

this is accompanied by two overheads. First of all this offers a small overhead while testing

since the test vectors are (d+D)-dimensional instead of D-dimensional if we were to use

only random features (as is the case with RF).
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Figure 3.1: Error rates achieved by random feature maps on three dot product kernels.
Plots of different colors represent various values of input dimension d. In Figures 3.1b and
3.1c, thin plots represent non-H0/1 experiments and thick plots of same color represent
results for the same value of input dimension d but with H0/1.

A more subtle overhead comes at feature map application time since the use of H0/1

implies that, on an average, each of the D feature maps is estimating a higher order term

(as compared to RF) which requires more randomness. Moreover, as it takes longer for

feature maps estimating higher order terms to be applied (see Algorithm 1), this results

in longer feature construction times. Hence, after D is chosen beyond a certain threshold,

the benefits offered by H0/1 are overshadowed by the longer feature construction times

and plain RF becomes more preferable in terms of lower test times. However, as the

experiments will indicate, H0/1 is an attractive option for ultra fast learning routines for

small to moderate values of D which, while increasing feature construction time slightly

offer much better classification accuracies than RF.

3.6.2 Toy Experiments

In our first experiment, we tested the accuracy of the feature maps on the three dot

product kernels Kh, Kp and Ke. We sampled 100 random points from the unit ball in

d dimensions (we used various values of d between 10 and 200) and constructed feature

maps for various values of D from 10 to 5000. The error incurred by the feature maps

was taken to be the average absolute difference between the entries of the kernel matrix
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as given by the dot product kernel and that given by the linear kernel on the new feature

space given by the feature maps. The results of the experiments, averaged over 5 runs are

shown in Figure 3.1. One can see that in each case, the error quickly drops as we increase

the value of D.

We also experimented with the effect of H0/1 on these toy datasets for Kp and Ke

(Kh does not have terms corresponding to n = 0, 1 and hence H0/1 cannot be applied).

For sake of clarity, the X-axis in all the graphs in Figure 3.1 represent only D and not

the final number of features used (which is d+D for H0/1 experiments). Also, to avoid

clutter, we have omitted plots for certain small values of d in Figures 3.1b and 3.1c. Notice

how in all cases, H0/1 registers a sharper drop in error than RF.

We note that the error rates vary considerably across kernels. This is due to the

difference in the range of values taken by these kernels. With the specified values of kernel

parameters whereas Kh can only take values in the range [−1, 1] inside B2 (0, 1) ⊂ Rd, Kp

can take values up to 1024 and Ke up to 2.73. One notices that the error rates offered by

the feature maps also differ in much the same way for these kernels .

3.6.3 Experiments on UCI Datasets

In our second experiment, we tested the performance of our feature map on benchmark

datasets (uci). In these experiments we used 60% of the data (subject to a maximum of

20000) for training and the rest as test data. Non-linear kernels were used along with

LIBSVM (Chang and Lin, 2011) and random feature routines RF and H0/1 were used

alongwith LIBLINEAR (Fan et al., 2008) for the classification tasks. Non-binary problems

were binarized randomly for simplicity. Since the kernels are unbounded, the lengths of

all vectors were normalized using normalization constants learnt on the training sets. All

results presented are averages across five random (but fixed) splits of the datasets.

We first take a look at the performance benefits of H0/1 on these datasets in Fig-

ure 3.2. As before we simply plot D on the X-axis even for H0/1 experiments for sake of

clarity. We observe that in all four cases, H0/1 offers much higher accuracies as compared

to RF when used with small number of random features (see Figure 3.2a). Also note that

the number of extra features added for H0/1 is not large (avg. d = 45 for the 6 datasets

considered). As we increase the number of random features, H0/1 accuracies move up

slowly. However the test feature construction overhead become large after a point and

affects test times (see Figure 3.2c). The effect on training times (see Figure 3.2b) is not

so clear since the use of H0/1 also seems to offer greater separability which mitigates the

training feature construction overhead in some cases.

We provide details of the results in Table 3.1. We see that both RF and H0/1 offer

significant speedups in both training and test times while offering competitive classification

accuracies with H0/1 doing so at much lower values of D. In some cases the reduction

in classification accuracy for H0/1 is moderate but is almost always accompanied with a

spectacular increase in training and test speeds.
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(a) Classification accuracies for non-H0/1 (green) and H0/1 (red) routines on 4 datasets
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(b) Training times (log-scale) for non-H0/1 (magenta) and H0/1 (blue) routines on the datasets
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(c) Testing times (log-scale) for non-H0/1 (gray) and H0/1 (cyan) routines on the datasets

Figure 3.2: Performance of H0/1 vs non-H0/1 on four datasets. The first column corresponds to experiments on the Spambase dataset with
the polynomial kernel. The next three columns correspond to experiments on Nursery with the polynomial kernel, IJCNN with the exponential
kernel and Cod-RNA with the exponential kernel.
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Dataset K + LIBSVM RF + LIBLINEAR H0/1 + LIBLINEAR

Nursery

N = 13000

d = 8

acc = 99.9%

trn = 18.6s

tst = 3.37s

acc = 99.7% (D = 500)

trn = 3.96s (4.7×)

tst = 0.63s (5.3×)

acc = 98.2% (D = 100)

trn = 0.49s (38×)

tst = 0.1s (33×)

Spambase

N = 4600

d = 57

acc = 93.8%

trn = 3.64s

tst = 2.84s

acc = 93.2% (D = 500)

trn = 1.67s (2.2×)

tst = 1.13s (2.5×)

acc = 92.02% (D = 50)

trn = 0.19s (19×)

tst = 0.38s (7.5×)

Cod-RNA

N = 60000

d = 8

acc = 95.2%

trn = 144.1s

tst = 28.6s

acc = 94.9% (D = 500)

trn = 12.1s (12×)

tst = 2.8s (10×)

acc = 93.77% (D = 50)

trn= 0.63s (229×)

tst = 0.51s (56×)

Adult

N = 49000

d = 123

acc = 84.2%

trn = 179.6s

tst = 60.6s

acc = 84.7% (D = 500)

trn = 21.2s (8.5×)

tst = 15.6s (3.9×)

acc = 84.7% (D = 100)

trn = 6.9s (26×)

tst = 7.26s (8.4×)

IJCNN

N=141000

d = 22

acc = 98.4%

trn = 164.1s

tst = 33.4s

acc = 97.3% (D = 1000)

trn = 36.5s (4.5×)

tst = 23.3s (1.4×)

acc = 92.3% (D = 200)

trn= 4.98s (33×)

tst = 7.5s (4.5×)

Covertype

N=581000

d = 54

acc = 77.4%

trn = 160.95s

tst = 1653.9s

acc = 77.04% (D = 1000)

trn = 186.1s (—)

tst = 236.8s (7×)

acc = 75.5% (D = 100)

trn = 3.9s (41×)

tst = 70.3s (23×)

(a) Polynomial Kernel, K(x,y) = (1 + 〈x,y〉)10

Dataset K + LIBSVM RF + LIBLINEAR H0/1 + LIBLINEAR

Nursery

N = 13000

d = 8

acc = 99.8%

trn = 10.8s

tst = 1.7s

acc = 99.6% (D = 500)

trn = 2.52s (4.3×)

tst = 0.6s (2.8×)

acc = 97.96% (D = 100)

trn = 0.4s (27×)

tst = 0.18s (9.4×)

Spambase

N = 4600

d = 57

acc = 93.5%

trn = 3.19s

tst = 1.89s

acc = 92.3% (D = 500)

trn = 1.9s (1.7×)

tst = 0.6s (3.1×)

acc = 92.08% (D = 50)

trn = 0.19s (17×)

tst = 0.16s (74×)

Cod-RNA

N = 60000

d = 8

acc = 95.2%

trn = 91.5s

tst = 17.1s

acc = 94.9% (D = 500)

trn = 11.5s (8×)

tst = 2.8s (6.1×)

acc = 93.8% (D = 50)

trn= 0.67s (136×)

tst = 1.4s (12×)

Adult

N = 49000

d = 123

acc = 83.7%

trn = 263.3s

tst = 33.4s

acc = 82.9% (D = 500)

trn = 39.8s (6.6×)

tst = 14.3s (2.3×)

acc = 84.8% (D = 100)

trn = 7.18s (37×)

tst = 9.4s (3.6×)

IJCNN

N=141000

d = 22

acc = 98.4%

trn = 135.8s

tst = 29.98s

acc = 97.2% (D = 1000)

trn = 24.9s (5.5×)

tst = 23.4s (1.3×)

acc = 92.2% (D = 200)

trn = 5.2s (26×)

tst = 9.1s (3.3×)

Covertype

N=581000

d = 54

acc = 80.6%

trn = 194.1s

tst = 695.8s

acc = 76.2% (D = 1000)

trn = 21.4s (9×)

tst = 207s (3.6×)

acc = 75.5% (D = 100)

trn = 3.7s (52×)

tst = 80.4s (8.7×)

(b) Exponential Kernel, K(x,y) = exp
(
〈x,y〉
σ2

)
Table 3.1: RF, H0/1 and K denote respectively, the use of random features, H0/1
and actual kernel values. The first columns list the datasets, their sizes (N) and their
dimensionalities (d). Subsequent columns list the number of random features used (D),
classification accuracies (acc), training/testing times (trn/tst) and speedups (×).
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3.7 Proofs

We give missing proofs below.

3.7.1 Proof of Theorem 3.1

We first recollect Schoenberg’s result in its original form

Theorem 3.15. (Schoenberg, 1942, Theorem 2) A function f : [−1, 1] → R constitutes

a positive definite kernel K : S∞ × S∞ → R, K : (x,y) 7→ f(〈x,y〉) iff f is an analytic

function admitting a Maclaurin expansion with only non-negative coefficients i.e. f(x) =
∞∑
n=0

anx
n, an ≥ 0, n = 0, 1, 2, . . .. Here S∞ = {x ∈ H : ‖x‖2 = 1} for some Hilbert space

H.

To see that the non-negativeness of the coefficients of the Maclaurin expansion is

necessary just apply Theorem 3.15 to points on S∞. Since {〈x,y〉 : x,y ∈ B2 (0, 1)} =

{〈x,y〉 : x,y ∈ S∞}, the result extends to the general case when the points are coming

from B2 (0, 1). To see that this suffices we make use of some well known facts regarding

positive definite kernels (for example refer to (Schölkopf and Smola, 2002)).

Fact 3.16. If Kn, n ∈ N are positive definite kernels defined on some common domain

then the following statements are true

1. cmKm + cnKn is also a positive definite kernel provided cm, cn ≥ 0.

2. KmKn is also a positive definite kernel.

3. If lim
n→∞

Kn = K and K is continuous then K is also a positive definite kernel.

Starting with the fact that the dot product kernel is positive definite on any Hilbert

space H, applying Fact 3.16.1 and Fact 3.16.2, we get that for every n ∈ N , the kernel

Kn(x,y) =
n∑
i=0

ai 〈x,y〉i is positive definite. An application of Fact 3.16.3 along with the

fact that the Maclaurin series converges uniformly within its radius of convergence then

proves the result.

3.7.2 Proof of Lemma 3.2

We shall first prove this result for the special case of `2, the Hilbert space of all square

summable sequences. Schoenberg’s result (Corollary 3.1) will then allow us to extend it

to all Hilbert spaces. The if part follows readily from the observation that `2 contains

all finite dimensional Euclidean spaces as subspaces and the fact that any kernel that is

positive definite over a set is positive definite over all its subsets as well.

For the only if part consider any set of n points S = {x1,x2, . . . ,xn} ⊂ `2. Clearly

there exists an embedding Φ : S → Rn such that for all i, j ∈ [n], 〈Φ(xi),Φ(xj)〉 = 〈xi,xj〉
(note that the left and the right hand sides are inner products over different spaces). Such



54 Chapter 3. Random Feature Maps for Dot Product Kernels

an embedding can be constructed, for example, by taking the Cholesky decomposition of

the Gram matrix given by the inner product on `2 (the entries of the Gram matrix are

finite by an application of Cauchy-Schwarz inequality).

Consider the matrix A = [aij ] where aij = f (〈Φ(xi),Φ(xj)〉). Since f yields positive

definite kernels over all finite dimensional Euclidean spaces, we have A � 0. However, by

the isometry of the embedding, we have aij = f (〈xi,xj〉). Hence, for any n <∞, for any

arbitrary n points, the gram matrix given by f(〈·, ·〉) is positive definite (here 〈·, ·〉 is the

dot product over `2). Thus f yields a positive definite kernel over `2 as well.

To complete the proof we now use Schoenberg’s theorem to extend this result to all

Hilbert spaces. If a dot product kernel is positive definite over all finite dimensional spaces

then the above argument shows it to be positive definite over `2. Hence, by Corollary 3.1,

the function f defining this kernel must have a non-negative Maclaurin’s expansion. From

here on an argument similar to the one used to prove the sufficiency part of Corollary 3.1

(using Fact 3.16) can be used to show that this kernel is positive definite over all Hilbert

spaces.

On the other hand, if a dot product kernel is positive definite over Hilbert spaces,

then we use its positive-definiteness over `2, along with the argument used in showing

the if part above, to prove that the kernel is positive definite over all finite dimensional

Euclidean spaces.

3.7.3 Proof of Lemma 3.4

We have the following chain of equalities:

E
ω

JZ(x)Z(y)K = E
ω

r
ω>x · ω>y

z

= E
ω

t(
d∑
i=1

ωixi

)(
d∑
i=1

ωiyi

)|

= E
ω

u

v
d∑
i=1

ω2
ixiyi +

d∑
i 6=j
ωiωjxiyj

}

~

=

d∑
i=1

E
ω

q
ω2
i

y
xiyi +

d∑
i 6=j

E
ω

JωiKE
ω

JωjK xiyj

=
d∑
i=1

xiyi + 0 = 〈x,y〉

where in the third equality we have used linearity of expectation and the pairwise inde-

pendence of the different coordinates of ω. The fourth equality is arrived at by using

properties of the distribution. Notice that any distribution that is symmetric about zero

with unit second moment can be used for sampling the coordinates of ω. This particular

choice both simplifies the analysis as well as is easy to implement in practice.
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3.7.4 Proof of Lemma 3.5

We have the following chain of equalities:

E JZ(x)Z(y)K = E
N

s
E

ω1,...,ωN
JZ(x)Z(y)K

∣∣∣∣N{

= E
N

u

vaNpN+1 E
ω1,...,ωN

u

v
N∏
j=1

ω>j x
N∏
j=1

ω>j y

}

~

}

~

= E
N

s
aNp

N+1
(
E
ω

r
ω>x · ω>y

z)N{

= E
N

r
aNp

N+1 〈x,y〉N
z

=

∞∑
n=0

1

pn+1
· anpn+1 〈x,y〉n

= K(x,y).

where the first step uses the fact that the index N and the vectors ωi are chosen indepen-

dently, the fourth step uses the fact that the vectors ωi are chosen independently among

themselves and the fifth step uses Lemma 2.

3.7.5 Proof of Lemma 3.9

Since 〈Z(x),Z(y)〉 = 1
D

D∑
i=1

Zi(x)Zi(y) and ∇x 〈Z(x),Z(y)〉 = 1
D

D∑
i=1
∇x (Zi(x)Zi(y)) we

have by triangle inequality,

‖∇x 〈Z(x),Z(y)〉‖ ≤ 1

D

D∑
i=1

‖∇x (Zi(x)Zi(y))‖ .

Since all the Zi feature maps are identical it would be sufficient to bound ‖∇x (Z1(x)Z1(y))‖
and by the above calculation, the same bound would hold for ‖∇x 〈Z(x),Z(y)〉‖ as well.

Let Z1 : x 7→
√
aNpN+1

N∏
j=1
ω>j x for some N ≤ k. We then apply the following sequence

of simplifications:

∇x (Z1(x)Z1(y)) = ∇x

aNpN+1
N∏
j=1

ω>j x
N∏
j=1

ω>j y


=

aNpN+1
N∏
j=1

ω>j y

∇x

 N∏
j=1

ω>j x


=

aNpN+1
N∏
j=1

ω>j y

 N∑
j=1

∏
i 6=j
ω>i x

ωi.
We note that for any ω chosen, ‖ω‖ =

√
d. Moreover, as we have seen before, for any
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ω, we have sup
x∈Ω

∣∣ω>x
∣∣ ≤ R by Hölder’s inequality. Thus we can bound ‖∇x (Z1(x)Z1(y))‖

as

‖∇x (Z1(x)Z1(y))‖ =

∥∥∥∥∥∥
aNpN+1

N∏
j=1

ω>j y

 N∑
j=1

∏
i 6=j
ω>i x

ωi
∥∥∥∥∥∥

= aNp
N+1

 N∏
j=1

∣∣∣ω>j y
∣∣∣
∥∥∥∥∥∥

N∑
j=1

∏
i 6=j
ω>i x

ωi
∥∥∥∥∥∥

≤ aNp
N+1

 N∏
j=1

∣∣∣ω>j y
∣∣∣
 N∑

j=1

∏
i 6=j

∣∣∣ω>i x
∣∣∣
 ‖ωi‖

≤ aNp
N+1RN

N∑
j=1

RN−1
√
d = NaNp

N+1R2N−1
√
d

≤ p2R
√
d
∞∑
n=0

nan(pR2)n−1 = p2R
√
df ′(pR2)

where we have used the triangle inequality in the third step. Similarly we can show

sup
x,y∈Ω

‖∇y (Z1(x)Z1(y))‖ ≤ p2R
√
df ′(pR2).
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Abstract We consider the problem of classification using similarity/distance func-

tions over data. Specifically, we propose a framework for defining the goodness of a

(dis)similarity function with respect to a given learning task and propose algorithms that

have guaranteed generalization properties when working with such good functions. Our

framework unifies and generalizes the frameworks proposed by Balcan and Blum (2006)

and Wang et al. (2007). An attractive feature of our framework is its adaptability to data

- we do not promote a fixed notion of goodness but rather let data dictate it. We show, by

giving theoretical guarantees that the goodness criterion best suited to a problem can itself

be learned which makes our approach applicable to a variety of domains and problems. We

propose a landmarking-based approach to obtaining a classifier from such learned goodness

criteria. We then provide a novel diversity based heuristic to perform task-driven selection

of landmark points instead of random selection. We demonstrate the effectiveness of our

goodness criteria learning method as well as the landmark selection heuristic on a variety

of similarity-based learning datasets and benchmark UCI datasets on which our method

consistently outperforms existing approaches by a significant margin.
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4.1 Introduction

Machine learning algorithms have found applications in diverse domains such as computer

vision, bio-informatics and speech recognition. Working in such heterogeneous domains

often involves handling data that is not presented as explicit features embedded into

vector spaces. However in many domains, for example co-authorship graphs, it is natural

to devise similarity/distance functions over pairs of points. While classical techniques

like decision tree and linear Perceptron cannot handle such data, several modern machine

learning algorithms such as support vector machine (SVM) can be kernelized and are

thereby capable of using kernels or similarity functions.

However, most of these algorithms require the similarity functions to be positive semi-

definite (PSD), which essentially implies that the similarity stems from an (implicit) em-

bedding of the data into a Hilbert space. Unfortunately in many domains, the most natural

notion of similarity does not satisfy this condition - moreover, verifying this condition is

usually a non-trivial exercise. Take for example the case of images on which the most

natural notions of distance (Euclidean, Earth-mover) (Indyk and Thaper, 2003) do not

form PSD kernels. Co-authorship graphs give another such example.

Consequently, there have been efforts to develop algorithms that do not make assump-

tions about the PSD-ness of the similarity functions used. One can discern three main

approaches in this area. The first approach tries to coerce a given similarity measure

into a PSD one by either clipping or shifting the spectrum of the kernel matrix (Pȩkalska

and Duin, 2001; Chen et al., 2009a). However, these approaches are mostly restricted

to transductive settings and are not applicable to large scale problems due to eigenvec-

tor computation requirements. The second approach consists of algorithms that either

adapt classical methods like k-NN to handle non-PSD similarity/distance functions and

consequently offer slow test times (Chen et al., 2009a), or are forced to solve non-convex

formulations (Ong et al., 2004; Haasdonk, 2005).

The third approach, which has been investigated recently in a series of papers (Balcan

and Blum, 2006; Balcan et al., 2008a; Wang et al., 2007) (although the basic idea has been

around for quite some time (Graepel et al., 1998)), uses the similarity function to embed

the domain into a low dimensional Euclidean space. More specifically, these algorithms

choose landmark points in the domain which then give the embedding. Assuming a certain

“goodness” property (that is formally defined) for the similarity function, these models

offer both generalization guarantees in terms of how well-suited the similarity function is

to the classification task as well as the ability to use fast algorithmic techniques such as

linear SVM (Fan et al., 2008) on the landmarked space. The model proposed by Balcan

and Blum (2006) give sufficient conditions for a similarity function to be well suited to

such a landmarking approach. Wang et al. (2007) on the other hand provide goodness

conditions for dissimilarity functions that enable landmarking algorithms.

Informally, a similarity (or distance) function can be said to be good if points of similar

labels are closer to each other than points of different labels in some sense. Both the models
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described above restrict themselves to a fixed goodness criterion, which need not hold for

the underlying data. We observe that this might be too restrictive in many situations and

present a framework that allows us to tune the goodness criterion itself to the classification

problem at hand. Our framework consequently unifies and generalizes those presented by

Balcan and Blum and Wang et al.. We first prove generalization bounds corresponding

to landmarked embeddings under a fixed goodness criterion. We then provide a uniform-

convergence bound that enables us to learn the best goodness criterion for a given problem.

We further generalize our framework by giving the ability to incorporate any Lipschitz loss

function into our goodness criterion which allows us to give guarantees for the use of various

algorithms such as C-SVM and logistic regression on the landmarked space. A desirable

side-effect of our model is that our training algorithms require training a linear classifier

in the landmarked space, for which there exist fast algorithms such as (Fan et al., 2008).

This endows our model with fast training as well as testing routines.

Similar to Balcan and Blum and Wang et al., our framework requires random sampling

of training points to create the embedding space1. However in practice, random sampling

is inefficient and requires sampling of a large number of points to form a useful embedding,

thereby increasing training and test time. To address this issue, Wang et al. propose a

heuristic to select the points that are to be used as landmarks. However their scheme is

tied to their optimization algorithm and is computationally inefficient for large scale data.

In contrast, we propose a general heuristic for selecting informative landmarks based on

a novel notion of diversity which can then be applied to any instantiation of our model.

Finally, we apply our methods to a variety of benchmark datasets for similarity learning

as well as ones from the UCI repository. We empirically demonstrate that our learning

model and landmark selection heuristic consistently offers significant improvements over

the existing approaches. In particular, for a small number of landmark points, which is a

practically important scenario as it is expensive to compute similarity function values at

test time, our method provides, on an average, accuracy boosts of upto 5% over existing

methods. We also note that our methods can be applied on top of any strategy used

to learn the similarity measure (eg. MKL techniques (Varma and Babu, 2009)) or the

distance measure (eg. (Jain et al., 2012)) itself. Akin to (Balcan and Blum, 2006), our

techniques can also be extended to learn a combination of (dis)similarity functions but we

do not explore these extensions in this work.

4.2 Methodology

Let D be a fixed but unknown distribution over the labeled input domain X and let

` : X → {−1,+1} be a labeling over the domain. Given a (potentially non-PSD) similarity

function2 K : X × X → R, the goal is to learn a classifier ˆ̀ : X → {−1,+1} from a finite

1 ↑ Throughout the chapter, we use the terms embedding space and landmarked space interchangeably.
2 ↑ Results described in this section hold for distance functions as well; we present results with respect

to similarity functions for sake of simplicity.
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number of i.i.d. samples from D that has bounded generalization error over D.

Now, learning a reasonable classifier seems unlikely if the given similarity function

does not have any inherent “goodness” property. Intuitively, the goodness of a similarity

function should be its suitability to the classification task at hand. For PSD kernels, the

notion of goodness is defined in terms of the margin offered in the RKHS (Balcan et al.,

2006). However, a more basic requirement is that the similarity function should preserve

affinities among similarly labeled points - that is to say, a good similarity function should

not, on an average, assign higher similarity values to dissimilarity labeled points than to

similarly labeled points. This intuitive notion of goodness turns out to be rather robust in

the sense that all PSD kernels that offer a good margin in their respective RKHSs satisfy

some form of this goodness criterion as well (Srebro, 2007).

Recently there has been some interest in studying different realizations of this gen-

eral notion of goodness and developing corresponding algorithms that allow for efficient

learning with similarity/distance functions. Balcan and Blum (2006) present a goodness

criteria in which a good similarity function is considered to be one that, for most points,

assigns a greater average similarity to similarly labeled points than to dissimilarly labeled

points. More specifically, a similarity function is (ε, γ)-good if there exists a weighting

function w : X → R such that, at least a (1 − ε) probability mass of examples x ∼ D
satisfies:

E
x′∼D

q
w
(
x′
)
K(x, x′)|`(x′) = `(x)

y
≥ E

x′∼D

q
w
(
x′
)
K(x, x′)|`(x′) 6= `(x)

y
+ γ. (4.1)

where instead of average similarity, one considers an average weighted similarity to allow

the definition to be more general.

Wang et al. (2007) define a distance function d to be good if a large fraction of the

domain is, on an average, closer to similarly labeled points than to dissimilarly labeled

points. They allow these averages to be calculated based on some distribution distinct

from D, one that may be more suited to the learning problem. However it turns out that

their definition is equivalent to one in which one again assigns weights to domain elements,

as done by Balcan and Blum (2006), and the following holds

E
x′,x′′∼D×D

q
w(x′)w(x′′) sgn

(
d(x, x′′)− d(x, x′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y
> γ (4.2)

Assuming their respective goodness criteria, Balcan and Blum (2006) and Wang et al.

(2007) provide efficient algorithms to learn classifiers with bounded generalization error.

However these notions of goodness with a single fixed criterion may be too restrictive in

the sense that the data and the (dis)similarity function may not satisfy the underlying

criterion. This is, for example, likely in situations with high intra-class variance. Thus

there is need to make the goodness criterion more flexible and data-dependent.

To this end, we unify and generalize both the above criteria to give a notion of goodness

that is more data dependent. Although the above goodness criteria (4.1) and (4.2) seem
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disparate at first, they can be shown to be special cases of a generalized framework where

an antisymmetric function is used to compare intra and inter-class affinities. We use this

observation to define our novel goodness criterion using arbitrary bounded antisymmetric

functions which we refer to as transfer functions. This allows us to define a family of

goodness criteria of which (4.1) and (4.2) form special cases ((4.1) uses the identity function

and (4.2) uses the sign function as transfer function). Moreover, the resulting definition of

a good similarity function is more flexible and data dependent. In the rest of the chapter

we shall always assume that our similarity functions are normalized i.e. for the domain of

interest X , sup
x,y∈X

K(x, y) ≤ 1.

Definition 4.1 (Good Similarity Function). A similarity function K : X × X → R is

said to be an (ε, γ,B)-good similarity for a learning problem where ε, γ,B > 0 if for some

antisymmetric transfer function f : R → R and some weighting function w : X × X →
[−B,B], at least a (1− ε) probability mass of examples x ∼ D satisfies

E
x′,x′′∼D×D

q
w
(
x′, x′′

)
f
(
K(x, x′)−K(x, x′′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y
≥ Cfγ (4.3)

where Cf = sup
x,x′∈X

f(K(x, x′))− inf
x,x′∈X

f(K(x, x′))

As mentioned before, the above goodness criterion generalizes the previous notions of

goodness (we refer the reader to Appendix A for a discussion) and is adaptive to changes in

data as it allows us, as shall be shown later, to learn the best possible criterion for a given

classification task by choosing the most appropriate transfer function from a parametrized

family of functions. We stress that the property of antisymmetry for the transfer function

is crucial to the definition in order to provide a uniform treatment to points of all classes

as will be evident in the proof of Theorem 4.2.

As in (Balcan and Blum, 2006; Wang et al., 2007), our goodness criterion lends itself

to a simple learning algorithm which consists of choosing a set of d random pairs of points

from the domain P =
{(
x+
i , x

−
i

)}d
i=1

(which we refer to as landmark pairs) and defining an

embedding of the domain into a landmarked space using these landmarks : ΦL : X → Rd

as follows

ΦL(x) =
(
f(K(x, x+

i )−K(x, x−i ))
)d
i=1
∈ Rd.

The advantage of performing this embedding is the guaranteed existence of a large margin

classifier in the landmarked space as shown below.

Theorem 4.2. If K is an (ε, γ,B)-good similarity with respect to transfer function f and

weight function w then for any ε1 > 0, with probability at least 1 − δ over the choice of

d = (8/γ2) ln(2/δε1) positive and negative samples,
{
x+
i

}d
i=1
⊂ D+ and

{
x−i
}d
i=1
⊂ D−

respectively, the classifier h(x) = sgn[g(x)] where

g(x) =
1

d

d∑
i=1

w(x+
i , x

−
i )f

(
K(x, x+

i )−K(x, x−i )
)
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has error no more than ε+ ε1 at margin γ
2 .

However, there are two hurdles to obtaining this large margin classifier. Firstly, the

existence of this classifier itself is predicated on the use of the correct transfer function,

something which is unknown. Secondly, even if an optimal transfer function is known,

the above formulation cannot be converted into an efficient learning algorithm for dis-

covering the (unknown) weights since the formulation seeks to minimize the number of

misclassifications which is an intractable problem in general.

We overcome these two hurdles by proposing a nested learning problem. First of all

we assume that for some fixed loss function L, given any transfer function and any set

of landmark pairs, it is possible to obtain a large margin classifier in the corresponding

landmarked space that minimizes L. Having made this assumption, we address below the

issue of learning the optimal transfer function for a given learning task. However as we

have noted before, this assumption is not valid for arbitrary loss functions. This is why,

subsequently in Section 4.2.2, we shall show it to be valid for a large class of loss functions

by incorporating surrogate loss functions into our goodness criterion.

4.2.1 Learning the transfer function

In this section we present results that allow us to learn a near optimal transfer function

from a family of transfer functions. We shall assume, for some fixed loss function L,

the existence of an efficient routine which we refer to as train that shall return, for

any landmarked space indexed by a set of landmark pairs P, a large margin classifier

minimizing L. The routine train is allowed to make use of additional training data to

come up with this classifier.

An immediate algorithm for choosing the best transfer function is to simply search the

set of possible transfer functions (in an algorithmically efficient manner) and choose the

one offering lowest training error. We show here that given enough landmark pairs, this

simple technique, which we refer to as FTUNE (see Algorithm 4) is guaranteed to return

a near-best transfer function. For this we prove a uniform convergence type guarantee on

the space of transfer functions.

Let F ⊂ [−1, 1]R be a class of antisymmetric functions and W = [−B,B]X×X be

a class of weight functions. For two real valued functions f and g defined on X , let

‖f − g‖∞ := sup
x∈X
|f(x)− g(x)|. Let B∞(f, r) := {f ′ ∈ F | ‖f − f ′‖∞ < r}. Let L be a

CL-Lipschitz loss function. Let P =
{(
x+
i , x

−
i

)}d
i=1

be a set of (random) landmark pairs.

For any f ∈ F , w ∈ W, define

G(f,w)(x) = E
x′,x′′∼D×D

q
w
(
x′, x′′

)
f
(
K(x, x′)−K(x, x′′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y

g(f,w)(x) =
1

d

d∑
i=1

w
(
x+
i , x

−
i

)
f
(
K(x, x+

i )−K(x, x−i )
)

Theorem 4.7 (see Section 4.2.2) guarantees us that for any fixed f and any ε1 > 0, if d is
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large enough then E
x

q
L(g(f,w)(x))

y
≤ E

x

q
L(G(f,w)(x))

y
+ ε1. We now show that a similar

result holds even if one is allowed to vary f . Before stating the result, we develop some

notation.

For any transfer function f and arbitrary choice of landmark pairs P, let w(g,f) be

the best weighting function for this choice of transfer function and landmark pairs i.e.

let w(g,f) = arg min
w∈[−B,B]d

E
x∼D

q
L
(
g(f,w)(x)

)y
3. Similarly, let w(G,f) be the best weighting

function corresponding to G i.e. w(G,f) = arg min
w∈W

E
x∼D

q
L
(
G(f,w)(x)

)y
. Then we can ensure

the following :

Theorem 4.3. Let F be a compact class of transfer functions with respect to the infinity

norm and ε1, δ > 0. Let N (F , r) be the size of the smallest ε-net over F with respect

to the infinity norm at scale r = ε1
4CLB

. Then if one chooses d =
64B2C2

L

ε21
ln
(

16B·N (F ,r)
δε1

)
random landmark pairs then we have the following with probability greater than (1− δ)

sup
f∈F

[∣∣∣∣ E
x∼D

r
L
(
g(f,w(g,f))(x)

)z
− E
x∼D

r
L
(
G(f,w(G,f))(x)

)z∣∣∣∣] ≤ ε1

We shall prove the theorem in two parts. As we shall see, one of the parts is fairly

simple to prove. To prove the other part, we shall exploit the Lipschitz properties of the

loss function as well as the fact that the class of transfer functions chosen form a compact

set. Let us call a given set of landmark pairs to be good with respect to a fixed transfer

function f ∈ F if for the corresponding g, E
x

JL(g(x))K ≤ E
x

JL(G(x))K + ε1 for some small

fixed ε1 > 0.

We will first prove, using Lipschitz properties of the loss function that if a given set

of landmarks is good with respect to a given transfer function, then it is also good with

respect to all transfer functions in its neighborhood. Having proved this, we will apply

a standard covering number argument in which we will ensure that a large enough set of

landmarks is good with respect to a set of transfer functions that form an ε-net over F
and use the previous result to complete the proof.

We first prove a series of simple results which will be used in the first part of the proof.

In the following f and f ′ are two transfer functions such that f ′ ∈ B∞(f, r) ∩ F .

Lemma 4.4. The following results are true

1. For any fixed f ∈ F , E
x∼D

r
L
(
G(f,w(G,f))(x)

)z
≤ E

x∼D

q
L
(
G(f,w)(x)

)y
for all w ∈ W.

2. For any fixed f ∈ F , any fixed g obtained by an arbitrary choice of landmark pairs,

E
x∼D

r
L
(
g(f,w(g,f))(x)

)z
≤ E

x∼D

q
L
(
g(f,w)(x)

)y
for all w ∈ W.

3. For any f ′ ∈ B∞(f, r) ∩ F ,∣∣∣∣ E
x∼D

r
L
(
G(f,w(G,f))(x)

)z
− E
x∼D

r
L
(
G(f ′,w(G,f ′))

(x)
)z∣∣∣∣ ≤ CLrB.

3 ↑ Note that the function g(f,w)(x) is dictated by the choice of the set of landmark pairs P
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4. For any fixed g obtained by an arbitrary choice of landmark pairs, f ′ ∈ B∞(f, r)∩F ,∣∣∣∣ E
x∼D

r
L
(
g(f,w(g,f))(x)

)z
− E
x∼D

r
L
(
g(f ′,w(g,f ′))

(x)
)z∣∣∣∣ ≤ CLrB.

Using the above results we get a preliminary form of the first part of our proof as

follows :

Lemma 4.5. Suppose a set of landmarks is (ε1/2)-good for a particular classifier f ∈ F
(i.e. E

x∼D

r
L
(
g(f,w(G,f))(x)

)z
< E

x∼D

r
L
(
G(f,w(G,f))(x)

)z
+ ε1/2), then the same set of

landmarks is also ε1-good for any f ′ ∈ B∞(f, r) ∩ F (i.e. for all f ′ ∈ B∞(f, r) ∩ F ,

E
x∼D

r
L
(
g(f ′,w(g,f ′))

(x)
)z
≤ E

x∼D

r
L
(
G(f ′,w(G,f ′))

(x)
)z

+ ε1) for some r = r (ε1).

The full proof of Theorem 4.3 is given in Section 4.4. This result tells us that in a

large enough landmarked space, we shall, for each function f ∈ F , recover close to the best

classifier possible for that transfer function. Thus, if we iterate over the set of transfer

functions (or use some gradient-descent based optimization routine), we are bound to

select a transfer function that is capable of giving a classifier that is close to the best.

4.2.2 Working with surrogate loss functions

The formulation of a good similarity function suggests a simple learning algorithm that

involves the construction of an embedding of the domain into a landmarked space on which

the existence of a large margin classifier having low misclassification rate is guaranteed.

However, in order to exploit this guarantee we would have to learn the weights w
(
x+
i , x

−
i

)
associated with this classifier by minimizing the empirical misclassification rate on some

training set.

Unfortunately, not only is this problem intractable but also hard to solve approximately

(Garey and Johnson, 1979; Arora et al., 1997). Thus what we require is for the landmarked

space to admit a classifier that has low error with respect to a loss function that can also

be efficiently minimized on any training set. In such a situation, minimizing the loss on

a random training set would, with very high probability, give us weights that give similar

performance guarantees as the ones used in the goodness criterion.

With a similar objective in mind, Balcan and Blum (2006) offer variants of its goodness

criterion tailored to the hinge loss function which can be efficiently optimized on large

training sets (for example LIBSVM (Chang and Lin, 2011)). Here we give a general notion

of goodness that can be tailored to any arbitrary Lipschitz loss function.

Definition 4.6. A similarity function K : X × X → R is said to be an (ε,B)-good

similarity for a learning problem with respect to a loss function L : R→ R+ where ε > 0 if

for some transfer function f : R→ R and some weighting function w : X ×X → [−B,B],

E
x∼D

JL(G(x))K ≤ ε where

G(x) = E
x′,x′′∼D×D

q
w
(
x′, x′′

)
f
(
K(x, x′)−K(x, x′′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y
.
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One can see that taking the loss functions as L(x) = 1x<Cfγ gives us Equation 4.3

which defines a good similarity under the 0− 1 loss function. It turns out that we can, for

any Lipschitz loss function, give similar guarantees on the performance of the classifier in

the landmarked space.

Theorem 4.7. If K is an (ε,B)-good similarity function with respect to a CL-Lipschitz

loss function L then for any ε1 > 0, with probability at least 1 − δ over the choice of

d = (16B2C2
L/ε

2
1) ln(4B/δε1) positive and negative samples from D+ and D− respectively,

the expected loss of the classifier g(x) with respect to L satisfies E
x

JL(g(x))K ≤ ε+ε1 where

g(x) = 1
d

∑d
i=1w

(
x+
i , x

−
i

)
f
(
K(x, x+

i )−K(x, x−i )
)
.

If the loss function is hinge loss at margin γ then CL = 1
γ . The 0− 1 loss function and

the loss function L(x) = 1x<γ (implicitly used in Definition 4.1 and Theorem 4.2) are not

Lipschitz and hence this proof technique does not apply to them.

4.2.3 Selecting informative landmarks

Recall that the generalization guarantees we described in the previous section rely on

random selection of landmark pairs from a fixed distribution over the domain. However,

in practice, a totally random selection might require one to select a large number of

landmarks, thereby leading to an inefficient classifier in terms of training as well as test

times. For typical domains such as computer vision, similarity function computation is

an expensive task and hence selection of a small number of landmarks should lead to a

significant improvement in the test times. For this reason, we propose a landmark pair

selection heuristic which we call DSELECT (see Algorithm 3). The heuristic generalizes

naturally to multi-class problems and can also be applied to the classification model of

Balcan-Blum that uses landmark singletons instead of pairs.

At the core of our heuristic is a novel notion of diversity among landmarks. Assuming

K is a normalized similarity kernel, we call a set of points S ⊂ X diverse if the average

inter-point similarity is small i.e 1
|S|(|S|−1)

∑
x,y∈S,x6=yK(x, y)� 1 (in case we are working

with a distance kernel we would require large inter-point distances). The key observation

behind DSELECT is that a non-diverse set of landmarks would cause all data points

to receive identical embeddings and linear separation would be impossible. Small inter-

landmark similarity, on the other hand would imply that the landmarks are well-spread

in the domain and can capture novel patterns in the data.

Similar notions of diversity have been used in the past for ensemble classifiers (Venkatara-

mani and Kumar, 2009) and k-NN classifiers (Chen et al., 2009a). Here we use this notion

to achieve a better embedding into the landmarked space. Experimental results demon-

strate that the heuristic offers significant performance improvements over random land-

mark selection (see Figure 4.1). One can easily extend Algorithm 3 to multi-class problems

by selecting a fixed number of landmarks from each class.
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Algorithm 3 DSELECT: Selecting Landmark (Pairs)

Input: A training set T , landmarking size d.

Output: A set of d landmark pairs/singletons.

1: L ← get-random-element(T ), PFTUNE ← ∅
2: for j = 2 to d do

3: z ← arg min
x∈T

∑
x′∈L

K(x, x′).

4: L ← L ∪ {z}, T ← T\{z}
5: end for

6: for j = 1 to d do

7: Sample z1, z2, s.t., `(z1) = 1, `(z2) = −1 randomly from L with replacement

8: PFTUNE ← PFTUNE ∪ {(z1, z2)}
9: end for

10: return L (for BBS), PFTUNE (for FTUNE)

Algorithm 4 FTUNE: Learning the Best Transfer Function

Input: A family of transfer functions F , a similarity function K and a loss function L

Output: An optimal transfer function f∗ ∈ F .

1: Select d landmark pairs P .

2: for all f ∈ F do

3: wf ← train(P, L), Lf ← L (wf )

4: end for

5: f∗ ← arg min
f∈F

Lf

6: return (f∗, wf∗).

4.3 Empirical results

In this section, we empirically study the performance of our proposed methods on a variety

of benchmark datasets. We refer to the algorithmic formulation presented in Balcan and

Blum (2006) as BBS and its augmentation using DSELECT as BBS+D. We refer to

the formulation presented in Wang et al. (2007) as DBOOST. We refer to our transfer

function learning based formulation as FTUNE and its augmentation using DSELECT

as FTUNE+D. In multi-class classification scenarios we will use a one-vs-all formula-

tion which presents us with an opportunity to further exploit the transfer function by

learning separate transfer function per class (i.e. per one-vs-all problem). We shall refer

to our formulation using a single (resp. multiple) transfer function as FTUNE+D-S

(resp. FTUNE+D-M). We take the class of ramp functions indexed by a slope param-

eter as our set of transfer functions. We use 6 different values of the slope parameter

{1, 5, 10, 50, 100, 1000}. Note that these functions (approximately) include both the iden-

tity function (used by Balcan and Blum (2006)) and the sign function (used by Wang
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et al. (2007)).

Our goal in this section is two-fold: 1) to show that our FTUNE method is able to

learn a more suitable transfer function for the underlying data than the existing methods

BBS and DBOOST and 2) to show that our diversity based heuristic for landmark

selection performs better than random selection. To this end, we perform experiments on

a few benchmark datasets for learning with similarity (non-PSD) functions (Chen et al.,

2009a) as well as on a variety of standard UCI datasets where the similarity function used

is the Gaussian kernel function.

For our experiments, we implemented our methods FTUNE and FTUNE+D as

well as BBS and BBS+D using MATLAB while using LIBLINEAR (Fan et al., 2008) for

SVM classification. For DBOOST, we use the C++ code provided by Wang et al.. On

all the datasets we randomly selected a fixed percentage of data for training, validation

and testing. Except for DBOOST , we selected the SVM penalty constant C from the set

{1, 10, 100, 1000} using validation. For each method and dataset, we report classification

accuracies averaged over 20 runs. We compare accuracies obtained by different methods

using t-test at 95% significance level.

4.3.1 Similarity learning datasets

First, we conduct experiments on a few similarity learning datasets Chen et al. (2009a);

these datasets provide a (non-PSD) similarity matrix along with class labels. For each of

the datasets, we randomly select 70% of the data for training, 10% for validation and the

remaining for testing purposes. We then apply our FTUNE-S, FTUNE+D-S, BBS+D

methods along with BBS and DBOOST with varying number of landmark pairs. Note

that we do not apply our FTUNE-M method to these datasets as it overfits heavily to

these datasets as typically they are small in size.

We first compare the accuracy achieved by FTUNE+D-S with the existing methods.

Table 4.1 compares the accuracies achieved by our FTUNE+D-S method with those of

BBS and DBOOST over different datasets when using landmark sets of sizes 30 and

300. Numbers in brackets denote standard deviation over different runs. Note that in

both the tables FTUNE+D-S is one of the best methods (upto 95% significance level)

on all but one dataset. Furthermore, for datasets with large number of classes such as

Amazon47 and FaceRec our method outperforms BBS and DBOOST by at least 20%

percent. Also, note that some of the datasets have multiple bold faced methods, which

means that the two sample t-test (at 95% level) rejects the hypothesis that their mean is

different.

Next, we evaluate the effectiveness of our landmark selection criteria for both BBS

and our method. Figure 4.1 shows the accuracies achieved by various methods on four

different datasets with increasing number of landmarks. Note that in all the datasets, our

diversity based landmark selection criteria increases the classification accuracy by around

5− 6% for small number of landmarks.
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Dataset/Method BBS DBOOST FTUNE+D-S

AmazonBinary 0.73(0.13) 0.77(0.10) 0.84(0.12)

AuralSonar 0.82(0.08) 0.81(0.08) 0.80(0.08)

Patrol 0.51(0.06) 0.34(0.11) 0.58(0.06)

Voting 0.95(0.03) 0.94(0.03) 0.94(0.04)

Protein 0.98(0.02) 1.00(0.01) 0.98(0.02)

Mirex07 0.12(0.01) 0.21(0.03) 0.28(0.03)

Amazon47 0.39(0.06) 0.07(0.04) 0.61(0.08)

FaceRec 0.20(0.04) 0.12(0.03) 0.63(0.04)

(a) 30 Landmarks.

Dataset/Method BBS DBOOST FTUNE+D-S

AmazonBinary 0.78(0.11) 0.82(0.10) 0.88(0.07)

AuralSonar 0.88(0.06) 0.85(0.07) 0.85(0.07)

Patrol 0.79(0.05) 0.55(0.12) 0.79(0.07)

Voting 0.97(0.02) 0.97(0.01) 0.97(0.02)

Protein 0.98(0.02) 0.99(0.02) 0.98(0.02)

Mirex07 0.17(0.02) 0.31(0.04) 0.35(0.02)

Amazon47 0.40(0.13) 0.07(0.05) 0.66(0.07)

FaceRec 0.27(0.05) 0.19(0.03) 0.64(0.04)

(b) 300 Landmarks.

Table 4.1: Accuracies for Benchmark Similarity Learning Datasets for Embedding Di-
mensionality=30, 300. Bold numbers indicate the best performance with 95% confidence
level.

4.3.2 UCI benchmark datasets

We now compare our FTUNE method against existing methods on a variety of UCI

datasets (uci). We ran experiments with FTUNE and FTUNE+D but the latter did

not provide any advantage. So for lack of space we drop it from our presentation and only

show results for FTUNE-S (FTUNE with a single transfer function) and FTUNE-M

(FTUNE with one transfer function per class). Similar to Wang et al. (2007), we use

the Gaussian kernel function as the similarity function for evaluating our method. We

set the “width” parameter in the Gaussian kernel to be the mean of all pair-wise training

data distances, a standard heuristic. For all the datasets, we randomly select 50% data

for training, 20% for validation and the remaining for testing. We report accuracy values

averaged over 20 runs for each method with varying number of landmark pairs.

Table 4.2 compares the accuracies obtained by our FTUNE-S and FTUNE-M meth-

ods with those of BBS and DBOOST when applied to different UCI benchmark datasets.

Note that FTUNE-S is one of the best on most of the datasets for both the landmarking

sizes. Also, BBS performs reasonably well for small landmarking sizes while DBOOST

performs well for large landmarking sizes. In contrast, our methods, especially FTUNE-S,

consistently outperform the existing methods in both the scenarios.
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Figure 4.1: Accuracy obtained by various methods on four similarity-based learning
datasets as the number of landmarks used increases.

Next, we study accuracies obtained by our method for different landmarking sizes.

Figure 4.2 shows accuracies obtained by various methods as the number of landmarks

selected increases. Note that the accuracy curve of our method dominates the accuracy

curves of all the other methods, i.e. our method is consistently better than the existing

methods for all the landmarking sizes considered. Also note that both FTUNE-S and

FTUNE-M perform significantly better than BBS and DBOOST for small number of

landmarks (30, 50).

4.3.3 Discussion

We note that since FTUNE selects its output by way of validation, it is susceptible to

over-fitting on small datasets but at the same time, capable of giving performance boosts

on large ones. We observe a similar trend in our experiments – on smaller datasets (such

as those in Table 4.1 with average dataset size 660), FTUNE over-fits and performs

worse than BBS and DBOOST. However, even in these cases, DSELECT (intuitively)

removes redundancies in the landmark points thus allowing FTUNE to recover the best

transfer function. In contrast, for larger datasets like those in Table 4.2 (average size

13200), FTUNE is itself able to recover better transfer functions than the baseline meth-

ods and hence both FTUNE-S and FTUNE-M perform significantly better than the
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Dataset/Method BBS DBOOST FTUNE-S FTUNE-M

Cod-rna 0.93(0.01) 0.89(0.01) 0.93(0.01) 0.93(0.01)

Isolet 0.81(0.01) 0.67(0.01) 0.84(0.01) 0.83(0.01)

Letters 0.67(0.02) 0.58(0.01) 0.69(0.01) 0.68(0.02)

Magic 0.82(0.01) 0.81(0.01) 0.84(0.01) 0.84(0.01)

Pen-digits 0.94(0.01) 0.93(0.01) 0.97(0.01) 0.97(0.00)

Nursery 0.91(0.01) 0.91(0.01) 0.90(0.01) 0.90(0.00)

Faults 0.70(0.01) 0.68(0.02) 0.70(0.02) 0.71(0.02)

Mfeat-pixel 0.94(0.01) 0.91(0.01) 0.95(0.01) 0.94(0.01)

Mfeat-zernike 0.79(0.02) 0.72(0.02) 0.79(0.02) 0.79(0.02)

Opt-digits 0.92(0.01) 0.89(0.01) 0.94(0.01) 0.94(0.01)

Satellite 0.85(0.01) 0.86(0.01) 0.86(0.01) 0.87(0.01)

Segment 0.90(0.01) 0.93(0.01) 0.92(0.01) 0.92(0.01)

(a) 30 Landmarks.

Dataset/Method BBS DBOOST FTUNE-S FTUNE-M

Cod-rna 0.94(0.00) 0.93(0.00) 0.94(0.00) 0.94(0.00)

Isolet 0.91(0.01) 0.89(0.01) 0.93(0.01) 0.93(0.00)

Letters 0.72(0.01) 0.84(0.01) 0.83(0.01) 0.83(0.01)

Magic 0.84(0.01) 0.84(0.00) 0.85(0.01) 0.85(0.01)

Pen-digits 0.96(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00)

Nursery 0.93(0.01) 0.97(0.00) 0.96(0.00) 0.97(0.00)

Faults 0.72(0.02) 0.74(0.02) 0.73(0.02) 0.73(0.02)

Mfeat-pixel 0.96(0.01) 0.97(0.01) 0.97(0.01) 0.97(0.01)

Mfeat-zernike 0.81(0.01) 0.79(0.01) 0.82(0.02) 0.82(0.01)

Opt-digits 0.95(0.01) 0.97(0.00) 0.98(0.00) 0.98(0.00)

Satellite 0.85(0.01) 0.90(0.01) 0.89(0.01) 0.89(0.01)

Segment 0.90(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01)

(b) 300 Landmarks.

Table 4.2: Accuracies for Gaussian Kernel on UCI Datasets for Embedding Dimensional-
ity=30, 300. Bold numbers indicate the best performance with 95% confidence level.

baselines. Note that DSELECT is not able to provide any advantage here since the

datasets sizes being large, greedy selection actually ends up hurting the accuracy.

4.4 Proofs

We give missing proofs below.

4.4.1 Proof of Theorem 4.2

We shall prove that with probability at least 1 − δ, at least a 1 − ε1 fraction of points x

that satisfy Equation 4.3 are classified correctly by the classifier h(x). Overestimating the

error by treating the points that do not satisfy Equation 4.3 as always being misclassified
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Figure 4.2: Accuracy achieved by various methods on four different UCI repository
datasets as the number of landmarks used increases.

will give us the desired result.

For any fixed x ∈ X+ that satisfies Equation 4.3, we have

E
x′,x′′∼D×D

q
w(x′, x′′)f

(
K(x, x′)−K(x, x′′)

)
|`(x′) = 1, `(x′′) = −1

y
≥ Cfγ

hence the Hoeffding Bounds give us

P
[
g(x) <

γ

2

]
= P

[
1

d

d∑
i=1

w(x+
i , x

−
i )f

(
K(x, x+

i )−K(x, x−i )
)
<
γ

2

]
≤ 2 exp

(
−γ

2d

8

)

Similarly, for any fixed x ∈ X− that satisfies Equation 4.3, we have

E
x′,x′′∼D×D

q
w(x′, x′′)f

(
K(x, x′)−K(x, x′′)

)
|`(x′) = −1, `(x′′) = 1

y
≥ Cfγ

hence the Hoeffding Bounds give us

P
[
g(x) >

γ

2

]
= P

[
1

d

d∑
i=1

w(x+
i , x

−
i )f

(
K(x, x+

i )−K(x, x−i )
)
>
γ

2

]
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= P

[
1

d

d∑
i=1

w(x+
i , x

−
i )f

(
K(x, x−i )−K(x, x+

i )
)
<
γ

2

]
≤ 2 exp

(
−γ

2d

8

)

where in the second step we have used antisymmetry of f .

Since we have shown that this result holds true individually for any point x that

satisfies Equation 4.3, the expected error (where the expectation is both over the choice

of domain points as well as choice of the landmark points) itself turns out to be less

than 2 exp
(
−γ2d

8

)
≤ ε1δ. Applying Markov’s inequality gives us that the probability

of obtaining a set of landmarks such that the error on points satisfying Equation 4.3 is

greater than ε1 is at most δ.

Assuming, as mentioned earlier, that the points not satisfying Equation 4.3 can always

be misclassified proves our desired result.

4.4.2 Proof of Lemma 4.4

We prove the results in order,

1. Immediate from the definition of w(G,f).

2. Immediate from the definition of w(g,f).

3. We have E
x∼D

r
L
(
G(f ′,w(G,f ′))

(x)
)z
≤ E

x∼D

r
L
(
G(f ′,w(G,f))(x)

)z
by an application of

Lemma 4.4.1 proven above. For sake of simplicity let us denote w(G,f) = w for the

next set of calculations. Now we have

G(f ′,w)(x) = E
x′,x′′∼D×D

q
w
(
x′, x′′

)
f ′
(
K(x, x′)−K(x, x′′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y

≤ E
x′,x′′∼D×D

q
w
(
x′, x′′

) (
f
(
K(x, x′)−K(x, x′′)

)
+ r
)
|`(x′) = `(x), `(x′′) 6= `(x)

y

= E
x′,x′′∼D×D

q
w
(
x′, x′′

)
f
(
K(x, x′)−K(x, x′′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y

+ r · E
x′,x′′∼D×D

q
w
(
x′, x′′

)
|`(x′) = `(x), `(x′′) 6= `(x)

y

≤ G(f,w)(x) + rB

where in the second inequality we have used the fact that ‖f − f ′‖∞ ≤ r and in the

fourth inequality we have used the fact that w ∈ W. Thus we have G(f ′,w)(x) ≤
G(f,w)(x) + rB. Using the Lipschitz properties of L we can now get

E
x∼D

q
L
(
G(f ′,w)(x)

)y
≤ E

x∼D

q
L
(
G(f,w)(x)

)y
+ CLrB.

Thus we have

E
x∼D

r
L
(
G(f ′,w(G,f ′))

(x)
)z

≤ E
x∼D

r
L
(
G(f ′,w(G,f))(x)

)z
≤ E

x∼D

r
L
(
G(f,w(G,f))(x)

)z
+ CLrB.
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Similarly we can also prove

E
x∼D

r
L
(
G(f,w(G,f))(x)

)z
≤ E

x∼D

r
L
(
G(f ′,w(G,f ′))

(x)
)z

+ CLrB.

This gives us the desired result.

4. The proof follows in a manner similar to the one for Lemma 4.4.3 proven above.

4.4.3 Proof of Lemma 4.5

Theorem 4.7 proven below guarantees that for any fixed f ∈ F , with probability 1 − δ
that E

x∼D

r
L
(
g(f,w(G,f))(x)

)z
< E

x∼D

r
L
(
G(f,w(G,f))(x)

)z
+ ε1/2. This can be achieved

with d = (64B2C2
L/ε

2
1) ln(8B/δε1). Now assuming that the above holds, using the above

results we can get the following for any f ′ ∈ B∞(f, r) ∩ F .

E
x∼D

r
L
(
g(f ′,w(g,f ′))

(x)
)z

≤ E
x∼D

r
L
(
g(f,w(g,f))(x)

)z
+ CLrB

(using Lemma 4.4.4)

≤ E
x∼D

r
L
(
g(f,w(G,f))(x)

)z
+ CLrB

(using Lemma 4.4.2)

≤ E
x∼D

r
L
(
G(f,w(G,f))(x)

)z
+ ε1/2 + CLrB

(using Theorem 4.7)

≤ E
x∼D

r
L
(
G(f ′,w(G,f ′))

(x)
)z

+ ε1/2 + 2CLrB

(using Lemma 4.4.3)

Setting r = ε1
4CLB

gives us the desired result.

4.4.4 Proof of Theorem 4.3

As mentioned earlier we shall prove the theorem in two parts as follows :

1. (Part I) In this part we shall prove the following :

sup
f∈F

[
E
x∼D

r
L
(
g(f,w(g,f))(x)

)z
− E
x∼D

r
L
(
G(f,w(G,f))(x)

)z]
≤ ε1

We first set up an ε-net over F at scale r = ε1
4CLB

. Let there be N (F , r) elements

in this net. Taking d = (64B2C2
L/ε

2
1) ln(8B ·N (F , r) /δε1) landmarks should ensure

that the landmarks, with very high probability, are good for all functions in the net

by an application of union bound. Since every function in F is at least r-close to

some function in the net, Lemma 4.5 tells us that the same set of landmarks are,

with very high probability, good for all the functions in F . This proves the first part

of our result.
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2. (Part II) In this part we shall prove the following :

sup
f∈F

[
E
x∼D

r
L
(
G(f,w(G,f))(x)

)z
− E
x∼D

r
L
(
g(f,w(g,f))(x)

)z]
≤ ε1

This part is actually fairly simple to prove. Intuitively, since one can imagine G as

being the output of an algorithm that is allowed to take the entire domain as its

landmark set, we should expect E
x∼D

r
L
(
G(f,w(G,f))(x)

)z
≤ E

x∼D

r
L
(
g(f,w(g,f))(x)

)z
to hold unconditionally for every f . For a formal argument, let us build up some more

notation. As we have said before, for any transfer function f and arbitrary choice of

d landmark pairs P, we let w(g,f) ∈ [−B,B]d be the best weighing function for this

choice of transfer function and landmark pairs. Now let w(g,f) be the best possible

extension of w(g,f) to the entire domain. More formally, for any w∗ ∈ [−B,B]d let

w∗ = arg min
w∈W,w|P=w∗

E
x∼D

q
L
(
G(f,w)(x)

)y
.

Now Lemma 4.4.1 tells us that for any f ∈ F and any choice of landmark pairs

P, E
x∼D

r
L
(
G(f,w(G,f))(x)

)z
≤ E

x∼D

r
L
(
G(f,w(g,f))(x)

)z
. Furthermore, since w(g,f) is

chosen to be the most beneficial extension of w(g,f), we also have E
x∼D

r
L
(
G(f,w(g,f))(x)

)z
≤

E
x∼D

r
L
(
g(f,w(g,f))(x)

)z
. Together, these two inequalities give us the second part of

the proof.

4.4.5 Proof of Theorem 4.7

For any x ∈ X , we have, by an application of Hoeffding bounds

P
g

[|G(x)− g(x)| > ε1] < 2 exp

(
− ε

2
1d

2B2

)
since |g(x)| ≤ B. Here the notation P

g
[·] signifies that the probability is over the choice of

the landmark points. Thus for d > 4B2

ε21
ln
(

2
δ

)
, we have

P
g

[|G(x)− g(x)| > ε1] < δ2.

For sake of simplicity let us denote by BAD (x) the event |G(x)− g(x)| > ε1. Thus we

have, for every x ∈ X , E
g

q
1BAD(x)

y
< δ2. Since this is true for every x ∈ X , this also

holds in expectation i.e. E
x
E
g

q
1BAD(x)

y
< δ2. The expectation over x is with respect to the

problem distribution D. Applying Fubini’s Theorem gives us E
g
E
x

q
1BAD(x)

y
< δ2 which

upon application of Markov’s inequality gives us P
g

[
E
x

q
1BAD(x)

y
> δ
]
< δ. Thus, with

very high probability we would always choose landmarks such that P
x

[BAD(x)] < δ. Thus

we have, in such a situation,

E
x

J|G(x)− g(x)|K ≤ (1− δ)ε1 + δ · 2B
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since sup
x∈X
|G(x)− g(x)| ≤ 2B. For small enough δ we have E

x
J|G(x)− g(x)|K ≤ 2ε1.

Thus we have

E
x

JL(g(x))K− E
x

JL(G(x))K = E
x

JL(g(x))− L(G(x))K

≤ E
x

JCL · |g(x)−G(x)|K

= CL · E
x

J|g(x)−G(x)|K ≤ 2CLε1

where we used the Lipschitz properties of the loss function L to arrive at the second

inequality. Putting ε1 =
ε′1

2CL
we have E

x
JL(g(x))K ≤ E

x
JL(G(x))K+ ε′1 ≤ ε+ ε′1 which gives

us our desired result.

Actually we can prove something stronger since∣∣∣E
x

JL(g(x))K− E
x

JL(G(x))K
∣∣∣ =

∣∣∣E
x

JL(g(x))− L(G(x))K
∣∣∣

≤ E
x

J|L(g(x))− L(G(x))|K

≤ E
x

JCL · |g(x)−G(x)|K ≤ ε′1.

Thus we have ε− ε′1 ≤ E
x

JL(g(x))K ≤ ε+ ε′1.
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Abstract In this chapter we extend the learning models discussed for classification in

Chapter 4 to arbitrary supervised learning problems. We propose a model that is generic

enough to handle any supervised learning task and also subsumes models previously pro-

posed for classification. We give a “goodness” criterion for similarity functions w.r.t.
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a given supervised learning task and then adapt a well-known landmarking technique to

provide efficient algorithms for supervised learning using “good” similarity functions. We

demonstrate the effectiveness of our model on three important supervised learning prob-

lems: a) real-valued regression, b) ordinal regression and c) ranking. Furthermore, for

the case of real-valued regression, we show how to obtain a sparse predictor with bounded

generalization error. For this case, our model is able to demonstrate a support vector-like

effect for indefinite kernel learning. Finally, we report results of our learning algorithms

on regression and ordinal regression tasks using non-PSD similarity functions and demon-

strate the effectiveness of our algorithms, especially that of the sparse learning algorithm

that achieves significantly higher accuracies than the baseline methods while offering re-

duced computational costs.

5.1 Introduction

The goal of this chapter is to develop an extended framework for supervised learning

with similarity functions. As we have noted earlier, kernel learning algorithms (Schölkopf

and Smola, 2002) have become the mainstay of discriminative learning with an incredible

amount of effort having been put in, both from the theoretician’s as well as the prac-

titioner’s side. Kernel learning has found application in several learning tasks such as

classification, regression, ranking, clustering and principal component analysis (Schölkopf

and Smola, 2002). There exist several theoretical results providing generalization guaran-

tees on the performance of kernel learning algorithms as well several off-the-shelf toolkits

available for various kernel learning problems.

However, existing algorithms for most of these tasks require the kernel function to

be positive semi-definite (PSD), which can be a limiting factor for several applications.

Reasons being: 1) the Mercer’s condition is a formal statement that is hard to verify, 2)

several natural notions of similarity that arise in practical scenarios are not PSD, and 3)

it is not clear as to why an artificial constraint like PSD-ness should limit the usability of

a kernel.

Several recent papers have demonstrated that indefinite similarity functions can indeed

be successfully used for learning (Haasdonk, 2005; Ong et al., 2004; Chen et al., 2009b;

Luss and d’Aspremont, 2007). However, most of the existing work focuses on classification

tasks and provides specialized techniques for the same, albeit with little or no theoretical

guarantees. A notable exception is the line of work by Balcan and Blum (2006); Wang

et al. (2007); Kar and Jain (2011) that defines a goodness criterion for a similarity function

and then provides an algorithm that can exploit this goodness criterion to obtain provably

accurate classifiers. However, their definitions are yet again restricted to the problem of

classification as they take a “margin” based view of the problem that requires positive

points to be more similar to positive points than to negative points by at least a constant

margin.

In this work, we instead take a “target-value” point of view and require that target
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values of similar points be similar. Using this view, we propose a generic goodness defini-

tion that also admits the goodness definition of Balcan and Blum (2006) for classification

as a special case. Furthermore, our definition can be seen as imposing the existence of a

smooth function over a generic space defined by similarity functions, rather than over a

Hilbert space as required by typical goodness definitions of PSD kernels.

We then adapt the landmarking technique of Balcan and Blum (2006) to provide an

efficient algorithm that reduces learning tasks to corresponding learning problems over a

linear space. The main technical challenge at this stage is to show that such reductions

are able to provide good generalization error bounds for the learning tasks at hand. To

this end, we consider three specific problems: a) regression, b) ordinal regression, and c)

ranking. For each problem, we define appropriate surrogate loss functions, and show that

our algorithm is able to, for each specific learning task, guarantee bounded generalization

error with polynomial sample complexity. Moreover, by adapting a general framework

given by Srebro (2007), we show that these guarantees do not require the goodness defi-

nition to be overly restrictive by showing that our definitions admit all good PSD kernels

as well.

For the problem of real-valued regression, we additionally provide a goodness defi-

nition that captures the intuition that usually, only a small number of landmarks are

influential w.r.t. the learning task. However, to recover these landmarks, the uniform

sampling technique would require sampling a large number of landmarks thus increasing

the training/test time of the predictor. We address this issue by applying a sparse vector

recovery algorithm given by Shalev-Shwartz et al. (2010b) and show that the resulting

sparse predictor still has bounded generalization error.

This allows us to present a model for indefinite kernel learning that is able to provably

demonstrate a support vector effect. It is notable that previous work in this domain

(Balcan and Blum, 2006; Wang et al., 2007; Kar and Jain, 2011) has only been able to

present “dense” models. Our sparse learning formulations result in hypotheses that offer

accelerated prediction times, a very desirable quality.

We also address an important issue faced by algorithms that use landmarking as a

feature construction step viz (Balcan and Blum, 2006; Wang et al., 2007; Kar and Jain,

2011), namely that they typically assume separate landmark and training sets for ease

of analysis. In practice however, one usually tries to overcome paucity of training data

by reusing training data as landmark points as well. We use an argument outlined by

Ben-David et al. (2008) to theoretically justify such “double dipping” in our case. The

details of the argument are given in Appendix B.

We perform several experiments on benchmark datasets that demonstrate significant

performance gains for our methods over the baseline of kernel regression. Our sparse

landmark selection technique provides significantly better predictors that are also more

efficient at test time.
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5.1.1 Related Work

We briefly recapitulate some related work for sake of completeness. Existing approaches

to extend kernel learning algorithms to indefinite kernels can be classified into three broad

categories: a) those that use indefinite kernels directly with existing kernel learning al-

gorithms, resulting in non-convex formulations (Haasdonk, 2005; Ong et al., 2004). b)

those that convert a given indefinite kernel into a PSD one by either projecting onto the

PSD-cone (Chen et al., 2009b; Luss and d’Aspremont, 2007) or performing other spec-

tral operations (Chen et al., 2009a). The second approach is usually expensive due to

the spectral operations involved apart from making the method inherently transductive.

Moreover, any domain knowledge stored in the original kernel is lost due to these task

oblivious operations and consequently, no generalization guarantees can be given. c) those

that use notions of “task-kernel alignment” or equivalently, notions of “goodness” of a

kernel, to give learning algorithms (Balcan and Blum, 2006; Wang et al., 2007; Kar and

Jain, 2011). This approach enjoys several advantages over the other approaches listed

above. These models are able to use the indefinite kernel directly with existing PSD ker-

nel learning techniques; all the while retaining the ability to give generalization bounds

that quantitatively parallel those of PSD kernel learning models. In this chapter, we adopt

the third approach for general supervised learning problem.

5.2 Problem formulation and Preliminaries

The goal in similarity-based supervised learning is to closely approximate a target predictor

y : X → Y over some domain X using a hypothesis f̂( · ;K) : X → Y that restricts its

interaction with data points to computing similarity values given by K. Now, if the

similarity function K is not discriminative enough for the given task then we cannot hope

to construct a predictor out of it that enjoys good generalization properties. Hence, it is

natural to define the “goodness” of a given similarity function with respect to the learning

task at hand.

Definition 5.1 (Good similarity function: preliminary). Given a learning task y : X → Y
over some distribution D, a similarity function K : X × X → R is said to be (ε0, B)-

good with respect to this task if there exists some bounded weighing function w : X →
[−B,B] such that for at least a (1− ε0) D-fraction of the domain, we have y(x) =

E
x′∼D

Jw(x′)y(x′)K(x,x′)K .

The above definition is inspired by the definition of a “good” similarity function with

respect to classification tasks given by Balcan and Blum (2006). However, their definition

is tied to class labels and thus applies only to classification tasks. Similar to Balcan and

Blum, the above definition calls a similarity function K “good” if the target value y(x) of

a given point x can be approximated in terms of (a weighted combination of) the target

values of the K-“neighbors” of x. Also, note that this definition automatically enforces a

smoothness prior on the framework.
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However the above definition is too rigid. Moreover, it defines goodness in terms of

violations, a non-convex loss function. To remedy this, we propose an alternative definition

that incorporates an arbitrary (but in practice always convex) loss function.

Definition 5.2 (Good similarity function: final). Given a learning task y : X → Y over

some distribution D, a similarity function K is said to be (ε0, B)-good with respect to a

loss function `S : R × Y → R if there exists some bounded weighing function w : X →
[−B,B] such that if we define a predictor as f(x) := E

x′∼D
Jw(x′)K(x,x′)K, then we have

E
x∼D

J`S(f(x), y(x))K ≤ ε0.

Note that Definition 5.2 reduces to Definition 5.1 for `S(a, b) = 1{a6=b}. Moreover, for

the case of binary classification where y ∈ {−1,+1}, if we take `S(a, b) = 1{ab≤Bγ}, then

we recover the (ε0, γ)-goodness definition of a similarity function, given in Definition 3

of Balcan and Blum. Also note that, assuming sup
x∈X
{|y(x)|} < ∞ we can w.l.o.g. merge

w(x′)y(x′) into a single term w(x′).

Having given this definition we must make sure that “good” similarity functions allow

the construction of effective predictors (Utility property). Moreover, we must make sure

that the definition does not exclude commonly used PSD kernels (Admissibility property).

Below, we formally define these two properties and in later sections, show that for each of

the learning tasks considered, our goodness definition satisfies these two properties.

5.2.1 Utility

Definition 5.3 (Utility). A similarity function K is said to be ε0-useful w.r.t. a loss

function `actual (·, ·) if the following holds: there exists a learning algorithm A that, for

any ε1, δ > 0, when given poly(1/ε1, log(1/δ)) “labeled” and “unlabeled” samples from the

input distribution D, with probability at least 1 − δ , generates a hypothesis f̂(x;K) s.t.

E
x∼D

r
`actual

(
f̂(x), y(x)

)z
≤ ε0 + ε1. Note that f̂(x;K) is restricted to access the data

solely through K.

Here, the ε0 term captures the misfit or the bias of the similarity function with re-

spect to the learning problem. Notice that the above utility definition allows for learning

from unlabeled data points and thus puts our approach in the semi-supervised learning

framework.

All our utility guarantees proceed by first using unlabeled samples as landmarks to

construct a landmarked space. Next, using the goodness definition, we show the existence

of a good linear predictor in the landmarked space. This guarantee is obtained in two steps

as outlined in Algorithm 5: first of all we choose d unlabeled landmark points and construct

a map Ψ : X → Rd (see Step 1 of Algorithm 5) and show that there exists a linear predictor

over Rd that closely approximates the predictor f used in Definition 5.2 (see Lemma 5.22

in Section 5.6). In the second step, we learn a predictor (over the landmarked space)

using ERM over a fresh labeled training set (see Step 3 of Algorithm 5). We then use
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Algorithm 5 Supervised learning with Similarity functions

Input: A target predictor y : X → Y over a distribution D, an (ε0, B)-good similarity
function K, labeled training points sampled from D: T =

{
(xt1, y1), . . . , (xtn, yn)

}
, loss

function `S : R× Y → R+.
Output: A predictor f̂ : X → R with bounded true loss over D

1: Sample d unlabeled landmarks from D: L =
{
xl1, . . . ,x

l
d

}
// Else subsample d landmarks from T (see B for details)

2: ΨL : x 7→ 1√
d

(
K(x,xl1), . . . ,K(x,xld)

)
∈ Rd

3: ŵ = arg min
w∈Rd:‖w‖2≤B

∑n
i=1 `S

(〈
w,ΨL(xti)

〉
, yi
)

4: return f̂ : x 7→ 〈ŵ,ΨL(x)〉

individual task-specific arguments and Rademacher average-based generalization bounds

(Kakade et al., 2008) thus proving the utility of the similarity function.

5.2.2 Admissibility

In order to show that our models are not too rigid, we prove that they admit good PSD

kernels.

The notion of a good PSD kernel for us will be one that corresponds to a prevalent

large margin technique for the given problem. In general, most notions correspond to

the existence of a linear operator in the RKHS of the kernel that has small loss at large

margin. More formally,

Definition 5.4 (Good PSD Kernel). Given a learning task y : X → Y over some distri-

bution D, a PSD kernel K : X ×X → R with associated RKHS HK and canonical feature

map ΦK : X → HK is said to be (ε0, γ)-good with respect to a loss function `K : R×Y → R
if there exists W∗ ∈ HK such that ‖W∗‖ = 1 and

E
x∼D

s
`K

(
〈W∗,ΦK(x)〉

γ
, y(x)

){
< ε0

We will show, for all the learning tasks considered, that every (ε0, γ)-good PSD ker-

nel, when treated as simply a similarity function with no consideration of its RKHS, is

also (ε+ ε1, B)-good for arbitrarily small ε1 with B = h(γ, ε1) for some function h. To

prove these results we will adapt techniques introduced by Srebro (2007) with certain

modifications and task-dependent arguments.

5.3 Applications

We will now instantiate the general learning model described above to real-valued regres-

sion, ordinal regression and ranking by providing utility and admissibility guarantees. To

improve clarity, we relegate all proofs to a dedicated section presented later in the chapter

(Section 5.7).
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5.3.1 Real-valued Regression

Real-valued regression is a quintessential learning problem (Schölkopf and Smola, 2002)

that has received a lot of attention in the learning literature. In the following we shall

present algorithms for performing real-valued regression using non-PSD similarity mea-

sures. We consider the problem with `actual (a, b) = |a− b| as the true loss function. For

the surrogates `S and `K , we choose the ε-insensitive loss function (Schölkopf and Smola,

2002) defined as follows:

`ε (a, b) = `ε (a− b) =

{
0, if |a− b| < ε,

|a− b| − ε, otherwise.

The above loss function automatically gives us notions of good kernels and similarity

functions by appealing to Definitions 5.4 and 5.2 respectively. It is easy to transfer error

bounds in terms of absolute error to those in terms of mean squared error (MSE), a

commonly used performance measure for real-valued regression.

Using the landmarking strategy described in Section 5.2.1, we can reduce the problem

of real regression to that of a linear regression problem in the landmarked space. More

specifically, the ERM step in Algorithm 5 becomes the following:

arg min
w∈Rd:‖w‖2≤B

n∑
i

`ε (〈w,ΨL(xi)〉 − yi) .

There exist solvers (for instance (Ho and Lin, 2012)) to efficiently solve the above

problem on linear spaces. Using proof techniques sketched in Section 5.2.1 along with

specific arguments for the ε-insensitive loss, we can prove generalization guarantees and

hence utility guarantees for the similarity function.

Theorem 5.5. Every similarity function that is (ε0, B)-good for a regression problem with

respect to the insensitive loss function `ε (·, ·) is (ε0 + ε)-useful with respect to absolute

loss as well as (Bε0 +Bε)-useful with respect to mean squared error. Moreover, both the

dimensionality of the landmarked space as well as the labeled sample complexity can be

bounded by O
(
B2

ε21
log 1

δ

)
.

We are also able to prove the following (tight) admissibility result:

Theorem 5.6. Every PSD kernel that is (ε0, γ)-good for a regression problem is, for any

ε1 > 0,
(
ε0 + ε1,O

(
1

ε1γ2

))
-good as a similarity function as well. Moreover, for any

ε1 < 1/2 and any γ < 1, there exists a regression instance and a corresponding kernel that

is (0, γ)-good for the regression problem but only (ε1, B)-good as a similarity function for

B = Ω
(

1
ε1γ2

)
.

5.3.2 Sparse Regression

An artifact of a random choice of landmarks is that very few of them might turn out

to be “informative” with respect to the prediction problem at hand. For instance, in a
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max
α

α>1− 1

2

n∑
i,j=1

αiαjyiyjK(xixj)

s.t. 0 ≤ αi ≤ λ

Mercer Kernel Learning

min
α

1

2
‖α‖22 +

n∑
i=1

ξi

s.t. 〈α,ΨL(xi)〉 ≥ 1− ξi
ξi ≥ 0

Indefinite Kernel Learning

Figure 5.1: Comparison of Mercer and indefinite kernel learning formulations.

network, there might exist hubs or authoritative nodes that yield rich information about

the learning problem. If the relative abundance of such nodes is low then random selection

would compel us to choose a large number of landmarks before enough “informative” ones

have been collected.

However this greatly increases training and testing times due to the increased costs of

constructing the landmarked space. Thus, the ability to prune away irrelevant landmarks

would speed up training and test routines. To this end, we note certain similarities between

PSD kernel learning and the indefinite kernel learning model presented here. Both learning

models (see Section 2.2.1) propose hypotheses of the form

h(x) =

n∑
i=1

αiK(x,xi), αi ∈ R

However, the formulations that are used to arrive at these hypotheses have a subtle but

important difference as demonstrated in Figure 5.1. Note that for simplicity, we have

used the formulations for the classification problem considered by the SVM algorithm.

However, the arguments we make hold true for the case of regression as well.

Note that in the Mercer kernel formulation, the combination vector α is L1 regularized

and that frequently leads to sparse combinations leading to the support vector effect. In

contrast, the indefinite kernel formulation imposes an L2 regularization on the combination

vector that does not promote sparsity. Due to this reason, this formulation frequently

results in dense combinations and landmark selection heuristics (e.g diversity heuristic

used in (Kar and Jain, 2011; Chen et al., 2009a)) are required to introduce sparsity.

In contrast, we present a model below that guarantees that our predictor will select

a small number of landmarks while incurring bounded generalization error. This has a

desirable effect of producing hypotheses with accelerated prediction times. However this

requires a careful restructuring of the learning model to incorporate the “informativeness”

of landmarks.

Definition 5.7. A similarity function K is said to be (ε0, B, τ)-good for a real-valued

regression problem y : X → R if for some bounded weight function w : X → [−B,B]

and choice function R : X → {0, 1} with E
x∼D

JR(x)K = τ , the predictor f : x 7→
E

x′∼D
Jw(x′)K(x,x′)|R(x′)K has bounded ε-insensitive loss i.e. E

x∼D
J`ε (f(x), y(x))K < ε0.
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The role of the choice function is to single out informative landmarks, while τ specifies

the relative density of informative landmarks. Note that the above definition is similar in

spirit to the goodness definition presented in Balcan et al. (2008a). While the motivation

behind the work of Balcan et al. was to give an improved admissibility result for binary

classification, we squarely focus on the utility guarantees; with the aim of accelerating our

learning algorithms via landmark pruning.

We prove the utility guarantee in three steps as outlined below. In the first step we

project our learning problem, via the landmarking step given in Step 1 of Algorithm 5,

to a linear landmarked space and show that the landmarked space admits a sparse linear

predictor with bounded ε-insensitive loss. This is formalized in Theorem 5.8 given below.

Theorem 5.8. Given a similarity function that is (ε0, B, τ)-good for a regression problem,

there exists a randomized map Ψ : X → Rd for d = O
(
B2

τε21
log 1

δ

)
such that with probability

at least 1 − δ, there exists a linear operator f̃ : x 7→ 〈w,x〉 over Rd such that ‖w‖1 ≤ B

with ε-insensitive loss bounded by ε0 + ε1. Moreover, with the same confidence we have

‖w‖0 ≤
3dτ
2 .

Our proof follows that of Balcan et al. (2008a), however we additionally prove sparsity

of w as well. Note that the number of landmarks required here is a Ω (1/τ) fraction

greater than that required by Theorem 5.5. This formally captures the intuition presented

earlier of a small fraction of dimensions (read landmarks) being actually relevant to the

learning problem, thus necessitating sampling of a large number of landmarks to get

enough good ones. So, in the second step, we use the Forward Greedy Selection algorithm

given in (Shalev-Shwartz et al., 2010b) to learn a sparse predictor. The use of this learning

algorithm necessitates the use of a different generalization bound in the final step to

complete the utility guarantee given below. We refer the reader to Section 5.3.2.1 for the

details of the algorithm and its utility analysis.

Theorem 5.9. Every similarity function that is (ε0, B, τ)-good for a regression problem

with respect to the insensitive loss function `ε (·, ·) is (ε0 + ε)-useful with respect to ab-

solute loss as well; with the dimensionality of the landmarked space being bounded by

O
(
B2

τε21
log 1

δ

)
and the labeled sampled complexity being bounded by O

(
B2

ε21
log B

ε1δ

)
. More-

over, this utility can be achieved by an O (τ)-sparse predictor on the landmarked space.

We note that the improvements obtained here by using the sparse learning methods

of Shalev-Shwartz et al. provide Ω (τ) increase in sparsity.

We now prove admissibility results for this sparse learning model. We do this by

showing that the dense model analyzed in Theorem 5.5 and that given in Definition 5.7

are interpretable in each other for an appropriate selection of parameters. The guarantees

in Theorem 5.6 can then be invoked to conclude the admissibility proof.

Theorem 5.10. Every (ε0, B)-good similarity function K is also
(
ε0, B,

w̄
B

)
-good where

w̄ = E
x∼D

J|w(x)|K. Moreover, every (ε0, B, τ)-good similarity function K is also (ε0, B/τ)-

good.
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Algorithm 6 Sparse regression (Shalev-Shwartz et al., 2010b)

Input: A β-smooth loss function `(·, ·), regularization parameter CW used in Equation 5.2, error
tolerance ε

Output: A sparse predictor ŵ with bounded loss

1: k ←
⌈
8C2

W

ε2

⌉
, w(0) = 0

2: for t = 1 to k do
3: θ(t) ← ∇wR(w(t)) = E

x∼D

q
∂
∂w `

(〈
w(t),x

〉
, y(x)

)y
4: rt = arg max

j∈d

∣∣∣θ(t)j ∣∣∣
5: δt =

〈
θ(t),w(t)

〉
+ CW

∥∥∥θ(t)∥∥∥
∞

6: ηt = min
{

1, δt
4C2

W β

}
7: w(t+1) ← (1− ηt) w(t) + ηtsign

(
−θ(t)rt

)
CWert

8: if δt ≤ ε then
9: return w(t)

10: end if
11: end for
12: return w(k)

Using Theorem 5.6, we immediately have the following corollary:

Corollary 5.11. Every PSD kernel that is (ε0, γ)-good for a regression problem is, for

any ε1 > 0,
(
ε0 + ε1,O

(
1

ε1γ2

)
, 1
)

-good as a similarity function as well.

In the following, we shall see how to extract a sparse predictor in the landmarked space

with good generalization properties. The following analysis shall assume the the existence

of a good predictor on the landmarked space and hence all subsequent results shall be

conditioned on the guarantees given by Theorem 5.8.

5.3.2.1 Learning Sparse Predictors in the Landmarked Space

We use the Forward Greedy Selection algorithm of Shalev-Shwartz et al. to extract a

sparse predictor in the landmarked space. The algorithm is presented in pseudo code form

in Algorithm 6. The algorithm can be seen as a (modified) form of orthogonal matching

pursuit wherein at each step we add a coordinate to the support of the weight vector. The

coordinate is added in a greedy manner so as to provide maximum incremental benefit

in terms of lowering the loss. Thus the sparsity of the resulting predictor is bounded by

the number of steps for which this algorithm is allowed to run. The algorithm requires

that it be used with a smooth loss function. A loss function ` : R× R→ R+ is said to be

β-smooth if, for all y, a, b ∈ R, we have

`(a, y)− `(b, y) ≤ ∂

∂x
`(x, y)

∣∣∣∣
x=b

(a− b) +
β(a− b)2

2

Unfortunately, this excludes the ε-insensitive loss commonly used for regression tasks.

However it is possible to run the algorithm with a smooth surrogate whose loss can be

transferred to ε-insensitive loss. Following Shalev-Shwartz et al., we choose the following
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loss function:
˜̀
β(a, b) = inf

v∈R

[
β

2
v2 + `ε (a− v, b)

]
One can, by a mildly tedious case-by-case analysis, arrive at an explicit form for this loss

function

˜̀
β(a, b) =


0 |a− b| ≤ ε
β
2 (|a− b| − ε)2 ε < |a− b| < ε+ 1

β

|a− b| − ε− 1
2β |a− b| ≥ ε+ 1

β

Note that this loss function is convex as well as differentiable (actually β-smooth) which

will be crucial in the following analysis. Moreover, for any a, b we have

0 ≤ `ε (a, b)− ˜̀
β(a, b) ≤ 1

2β
(5.1)

Analysis of Forward Greedy Selection: We need to setup some notation before

we can describe the guarantees given for the predictor learned using the Forward Greedy

Selection algorithm. Consider a domain X ⊂ Rd for some d > 0 and the class of functions

F = {x 7→ 〈w,x〉 : ‖w‖1 ≤ CW }. For any distribution D on X and any predictor from F ,

define RD(w) := E
x∼D

J`ε (〈w,x〉 , y(x))K and R̃D(w) := E
x∼D

r
˜̀
β(〈w,x〉 , y(x))

z
. Also let

w̄ be the minimizer of the following program

w̄ = arg min
w:‖w‖1≤CW

R̃D(w) (5.2)

Then (Shalev-Shwartz et al., 2010b, Theorem 2.4), when specialized to our case, guar-

antees that Algorithm 6, when executed with ˜̀
β(·, ·) as the loss function for β = 1

ε2
,

produces a k-sparse predictor x̂, for k =
⌈

8C2
W

ε22

⌉
, with ‖ŵ‖1 ≤ CW such that

R̃D(ŵ)− R̃D(w̄) ≤ ε2

Thus, if we can show the existence of a good predictor in our space with bounded L1 norm

then this would upper bound the loss incurred by the minimizer of Equation 5.2 and using

(Shalev-Shwartz et al., 2010b, Theorem 2.4) we would be done. Note that Theorem 5.8

does indeed give us such a guarantee which allows us to make the following argument: we

are guaranteed the existence of a predictor f̃ with L1 norm bounded by B that has ε-

insensitive loss bounded by (ε0 +ε1). Thus if we take CW = B in Equation 5.2 and use the

left inequality of Equation 5.1, we get R̃D(w̄) ≤ ε0+ε1. Thus we have R̃D(ŵ) ≤ ε0+ε1+ε2.

Using Equation 5.1 (right inequality) with β = 1
ε2

, we get RD(ŵ) ≤ ε0 + ε1 + 3ε2/2.

However it is not possible to give utility guarantees with bounded sample complexities

using the above analysis, the reason being that Algorithm 6 requires us to calculate, for

any given vector w, the vector ∇wR̃(w) = E
x∼D

r
∂
∂w

˜̀
β(〈w,x〉 , y(x))

z
which is infeasible

to calculate for a distribution with infinite support since it requires unbounded sample

complexities. To remedy we shall, as suggested by Shalev-Shwartz et al., take D not to
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be the true distribution over the entire domain X , but rather the empirical distribution

Demp = 1
n

n∑
i=1

1{x=xi} for a given sample of training points x1, . . . ,xn. Note that the result

of Shalev-Shwartz et al. holds for any distribution which allows us to proceed as before.

Notice however, that we are yet again faced with the challenge of proving an upper

bound on the loss incurred by the minimizer of Equation 5.2. This we do as follows: the

predictor f̃ defined in Theorem 5.8 has expected ε-insensitive loss over the entire domain

bounded by ε0 + ε1. Hence it will, with probability greater than (1− δ), have at most

ε0 + ε1 + O
(
B√
n

)
loss on a random sample of n points by an application of Hoeffding’s

inequality. Thus we have R̃Demp(w̄) ≤ ε0 + ε1 +O
(
B√
n

)
with high probability.

The main difference in this analysis shall be that the guarantee on ŵ we get will be on

its training loss rather than its true loss, i.e. we will haveRDemp(ŵ) ≤ ε0+ε1+O
(
B√
n

)
+ε2.

However since Algorithm 6 guarantees ‖ŵ‖1 ≤ CW = B, we can still hope to bound

its generalization error. More specifically, Lemma 5.12, given below, shows that with

probability greater than (1− δ) over the choice of training points we will have, for all

w ∈ Rd, RD(w)−RDemp(w) ≤ Õ
(
B√
n

)
where the Õ (·) notation hides certain log factors.

Lemma 5.12 (Risk bounds for sparse linear predictors (Kakade et al., 2008)). Con-

sider a real-valued prediction problem y over a domain X = {x : ‖x‖∞ ≤ CX} ⊂ Rd

and a linear learning model F : {x 7→ 〈w,x〉 : ‖w‖0 ≤ k, ‖w‖1 ≤ CW } under some fixed

loss function ` (·, ·) that is CL-Lipschitz in its second argument. For any f ∈ F , let

Lf = E
x∼D

J`(f(x), y(x))K and L̂nf be the empirical loss on a set of n i.i.d. chosen points,

then we have, with probability greater than (1− δ),

sup
f∈F

(
Lf − L̂nf

)
≤ 2CLCXCW

√
2 log(2d)

n
+ CLCXCW

√
log(1/δ)

2n
.

Thus, by applying a union bound, with probability at least (1− 2δ), we will choose a

training set such that f̃ , and consequently w̄, has bounded loss on that set as well as the

uniform convergence guarantee of Lemma 5.12 will hold. Then we can bound the true loss

of the predictor returned by Algorithm 6 as

RD(ŵ) ≤ RDemp(ŵ) + Õ
(
B√
n

)
≤ ε0 + ε1 + ε2 + Õ

(
B√
n

)
where the first inequality uses the uniform convergence guarantee and the second inequality

holds conditional on f̃ having bounded loss on a given training set. The final guarantee

is formally given in Theorem 5.9.

Note that using Lemma 5.23 here would at best guarantee a decay of O
(√

d
n

)
. Trans-

ferring ε-insensitive loss to absolute loss requires an addition of ε. Using all the results

given above, we can now give a proof for Theorem 5.9 (see Section 5.7.5).

We note that Forward Greedy Selection gives O
(

1
k

)
error rates, which are much bet-

ter, if the loss function being used is smooth. This can be achieved by using squared
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loss `sq (a, b) = (a− b)2 as the surrogate. However we note that assuming goodness of

the similarity function in terms of squared loss would impose strictly stronger condi-

tions on the learning problem. This is because E J`sq (a, b)K = sup (a− b) · E J|a− b|K and

thus, under boundedness conditions, squared loss is bounded by a constant times the

absolute loss but it is not possible to bound absolute loss (or ε-insensitive loss) as a con-

stant multiple of the squared loss since there exist distributions such that E J|a− b|K =

Ω
(

1
inf(|a−b|) · E J`sq (a, b)K

)
and 1

inf(|a−b|) can diverge.

5.3.3 Ordinal Regression

The problem of ordinal regression requires an accurate prediction of (discrete) labels com-

ing from a finite ordered set [r] = {1, 2, . . . , r}. The problem is similar to both classification

and regression, but has some distinct features due to which it has received independent

attention (Chu and Keerthi, 2007; Agarwal, 2008) in domains such as product ratings etc.

The most popular performance measure for this problem is the absolute loss which is the

absolute difference between the predicted and the true labels.

A natural and rather tempting way to solve this problem is to relax the problem

to real-valued regression and threshold the output of the learned real-valued predictor

using predefined thresholds b1, . . . , br to get discrete labels. Although this approach has

been prevalent in literature (Agarwal, 2008), as the discussion in the next section shows,

this leads to poor generalization guarantees in our model. More specifically, a goodness

definition constructed around such a direct reduction is only able to ensure (1 + ε0)-utility

i.e. the absolute error rate is always greater than 1.

5.3.3.1 Reductions to real valued regression

One of the simplest learning algorithms for the problem of ordinal regression involves

a reduction to real-valued regression (Agarwal, 2008; Chu and Keerthi, 2007) where we

modify our goal to that of learning a real valued function f which we then threshold using

a set of thresholds {bi}ri=1 with b1 = −∞ to get discrete labels as shown below

yf (x) = arg max
i∈[r]

{bi : f(x) ≥ bi}

These thresholds may themselves be learned or fixed a priori. A simple choice for these

thresholds is bi = i−1 for i > 1. It is easy to show (using a result of Agarwal (2008)) that

for the fixed thresholds specified above, we have for all f : X → R,

`ord (yf (x), y(x)) ≤ min

{
2 |f(x)− y(x)| , |f(x)− y(x)|+ 1

2

}
≤ min

{
2`ε (f(x)− y(x)) + 2ε, `ε (f(x)− y(x)) + ε+

1

2

}
where in the last step we use the fact that |x| − ε ≤ `ε (x) ≤ |x|.
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It is tempting to use this reduction along with guarantees given for real-valued regres-

sion to directly give generalization bounds for ordinal regression. To pursue this further,

we need a notion of a good similarity function which we give below:

Definition 5.13. A similarity function K is said to be (ε0, B)-good for an ordinal re-

gression problem y : X → [r] if for some bounded weight function w : X → [−B,B],

the following predictor, when subjected to fixed thresholds, has expected ordinal regression

error at most ε0

f : x 7→ E
x′∼D

q
w(x′)K(x,x′)

y

i.e. E
x∼D

J|yf (x)− y(x)|K < ε0.

From the definition of the thresholding scheme used to define yf from f , it is clear

that |f(x)− y(x)| ≤ |yf (x)− y(x)|+ 1
2 . Since we have `ε (x) ≤ |x| for any ε ≥ 0, we have

`ε (f(x)− y(x)) ≤ |y(x)− yf (x)|+ 1
2 and thus we have E

x∼D
J`ε (f(x), y(x))K < ε0 + 1

2 .

Thus, starting with goodness guarantee of the similarity function with respect to or-

dinal regression, we obtain a guarantee of the goodness of the similarity function K with

respect to real-valued regression that satisfies the requirements of Theorem 5.5. Thus we

have the existence of a linear predictor over a low dimensional space with ε-insensitive

error at most ε0 + 1
2 + ε1. We can now argue (using results from (Agarwal, 2008)) that

this real-valued predictor, when subjected to the fixed thresholds, would yield a predictor

with ordinal regression error at most

min

{
2

(
ε0 +

1

2
+ ε1

)
+ 2ε,

(
ε0 +

1

2
+ ε1

)
+ ε+

1

2

}
= 1 + ε0 + ε1 + ε.

However, this is disappointing since this implies that the resulting predictor would, on an

average, give out labels that are at least one step away from the true label. This forms

the intuition behind introducing (soft) margins in the goodness formulation that gives us

Definition 5.14. Below we give proofs for utility and admissibility guarantees for our model

for similarity-based ordinal regression.

5.3.3.2 A Soft Margin Approach to Ordinal Regression

One of the reasons for the bad performance of the previous approach is the presence of

the thresholding operation that makes it impossible to distinguish between instances that

would not be affected by small perturbations to the underlying real-valued predictor and

those that would be affected. To remedy this, we enforce a (soft) margin with respect

to thresholding that makes the formulation more robust to noise. More formally, we

expect that if a point belongs to the label i, then in addition to being sandwiched between

the thresholds bi and bi+1, it should be separated from these by a margin as well i.e.

bi + γ ≤ f(x) ≤ bi+1 − γ.

This is a direct generalization of the margin principle in classification where we expect

w>x > b+ γ for positively labeled points and w>x < b− γ for negatively labeled points.
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Of course, wherein classification requires a single threshold, we require several, depending

upon the number of labels. For any x ∈ R, let [x]+ = max {x, 0}. Thus, if we define

the γ-margin loss function to be [x]γ := [γ − x]+ (note that this is simply the well known

hinge loss function scaled by a factor of γ), we can define our goodness criterion as follows:

Definition 5.14. A similarity function K is said to be (ε0, B)-good for an ordinal re-

gression problem y : X → [r] if for some bounded weight function w : X → [−B,B]

and some (unknown but fixed) set of thresholds {bi}ri=1 with b1 = −∞, the predictor

f : x 7→ E
x′∼D

Jw(x′)K(x,x′)K satisfies E
x∼D

r[
f(x)− by(x)

]
γ

+
[
by(x)+1 − f(x)

]
γ

z
< ε0.

5.3.3.3 Admissibility Guarantees

We begin by giving the kernel goodness criterion which we adapt from existing literature

on large margin approaches to ordinal regression. More specifically we use the framework

described by Chu and Keerthi (2007) for which generalization guarantees are given by

Agarwal (2008).

Definition 5.15. Call a PSD kernel K (ε0, γ)-good for an ordinal regression problem

y : X → [r] if there exists W∗ ∈ HK , ‖W∗‖ = 1 and a fixed set of thresholds {bi}ri=1 such

that

E
x∼D

s[
by(x) + 1− 〈W

∗,ΦK(x)〉
γ

]
+

+

[
〈W∗,ΦK(x)〉

γ
− by(x)+1 + 1

]
+

{
< ε0

The above definition exactly corresponds to the EXC formulation put forward by Chu

and Keerthi except for the fact that during actual optimization, a strict ordering on the

thresholds is imposed explicitly. Chu and Keerthi present yet another model called IMC

which does not impose any explicit orderings, rather the ordering emerges out of the

minimization process itself. Our model can be easily extended to the IMC formulation as

well.

We now give utility guarantees for our learning model. We shall give guarantees on

both the misclassification error as well as the absolute error of our learned predictor.

We say that a set of points x1, . . . , xi . . . is ∆-spaced if min
i 6=j
{|xi − xj |} ≥ ∆. Define the

function ψ∆(x) = x+∆−1
∆ .

Theorem 5.16. Let K be a similarity function that is (ε0, B)-good for an ordinal regres-

sion problem with respect to ∆-spaced thresholds and γ-margin loss. Let γ̄ = max {γ, 1}.
Then K is ψ(∆/γ̄)

(
ε0
γ̄

)
-useful with respect to ordinal regression error (absolute loss). More-

over, K is
(
ε0
γ̄

)
-useful with respect to the zero-one mislabeling error as well.

We require spaced thresholds since the margin losses themselves do not present any

bound on the ordinal regression error. This is because, if the thresholds are closely spaced

together, then even an instance of gross ordinal regression loss could correspond to very

small margin loss. To remedy this, we introduce the spacing parameter ∆ into the model.
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The exact manner in which this parameter is utilized can be seen in the proof of Theo-

rem 5.16 in Section 5.7.7. Such a condition can easily be incorporated into the model of

Chu and Keerthi (2007) as a constraint in the optimization formulation.

Note that we can bound, both dimensionality of the landmarked space as well as

labeled sampled complexity, by O
(
B2

ε21
log 1

δ

)
. Notice also, that for ε0 < 1 and large

enough d, n, we can ensure that the ordinal regression error rate is also bounded above by

1 since sup
x∈[0,1],∆>0

(ψ∆ (x)) = 1. This is in contrast with the direct reduction to real valued

regression which has ordinal regression error rate bounded below by 1. In particular,

a constraint of ∆ = 1 put into an optimization framework ensures that the bounds on

mislabeling loss and ordinal regression loss match since ψ1(x) = x for all x. In general,

the cases where the above framework yields a non-trivial bound for the mislabeling error

rate, i.e. `01 < 1 (which can always be ensured if ε0 < 1 by taking large enough d and n),

also correspond to those where the ordinal regression error rate is also bounded above by

1 since sup
x∈[0,1],∆>0

(ψ∆ (x)) = 1.

This indicates the advantage of the present model over a naive reduction to regression.

We can show that our definition of a good similarity function admits all good PSD kernels

as well. The kernel goodness criterion we adopt corresponds to the large margin framework

proposed by Chu and Keerthi (2007). We refer the reader to Section 5.3.3.3 for the

definition and give the admissibility result below.

Theorem 5.17. Every PSD kernel that is (ε0, γ)-good for an ordinal regression problem

is also
(
γ1ε0 + ε1,O

(
γ2

1
ε1γ2

))
-good as a similarity function with respect to the γ1-margin

loss for any γ1, ε1 > 0. Moreover, for any ε1 < γ1/2, there exists an ordinal regression

instance and a corresponding kernel that is (0, γ)-good for the ordinal regression problem

but only (ε1, B)-good as a similarity function with respect to the γ1-margin loss function

for B = Ω
(

γ2
1

ε1γ2

)
.

5.3.4 Ranking

The problem of ranking stems from the need to sort a set of items based on their relevance.

In the model considered here, each ranking instance is composed of m documents (pages)

(p1, . . . , pm) from some universe P along with their relevance to some particular query

q ∈ Q that are given as relevance scores from some set R ⊂ R. Thus we have X = Q×Pm

with each instance x ∈ X being provided with a relevance vector r(x) = Rm. Let the

ith query-document pair of a ranking instance x be denoted by zi ∈ Q × P. For any

z = (p, q) ∈ P ×Q, let r(z) ∈ R denote the true relevance of document p to query q.

For any relevance vector r ∈ Rm, let r̄ be the vector with elements of r sorted in de-

scending order and πr be the permutation that this sorting induces. For any permutation

π, π(i) shall denote the index given to the index i under π. Although the desired output of

a ranking problem is a permutation, we shall follow the standard simplification (Raviku-

mar et al., 2011) of requiring the output to be yet another relevance vector s with the
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permutation πs being considered as the actual output. This converts the ranking problem

into a vector-valued regression problem.

We will take the true loss function `actual (·, ·) to be the popular NDCG loss function

(Järvelin and Kekäläinen, 2000) defined below

`NDCG (s, r) = − 1

‖G(r)‖D

m∑
i=1

G(r(i))

F (πs(i))

where ‖r‖D = max
π∈Sm

m∑
i=1

r(i)

F (π(i))
, G(r) = 2r−1 is the growth function and F (t) = log(1+t)

is the decay function.

For the surrogate loss functions `K and `S , we shall use the squared loss function

`sq (s, r) = ‖s− r‖22. We shall overload notation to use `sq (·, ·) upon reals as well. For any

vector r ∈ Rm, let η(r) :=
G(r)

‖G(r)‖D
and let ri denote its ith coordinate.

Due to the decomposable nature of the surrogate loss function, we shall require kernels

and similarity functions to act over query-document pairs i.e. K : (P ×Q)× (P ×Q)→
R. This also coincides with a common feature extraction methodology (see for example

(Ravikumar et al., 2011; Agarwal and Niyogi, 2009)) where every query-document pair is

processed to yield a feature vector. Consequently, all our goodness definitions shall loosely

correspond to the ability of a kernel/similarity to accurately predict the true relevance

scores for a given query-document pair. We shall assume ranking instances to be generated

by the sampling of a query q ∼ DQ followed by m independent samples of documents

from the (conditional) distribution DP|q. The distribution over ranking instances is then a

product distribution D = DX = DQ×DP|q ×DP|q × . . .×DP|q︸ ︷︷ ︸
m times

. A key consequence of this

generative mechanism is that the ith query-document pair of a random ranking instance,

for any fixed i, is a random query-document instance selected from the distribution µ :=

DQ ×DP|q.

Definition 5.18. A similarity function K is said to be (ε0, B)-good for a ranking problem

y : X → Sm if for some bounded weight function w : P × Q → [−B,B], for any ranking

instance x = (q, p1, p2, . . . , pm), if we define f : X → Rm as

fi := E
z∼µ

Jw(z)K(zi, z)K

where zi = (pi, q), then we have E
x∼D

J`sq (f(x), η(r(z)))K < ε0.

Definition 5.19. A PSD kernel K is said to be (ε0, γ)-good for a ranking problem y :

X → Sm if there exists W∗ ∈ HK , ‖W∗‖ = 1 such that if for any ranking instance

x = (q, p1, p2, . . . , pm), if, for any W ∈ HK , when we define f ( · ; W) : X → Rm as

fi(x; W) =
〈W,ΦK(zi)〉

γ
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where fi is the ith coordinate of the output of f and zi = (pi, q), then we have

E
x∼D

J`sq (f(x; W∗), η(r(z)))K < ε0.

The choice of this surrogate is motivated by consistency considerations. We would

ideally like a minimizer of the surrogate loss to have bounded actual loss as well. Using

results from (Ravikumar et al., 2011), it can be shown that the above defined surrogate is

not only consistent, but that excess loss in terms of this surrogate can be transferred to

excess loss in terms of `NDCG (·, ·), a very desirable property. Although Ravikumar et al.

show this to be true for a whole family of surrogates, we chose `sq (·, ·) for its simplicity.

All our utility arguments carry forward to other surrogates defined by Ravikumar et al.

with minimal changes. We move on to prove utility guarantees for the given similarity

learning model.

Theorem 5.20. Every similarity function that is (ε0, B)-good for a ranking problem for

m-documents with respect to squared loss is O
(√

m
logm ·

√
ε0

)
-useful with respect to NDCG

loss.

We note that the O (
√
m) dependence of the final utility guarantee on m is because the

decay function F (t) = log(1 + t) chosen here (which seems to be a standard in literature

but with little theoretical justification) is a very slowly growing function (it might sound

a bit incongruous to have an increasing function as our decay function - however since

this function appears in the denominator in the definition of NDCG, it effectively induces

a decay). Using decay functions that grow super-linearly (or rather those that induce

super-linear decays), we can ensure O
(√
ε0

)
-usefulness since in those cases, CF = O (1).

We next prove admissibility bounds for the ranking problem. The learning setting as

well as the proof is different for ranking due to presence of multiple entities in a single

ranking instance. We refer the reader to Section 5.7.10 for the complete proof.

Theorem 5.21. Every PSD kernel that is (ε0, γ)-good for a ranking problem is also(
ε0 + ε1,O

(
m
√
m

ε1
√
ε1γ3

))
-good as a similarity function for any ε1 > 0.

5.4 Experimental Results

In this section we present an empirical evaluation of our learning models for the problems

of real-valued regression and ordinal regression on benchmark datasets taken from a variety

of sources (uci; sta; del). We compare our algorithms against kernel regression (KR), a

well known technique (Weinberger and Tesauro, 2007) for non-linear regression, whose

predictor is of the form:

f : x 7→
∑

xi∈T y(xi)K(x,xi)∑
xi∈T K(x,xi)

.

where T is the training set. We selected KR as the baseline as it is a popular regres-

sion method that does not require similarity functions to be PSD. For ordinal regression
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problems, we rounded off the result of the KR predictor to get a discrete label. We

implemented all our algorithms as well as the baseline KR method in Matlab. In all

our experiments we report results across 5 random splits on the (indefinite) Sigmoid:

K(x,y) = tanh(a 〈x,y〉 + r) and Manhattan: K(x,y) = −‖x− y‖1 kernels. Following

standard practice, we fixed r = −1 and a = 1/dorig for the Sigmoid kernel where dorig is

the dimensionality of the dataset.

Real valued regression: For this experiment, we compare our methods (RegLand

and RegLand-Sp) with the KR method. For RegLand, we constructed the landmarked

space as specified in Algorithm 5 and learned a linear predictor using the LIBLINEAR

package (Ho and Lin, 2012) that minimizes ε-insensitive loss. In the second algorithm

(RegLand-Sp), we used the sparse learning algorithm of Shalev-Shwartz et al. (2010b) on

the landmarked space to learn the best predictor for a given sparsity level. Due to its

simplicity and good convergence properties, we implemented the Fully Corrective version

of the Forward Greedy Selection algorithm with squared loss as the surrogate.

We evaluated all methods using Mean Squared Error (MSE) on the test set. Fig-

ure 5.2a shows the MSE incurred by our methods along with reference values of accuracies

obtained by KR as landmark sizes increase. The plots clearly show that our methods incur

significantly lesser error than KR. Moreover, RegLand-Sp learns more accurate predictors

using the same number of landmarks. For instance, when learning using the Sigmoid

kernel on the CPUData dataset, at 20 landmarks, RegLand is able to guarantee an MSE

of 0.016 whereas RegLand-Sp offers an MSE of less than 0.002; MLKR is only able to

guarantee an MSE rate of 0.04 for this dataset. In Table 5.1a, we compare accuracies of

the two algorithms when given 50 landmark points with those of KR for the Sigmoid and

Manhattan kernels. We find that in all cases, RegLand-Sp gives superior accuracies than

KR. Moreover, the Manhattan kernel seems to match or outperform the Sigmoid kernel

on all the datasets.

Ordinal Regression: Here, we compare our method with the baseline KR method on

benchmark datasets. As mentioned in Section 5.3.3, our method uses the EXC formulation

of Chu and Keerthi (2007) along with the landmarking scheme given in Algorithm 5. We

implemented a gradient descent-based solver (ORLand) to solve the primal formulation

of EXC and used fixed equi-spaced thresholds instead of learning them as suggested by

Chu and Keerthi. Of the six datasets considered here, the two Wine datasets are ordinal

regression datasets where the quality of the wine is to be predicted on a scale from 1 to

10. The remaining four datasets are regression datasets whose labels were subjected to

equi-frequency binning to obtain ordinal regression datasets as done by Chu and Keerthi.

We measured the average absolute error (AAE) for each method. Figure 5.2b compares

ORLand with KR as the number of landmarks increases. Table 5.1b compares accuracies

of ORLand for 50 landmark points with those of KR for Sigmoid and Manhattan kernels.

In almost all cases, ORLand gives a much better performance than KR. The Sigmoid

kernel seems to outperform the Manhattan kernel on a couple of datasets. We refer the

reader to Section 5.8 for additional experimental results.
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(a) Mean squared error for landmarking (RegLand), sparse landmarking (RegLand-Sp) and kernel
regression (KR) on real regression datasets.

(b) Average absolute error for landmarking (ORLand) and kernel regression (KR) on ordinal
regression datasets.

Figure 5.2: Performance of landmarking algorithms with increasing number of landmarks
on real-valued regression (Figure 5.2a) and ordinal regression (Figure 5.2b) datasets.
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Datasets
Sigmoid kernel Manhattan kernel

KR Land-Sp KR Land-Sp

Abalone (uci)

N = 4177, d = 8

2.1e-002

(8.3e-004)

6.2e-003

(8.4e-004)

1.7e-002

(7.1e-004)

6.0e-003

(3.7e-004)

Bodyfat (sta)

N = 252, d = 14

4.6e-004

(6.5e-005)

9.5e-005

(1.3e-004)

3.9e-004

(2.2e-005)

3.5e-005

(1.3e-005)

CAHousing (sta)

N = 20640, d = 8

5.9e-002

(2.3e-004)

1.6e-002

(6.2e-004)

5.8e-002

(1.9e-004)

1.5e-002

(1.4e-004)

CPUData (del)

N = 8192, d = 12

4.1e-002

(1.6e-003)

1.4e-003

(1.7e-004)

4.3e-002

(1.6e-003)

1.2e-003

(3.2e-005)

PumaDyn-8 (del)

N = 8192, d = 8

2.3e-001

(4.6e-003)

1.4e-002

(4.5e-004)

2.3e-001

(4.5e-003)

1.4e-002

(4.8e-004)

PumaDyn-32 (del)

N = 8192, d = 32

1.8e-001

(3.6e-003)

1.4e-002

(3.7e-004)

1.8e-001

(3.6e-003)

1.4e-002

(3.1e-004)

(a) Mean squared error for real regression problems.

Datasets
Sigmoid kernel Manhattan kernel

KR ORLand KR ORLand

Wine-Red (uci)

N = 1599, d = 11

6.8e-001

(2.8e-002)

4.2e-001

(3.8e-002)

6.7e-001

(3.0e-002)

4.5e-001

(3.2e-002)

Wine-White (uci)

N = 4898, d = 11

6.2e-001

(2.0e-002)

8.9e-001

(8.5e-001)

6.2e-001

(2.0e-002)

4.9e-001

(1.5e-002)

Bank-8 (del)

N = 8192, d = 8

2.9e+000

(6.2e-002)

6.1e-001

(4.4e-002)

2.7e+000

(6.6e-002)

6.3e-001

(1.7e-002)

Bank-32 (del)

N = 8192, d = 32

2.7e+000

(1.2e-001)

1.6e+000

(2.3e-002)

2.6e+000

(8.1e-002)

1.6e+000

(9.4e-002)

House-8 (del)

N = 22784, d = 8

2.8e+000

(9.3e-003)

1.5e+000

(2.0e-002)

2.7e+000

(1.0e-002)

1.4e+000

(1.2e-002)

House-16 (del)

N = 22784, d = 16

2.7e+000

(2.0e-002)

1.5e+000

(1.0e-002)

2.8e+000

(2.0e-002)

1.4e+000

(2.3e-002)

(b) Mean absolute error for ordinal regression problems.

Table 5.1: Performance of landmarking-based algorithms (with 50 landmarks) vs. baseline
kernel regression (KR). Values in parentheses indicate standard deviation values. Values
in the first columns indicate dataset source (in parentheses), size (N) and dimensionality
(d). Bold numbers indicate the best performance.
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5.5 Discussion

In this work we considered the general problem of supervised learning using non-PSD sim-

ilarity functions. We provided a goodness criterion for similarity functions w.r.t. various

learning tasks. This allowed us to construct efficient learning algorithms with provable

generalization error bounds. At the same time, we were able to show, for each learning

task, that our criterion is not too restrictive in that it admits all good PSD kernels. We

then focused on the problem of identifying influential landmarks with the aim of learning

sparse predictors. We presented a model that formalized the intuition that typically only

a small fraction of landmarks is influential for a given learning problem. We adapted

existing sparse vector recovery algorithms within our model to learn provably sparse pre-

dictors with bounded generalization error. Finally, we empirically evaluated our learning

algorithms on benchmark regression and ordinal regression tasks. In all cases, our learning

methods, especially the sparse recovery algorithm, consistently outperformed the kernel

regression baseline.

5.6 Supplementary Theorems

In this section we prove certain generic results that would be used in the utility and

admissibility proofs. The first result, given as Lemma 5.22, allows us to analyze the

landmarking step (Step 1 of Algorithm 5) and allows us to reduce the learning problem

to that of learning a linear predictor over the landmarked space. The second result, given

as Lemma 5.23, gives us a succinct re-statement of generalization error bounds proven

in (Kakade et al., 2008) that would be used in proving utility bounds. The third result,

given as Lemma 5.24, is a technical result that helps us prove admissibility bounds for our

goodness definitions.

Lemma 5.22 (Landmarking approximation guarantee (Kar and Jain, 2011)). Given a

similarity function K over a domain X and a bounded function of the form f(x) =

E
x′∼D

Jw(x′)K(x,x′)K for some bounded weight function w : X → {−B,B}, for every ε, δ >

0 there exists a randomized map Ψ : X → Rd for d = d (ε, δ) such that with probability at

least 1−δ, there exists a linear operator f̃ over Rd such that E
x∼D

r∣∣∣f̃ (Ψ (x))− f(x)
∣∣∣z ≤ ε.

Proof. This result essentially allows us to project the learning problem into a Euclidean

space where one can show, for the various learning problems considered here, that existing

large margin techniques are applicable to solve the original problem. The result appeared

in (Kar and Jain, 2011) and is presented here for completeness.

Sample d landmark points L = {x1, . . . ,xd} from D and construct the map ΨL : x 7→
1√
d

(K(x,x1), . . . ,K(x,xd)) and consider the linear operator f̃ over Rd defined as follows

(in the following, we shall always omit the subscript L for clarity):

f̃ : x 7→ 1

d

d∑
i=1

w(xi)K(x,xi) = 〈w̃,Ψ(x)〉
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for w = 1√
d

(w(x1), . . . , w(xd)) ∈ Rd. A standard Hoeffding-style argument shows that for

d = O
(
B2

ε2
log 1

δ2

)
= O

(
B2

ε2
log 1

δ

)
, f̃ gives a point wise approximation to f , i.e. for all

x ∈ X , with probability greater than 1− δ2, we have
∣∣∣f̃(Ψ(x))− f(x)

∣∣∣ < ε.

Now call the event BAD-APPROX (x) :=
∣∣∣f̃(Ψ(x))− f(x)

∣∣∣ > ε. Thus we have for

all x ∈ X , P̃
f

[BAD-APPROX (x)] = Ẽ
f

q
1BAD-APPROX(x)

y
< δ2 (here the probabilities are

being taken over the construction of f̃ i.e. the choice of the landmark points). Taking

expectations over the entire domain, applying Fubini’s theorem to switch expectations and

applying Markov’s inequality we get

P̃
f

[
P

x∼D
[BAD-APPROX (x)] > δ

]
< δ

Thus with confidence 1− δ we have P
x∼D

[BAD-APPROX (x)] < δ and thus

E
x∼D

r∣∣∣f̃(Ψ(x))− f(x)
∣∣∣z < (1− δ)ε+ 2Bδ

since sup
x∈X

∣∣∣f̃(Ψ(x))
∣∣∣ = sup

x∈X
|f(x)| = B. For δ < ε

B we get E
x∼D

r∣∣∣f̃(Ψ(x))− f(x)
∣∣∣z <

2ε.

Lemma 5.23 (Risk bounds for linear predictors (Kakade et al., 2008)). Consider a real-

valued prediction problem y over a domain X = {x : ‖x‖2 ≤ CX} and a linear learning

model F : {x 7→ 〈w,x〉 : ‖w‖2 ≤ CW } under some fixed loss function ` (·, ·) that is CL-

Lipschitz in its second argument. For any f ∈ F , let Lf = E
x∼D

J`(f(x), y(x))K and L̂nf be

the empirical loss on a set of n i.i.d. chosen points. Then we have, with probability greater

than (1− δ),

sup
f∈F

(
Lf − L̂nf

)
≤ 3CLCXCW

√
log(1/δ)

n

Proof. There exist a few results that provide a unified analysis for the generalization

properties of linear predictors (Kakade et al., 2008; Zhang, 2002). However we use the

heavy hammer of Rademacher average based analysis since it provides sharper bounds

than covering number based analyses.

The result follows from imposing a squared L2 regularization on the w vectors. Since

the squared L2 function is 2-strongly convex with respect to the L2 norm, using (Kakade

et al., 2008, Theorem 1), we get a bound on the Rademacher complexity of the function

class F as Rn (F) ≤ CXCW

√
1
n . Next, using the Lipschitz properties of the loss func-

tion, a result from Bartlett and Mendelson (2002) allows us to bound the excess error by

2CLRn(F) +CLCXCW

√
log(1/δ)

2n . The result then follows from simple manipulations.

Lemma 5.24 (Admissible weight functions for PSD kernels (Srebro, 2007)). Consider a

PSD kernel that is (ε0, γ)-good for a learning problem with respect to some convex loss

function `K . Then there exists a vector W′ ∈ HK and a bounded weight function w : X →
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R such that E
x∼D

J`K (〈W′,ΦK(x)〉 , y(x))K ≤ ε0 + 1
2Cγ2 for some arbitrary positive constant

C and for all x ∈ X , we have E
x′∼D

Jw(x′)K(x,x′)K = 〈W′,ΦK(x)〉.

Proof. Note that the (ε0, γ)-goodness of K guarantees the existence of a weight vector

W∗ ∈ HK with small loss at large margin. Thus W′ acts as a proxy for W∗ providing

bounded loss at unit margin but with the additional property of being functionally equiv-

alent to a bounded weighted average of the kernel values as required by the definition of

a good similarity function. This will help us prove admissibility results for our similarity

learning models.

We start by proving the theorem for a discrete distribution - the generalization to non-

discrete distributions will follow by using variational optimization techniques as discussed

by Srebro (2007). Consider a discrete learning problem with X = {x1, . . . ,xn}, corre-

sponding distribution D = {p1, . . . , pn} and target y = {y1, . . . , yn} such that
∑
pi = 1.

Set up the following regularized ERM problem (albeit on the entire domain):

min
W∈HK

1

2
‖W‖2HK + C

n∑
i=1

pi`K (〈W,ΦK(xi)〉 , yi)

Let W′ be the weight vector corresponding to the optima of the above problem. By

the Representer Theorem (for example (Schölkopf et al., 2001)), we can choose W′ =∑
αiΦK(xi) for some bounded αi (the exact bounds on αi are problem specific). By

(ε0, γ)-goodness of K we have

1

2

∥∥W′∥∥2

HK
+ C

n∑
i=1

pi`K
(〈

W′,ΦK(xi)
〉
, yi
)
≤ 1

2

∥∥∥∥1

γ
W∗

∥∥∥∥2

HK
+ C

n∑
i=1

pi`K

(
〈W∗,ΦK(xi)〉

γ
, yi

)
=

1

2γ2
+ C · E

x∼D

s
`K

(
〈W∗,ΦK(x)〉

γ
, y(x)

){

≤ 1

2γ2
+ Cε0

Thus we have

E
x∼D

q
`K
(〈

W′,ΦK(x)
〉
, y(x)

)y
≤ 1

2C

∥∥W′∥∥2

HK
+

n∑
i=1

pi`K
(〈

W′,ΦK(xi)
〉
, yi
)

≤ ε0 +
1

2Cγ2

which proves the first part of the claim. For the second part, set up a weight function

wi = αi
pi

. Then, for any x ∈ X we have

E
x′∼D

q
w(x′)K(x,x′)

y
=

n∑
i=1

piwiK(x,xi) =
n∑
i=1

pi
αi
pi
K(x,xi)

=
n∑
i=1

αi 〈ΦK(x),ΦK(xi)〉 =
〈
W′,ΦK(x)

〉
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The weight function is bounded since the αi are bounded and, this being a discrete learning

problem, cannot have vanishing probability masses pi (actually, in the cases we shall

consider, the αi will itself contain a pi term that will subsequently get canceled). For

non-discrete cases, variational techniques give us similar results.

5.7 Proofs

We give missing proofs below.

5.7.1 Proof of Theorem 5.5

First of all, we use Lemma 5.22 to project onto a d dimensional space where there exists

a linear predictor f̃ : x 7→ 〈w,x〉 such that E
x∼D

r∣∣∣f̃ (Ψ (x))− f(x)
∣∣∣z ≤ 2ε1. Note that

‖w‖2 ≤ B and sup
x∈X
{‖Ψ(x)‖} ≤ 1 by construction. We will now show that f̃ has bounded

ε-insensitive loss.

E
x∼D

r
`ε

(
f̃ (Ψ (x)) , y(x)

)z
= E

x∼D
J`ε (f(x), y(x))K + E

x∼D

r
`ε

(
f̃ (Ψ (x)) , y(x)

)
− `ε (f(x), y(x))

z

≤ ε0 + E
x∼D

r
`ε

(
f̃ (Ψ (x)) , y(x)

)
− `ε (f(x), y(x))

z

≤ ε0 + E
x∼D

r∣∣∣f̃ (Ψ(x))− f(x)
∣∣∣z

≤ ε0 + 2ε1

where in the second step we have used the goodness properties of K, in the third step we

used the fact that the ε-insensitive loss function is 1-Lipschitz in its first argument. Note

that ‖w‖ ≈ E
x∼D

q
w2(x)

y
with high probability and if E

x∼D

q
w2(x)

y
� B then we get a

much better bound on the norm of w. The excess loss incurred due to this landmarking

step is, with probability 1− δ, at most 32B

√
log(1/δ)

d .

Now consider the following regularized ERM problem on n i.i.d. sample points:

ŵ = arg min
w:‖w‖2≤B

1

n

n∑
i=1

`ε (〈w,Ψ(xi)〉 , y(xi))

The final output of our learning algorithm shall be x 7→ 〈ŵ,Ψ(x)〉. Here we have CX = 1,

CL = 1 since `ε (·) is 1-Lipschitz and CW = B. Thus by Lemma 5.23, we get that the

excess loss incurred due to this regularized ERM step is at most 3B

√
log 1/δ
n .

Since the ε-insensitive loss is related to the absolute error by |x| ≤ `ε (x) + ε we have

the total error (with respect to absolute loss) being incurred by our predictor to be, with



102 Chapter 5. Supervised Learning with Indefinite Kernels

probability at least 1− 2δ, at most

ε0 + 32B

√
log(1/δ)

d
+ 3B

√
log 1/δ

n
+ ε

Taking d = O
(
B2

ε21
log 1

δ

)
unlabeled landmarks and n = O

(
B2

ε21
log 1

δ

)
labeled training

points gives us our desired result.

5.7.2 Proof of Theorem 5.6

We prove the two parts of the result separately.

Part 1: Admissibility: Using Lemma 5.24 it is possible to obtain a vector W′ =
n∑
i=1

(αi − α∗i )ΦK(xi) ∈ HK with small loss such that 0 ≤ αi, α
∗
i ≤ piC and αiα

∗
i = 0

(these inequalities are a consequence of applying the KKT conditions). This allows us to

construct a weight function wi =
αi−α∗i
pi

such that |wi| ≤ C and E
x′∼D

Jw(x′)K(x,x′)K =

〈W′,ΦK(x)〉 for all x ∈ X .

Thus we have

E
x∼D

s
`ε

(
E

x′∼D

q
w(x′)K(x,x′)

y
, y(x)

){
= E

x∼D

q
`ε
(〈

W′,ΦK(x)
〉
, y(x)

)y
≤ 1

2Cγ2
+ ε0.

Setting C = 1
2ε1γ2 gives us our result.

We can use variational techniques to extend this to non-discrete distributions as well.

Part 2: Tightness: The tight example that we provide is an adaptation of the

example given for large margin classification in (Srebro, 2007). However, our analysis

differs from that of Srebro, partly necessitated by our choice of loss function.

Consider the following regression problem: X = {x1,x2,x3,x4} ⊂ R3, D =
{

1
2 − ε, ε, ε,

1
2 − ε

}
,

y = {+1,+1,−1,−1}

x1 =
(
γ, γ,

√
1− 2γ2

)
x2 =

(
γ,−γ,

√
1− 2γ2

)
x3 =

(
−γ, γ,

√
1− 2γ2

)
x4 =

(
−γ,−γ,

√
1− 2γ2

)
Clearly the vector w = (1, 0, 0) yields a predictor y′ with no ε-insensitive loss for ε = 0

(i.e. E
x∼D

J`0 (y(x)− y′(x))K = 0) at margin γ. Thus the native inner product 〈·, ·〉 on R3

is a (0, γ)-good kernel for this particular regression problem.

Now consider any bounded weighing function on X , w = {w1, w2, w3, w4} and analyze

the effectiveness of 〈·, ·〉 as a similarity function. The output ỹ of the resulting predictor

on the different points is given by ỹi =
4∑
j=1

pjwj 〈xi,xj〉.

In particular, consider the output on the heavy points x1 and x4 (note that the analysis
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in (Srebro, 2007) considers the light points x2 and x3 instead). We have

ỹ1 =

(
1

2
− ε
)
w1 + ε

(
1− 2γ2

)
(w2 + w3) +

(
1

2
− ε
)
w4

(
1− 4γ2

)
= a+

(
1

2
− ε
)

(w1 + bw4)

ỹ4 =

(
1

2
− ε
)
w1

(
1− 4γ2

)
+ ε

(
1− 2γ2

)
(w2 + w3) +

(
1

2
− ε
)
w4

= a+

(
1

2
− ε
)

(bw1 + w4)

for a = ε
(
1− 2γ2

)
(w2 + w3) , b =

(
1− 4γ2

)
. The main idea behind this choice is that the

difference in the value of the predictor on these points is only due to the values of w1 and

w4. Since the true values at these points are very different, this should force w1 and w4

to take large values unless a large error is incurred. To formalize this argument we lower

bound the expected `0 (·) loss of this predictor by the loss incurred on these heavy points.

E
x∼D

J`0 (y(x)− ỹ(x))K ≥
(

1

2
− ε
)

(`0 (y(x1)− ỹ(x1)) + `0 (y(x4)− ỹ(x4)))

=

(
1

2
− ε
)

(|1− ỹ(x1)|+ |−1− ỹ(x4)|)

≥
(

1

2
− ε
)

(2− ỹ(x1) + ỹ(x4))

=

(
1

2
− ε
)(

2−
(

1

2
− ε
)

(1− b) (w4 − w1)

)
=

(
1

2
− ε
)(

2−
(

1

2
− ε
)(

4γ2
)

(w4 − w1)

)
where in the second step we use the fact that `0 (x) = |x| and in the third step we used

the fact that |a|+ |b| ≥ a− b. Thus, in order to have expected error at most ε1, we require

w4 − w1 ≥
1

4γ2

(
2− ε1

1
2 − ε

)
1

1
2 − ε

=
1

4ε1γ2

for the setting ε = 1
2 − ε1. Thus we have |w1| + |w4| ≥ w4 − w1 ≥ 1

4ε1γ2 which implies

max (|w1| , |w4|) ≥ 1
8ε1γ2 which proves the result.

5.7.3 Proof of Theorem 5.8

The proof of this theorem essentially parallels that of (Balcan et al., 2008a, Theorem 8)

but diverges later since the aim there is to preserve margin violations whereas we wish to

preserve loss under the absolute loss function. Sample d landmark points L = {x1, . . . ,xd}
from the distribution D and construct the map ΨL : x 7→ (K(x,x1), . . . ,K(x,xd)) and

consider the linear operator f̃ : x 7→ 〈w,x〉 with wi = w(xi)R(xi)
dinfo

where dinfo =
d∑
i=1

R(xi)
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is the number of informative landmarks. In the following we will refer to f̃ and w in-

terchangeably. This ensures that
∥∥∥f̃∥∥∥

1
:= ‖w‖1 ≤ B. Note that we have chosen an L1

normalized weight vector instead of an L2 normalized one like we had in Lemma 5.22.

This is due to a subsequent use of sparsity promoting regularizers whose analysis requires

the existence of bounded L1 norm predictors.

Using the arguments given for Lemma 5.22 and Theorem 5.5, we can show that if

dinfo = Ω
(
B2

ε21
log 1

δ

)
(i.e. if we have collected enough informative landmarks), then we are

done. However, the Chernoff bound (lower tail) tells us that for d = Ω
(
B2

τε21
log 1

δ

)
, this

will happen with probability 1 − δ. Moreover, the Chernoff bound (upper tail) tells us

that, simultaneously we will also have dinf ≤ 3dτ
2 . Together these prove the claim.

5.7.4 Proof of Lemma 5.12

The result for non-sparse vectors, that applies here as well, follows in a straightforward

manner from (Kakade et al., 2008, Theorem 1, Example 3.1(2)) and (Bartlett and Mendel-

son, 2002) which we reproduce for completeness. Since the L1 and L∞ norms are dual to

each other, for any w ∈ (R+)
d

such that ‖w‖1 = B and any µ ∈ ∆d, where ∆d is the

probability simplex in d dimensions, the Kullback-divergence function KL
(
w
B

∥∥µ) is 1
B2 -

strongly convex with respect to the L1 norm. We can remove the positivity constraints on

the coordinates of w by using the standard method of introducing additional dimensions

that encode negative components of the (signed) weight vector.

Using (Kakade et al., 2008, Theorem 1), thus, we can bound the Rademacher com-

plexity of the function class F as Rn (F) ≤ CXCW

√
2 log 2d
n . Next, using the Lipschitz

properties of the loss function, a result from (Bartlett and Mendelson, 2002) allows us to

bound the excess error by 2CLRn(F) + CLCXCW

√
log(1/δ)

2n . The result then follows.

5.7.5 Proof of Theorem 5.9

Using Theorem 5.8, we first bound the excess loss due to landmarking by 32B

√
log(1/τδ)

d .

Next we set up the (dummy) Ivanov regularized regression problem (given in Equation 5.2)

with the training loss being the objective and regularization parameter CW = B. The

training loss incurred by the minimizer of that problem winter is, with probability at least

(1− δ), bounded by L̂ (winter) ≤ ε0 + 32B

√
log(1/δ)
τd + B

√
log(1/δ)

n due to the guarantees

of Theorem 5.8. Next, we run the Forward Greedy Selection algorithm of Shalev-Shwartz

et al. (specialized to our case in Algorithm 6) and obtain another predictor ŵ with L1 norm

bounded by B that has empirical error at most L̂ (ŵ) ≤ L̂ (winter)+
√

18B2

k . Finally, using

Lemma 5.12, we bound the true ε-insensitive loss incurred by ŵ by L̂ (ŵ)+2B

√
2 log(2d)

n +

B

√
log(1/δ)

2n . Adding ε to convert this loss to absolute loss we get that with probability at

most (1− 3δ), we will output a k-sparse predictor in a d-dimensional space with absolute
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regression loss at most

ε0 + 32B

√
log(1/δ)

τd
+

√
18B2

k
+ 2B

√
2 log(2d)

n
+ 2B

√
log(1/δ)

2n
+ ε

5.7.6 Proof of Theorem 5.10

To prove the first part, construct a new weight function w̃(x) = sign (w(x)) · w̄. Note that

we have |w̃(x)| ≤ w̄ ≤ B. Also construct the choice function as follows: for any x, let

P [R(x) = 1|x] = |w(x)|
B . This gives us E

x∼D
JR(x)K = w̄

B . Then for any x, we have

E
x′∼D

q
w̃(x′)K(x,x′)|R(x′)

y
= E

x′∼D

s
sign (w(x)) w̄K(x,x′)

|w(x)|
B

{
/ P
x∼D

[R(x) = 1]

= E
x′∼D

r
w(x)K(x,x′)

w̄

B

z
/
( w̄
B

)
= E

x′∼D

q
w(x′)K(x,x′)

y

Since f(x) = E
x′∼D

Jw(x′)K(x,x′)K has small ε-insensitive loss by (ε0, B)-goodness of K,

we have our result. To prove the second part, construct a new weight function w̃(x) =
w(x)
τ P [R(x) = 1|x]. Note that we have |w̃(x)| ≤ B

τ . Then for any x, we have

E
x′∼D

q
w̃(x′)K(x,x′)

y
= E

x′∼D

s
w(x′)

τ
R(x′)K(x,x′)

{

= E
x′∼D

s
w(x′)

τ
K(x,x′)|R(x′)

{
P

x′∼D

[
R(x′) = 1

]
= E

x′∼D

q
w(x′)K(x,x′)|R(x′)

y

Since f(x) = E
x′∼D

Jw(x′)K(x,x′)|R(x′)K has small ε-insensitive loss by (ε0, B, τ)-

goodness of K, we have our result.

Using the above result we get our admissibility guarantee.

Corollary 5.25. Every PSD kernel that is (ε0, γ)-good for a regression problem is, for

any ε1 > 0,
(
ε0 + ε1,O

(
1

ε1γ2

)
, 1
)

-good as a similarity function as well.

The above result is rather weak with respect to the sparsity parameter τ since we

have made no assumptions on the distribution of the dual variables αi, α
∗
i in the proof of

Theorem 5.6 which is why we are forced to use the (weak) inequality w̄
B ≤ 1. Any stronger

assumptions on the kernel goodness shall also strengthen this admissibility result.

5.7.7 Proof of Theorem 5.16

We use Lemma 5.22 to construct a landmarked space with a linear predictor f̃ : x 7→
〈w,x〉 such that E

x∼D

r∣∣∣f̃ (Ψ (x))− f(x)
∣∣∣z ≤ 2ε1. As before, we have ‖w‖2 ≤ B and

sup
x∈X
{‖Ψ(x)‖} ≤ 1. In the following, we shall first show bounds on the mislabeling error
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i.e P
x∼D

[ŷ(x) 6= y(x)]. Next, we shall convert these bounds into ordinal regression loss by

introducing a spacing parameter into the model.

Since the γ-margin loss function is 1-Lipschitz, we get[
f̃(Ψ(x))− by(x)

]
γ
≤

[
f(x)− by(x)

]
γ

+ 2ε1[
by(x)+1 − f̃(Ψ(x))

]
γ
≤

[
by(x)+1 − f(x)

]
γ

+ 2ε1

Which gives us, upon taking expectations on both sides,

E
x∼D

s[
f̃(Ψ(x))− by(x)

]
γ

+
[
by(x)+1 − f̃(Ψ(x))

]
γ

{
≤ ε0 + 4ε1

Lemma 5.22 guarantees the excess loss due to landmarking to be at most 64B

√
log(1/δ)

d .

Moreover, since the γ-margin loss is 1-Lipschitz, Lemma 5.23 allows us to bound excess

loss due to training by 3B

√
log(1/δ)

n so that the learned predictor has γ-margin loss at most

ε0 + ε1 for any ε1 given large enough d and n. Now, from the definition of the γ-margin

loss it is clear that if the loss is greater than γ then it indicates a mislabeling. Hence, the

mislabeling error is bounded by ε0+ε1
γ .

This may be unsatisfactory if γ � 1 - to remedy such situations we show that we can

bound the 1-margin loss directly. Starting from E
x∼D

r∣∣∣f̃(Ψ(x))− f(x)
∣∣∣z < 2ε1, we can

also deduce

E
x∼D

s[
1− f̃(Ψ(x)) + by(x)

]
+

+
[
1− by(x)+1 + f̃(Ψ(x))

]
+

{
≤ ε0 + 4ε1

We can bound the excess training error for this loss function as well. Since the 1-margin

loss directly bounds the mislabeling error, combining the two arguments we get the second

part of the claim.

However, the margin losses themselves do not present any bound on the ordinal re-

gression error. This is because, if the thresholds are closely spaced together, then even an

instance of gross ordinal regression loss could correspond to very small margin loss. To

remedy this, we introduce a spacing parameter into the model. We say that a set of thresh-

olds is ∆-spaced if min
i∈[r]
{|bi − bi+1|} ≥ ∆. Such a condition can easily be incorporated into

the model of Chu and Keerthi (2007) as a constraint in the optimization formulation.

Suppose that a given instance has ordinal regression error `ord (ŷ(x), y(x)) = k. This

can happen if the point was given a label k labels below (or above) its correct label.

Also suppose that the γ-margin error in this case is [ŷ(x)− y(x)]γ = h. Without loss of

generality, assume that the point x of label k + 1 was given the label 1 giving an ordinal

regression loss of lord = k (a similar analysis would hold if the point of label 1 were to be

given a label k+1 by symmetry of the margin loss formulation with respect to left and right

thresholds). In this case the value of the underlying regression function must lie between
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b1 and b2 and thus, the margin loss h satisfies h ≥ bk+1 + γ − b2 = γ +
k∑
i=2

(bi+1 − bi) ≥

γ + (k − 1) ∆. Thus, if the margin loss is at most h, the ordinal regression error must

satisfy `ord (ŷ(x), y(x)) ≤
[ŷ(x)−by(x)]γ+[by(x)+1−ŷ(x)]

γ
−γ

∆ + 1. Let ψ∆(x) = x+∆−1
∆ . Using

the bounds on the γ-margin and 1-margin losses given above, we get the first part of the

claim.

5.7.8 Proof Theorem 5.17

We prove the two parts of the result separately.

Part 1: Admissibility: As before, using Lemma 5.24 it is possible to obtain a vector

W′ =
n∑
i=1

(αi − α∗i )ΦK(xi) ∈ HK such that 0 ≤ αi, α
∗
i ≤ piC (by applying the KKT

conditions) and the following holds:

E
x∼D

r[
by(x) + 1−

〈
W′,ΦK(x)

〉]
+

+
[〈

W′,ΦK(x)
〉
− by(x)+1 + 1

]
+

z
<

1

2Cγ2
+ ε0 (5.3)

This allows us to construct a weight function wi =
αi−α∗i
pi

such that |wi| ≤ 2C (since we

do not have any guarantee that αiα
∗
i = 0) and E

x′∼D
Jw(x′)K(x,x′)K = 〈W′,ΦK(x)〉 for all

x ∈ X . Denoting f(x) := E
x′∼D

Jw(x′)K(x,x′)K for convenience gives us

E
x∼D

r[
f(x)− by(x)

]
1

+
[
by(x)+1 − f(x)

]
1

z
= E

x∼D

r[
1− f(x) + by(x)

]
+

+
[
1− by(x)+1 + f(x)

]
+

z

≤ 1

2Cγ2
+ ε0

where in the first step we used [x]1 = [1− x]+. Now use the fact [x]1 = 1
γ [γx]γ to get the

following:

E
x∼D

r[
γ1f(x)− γ1by(x)

]
γ1

+
[
γ1by(x)+1 − γ1f(x)

]
γ1

z
≤ γ1

2Cγ2
+ γ1ε0

Note that it is not possible to perform the analysis on the loss function [·]γ directly since

using it requires us to scale the threshold values by a factor of γ1 that makes the result in

Equation 5.3 unusable. Hence we first perform the analysis for [·]1, utilize Equation 5.3

and then interpret the resulting inequality in terms of [·]γ1
.

Setting 2C = γ1

ε1γ2 , using w′(x) = γ1w(x) as weights, using b′j = γ1bj as the thresholds

and noting that the new bound on the weights is |w′i| ≤ 2Cγ1 gives us the result. As

before, using variational optimization techniques, this result can be extended to non-

discrete distributions as well.

In particular, setting γ1 = γ gives us that any PSD kernel that is (ε0, γ)-good for an

ordinal regression problem is also
(
γε0 + ε1,

1
ε1

)
-good as a similarity function with respect

to the γ-margin loss.

Part 2: Tightness: We adapt our running example (used for proving the lower bound

for real regression) for the case of ordinal regression as well. Consider the points with value
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−1 as having label 1 and those having value +1 as having label 2. Clearly, w = (1, 0, 0)

along with the thresholds b1 = −∞ and b2 = 0 establishes the native inner product as a

(0, γ)-good PSD kernel.

Now consider the heavy points yet again and some weight function and threshold b2

(b1 is always fixed at −∞) that is supposed to demonstrate the goodness of the inner

product kernel as a similarity function. Clearly we have

E
x∼D

r[
f(x)− by(x)

]
γ1

+
[
by(x)+1 − f(x)

]
γ1

z
≥

(
1

2
− ε
)(

[f(x1)− b2]γ1
+ [b2 − f(x4)]γ1

)
=

(
1

2
− ε
)(

[γ1 − f(x1) + b2]+ + [γ1 − b2 + f(x4)]+
)

≥
(

1

2
− ε
)

(2γ1 − f(x1) + f(x4))

=

(
1

2
− ε
)(

2γ1 −
(

1

2
− ε
)

(1− b) (w4 − w1)

)
=

(
1

2
− ε
)(

2γ1 −
(

1

2
− ε
)(

4γ2
)

(w4 − w1)

)
where in the third step we have used the fact that [a]+ + [b]+ ≥ a+ b. Thus, in order to

have expected error at most ε1, we must have

w4 − w1 ≥
1

4γ2

(
2γ1 −

ε1
1
2 − ε

)
1

1
2 − ε

=
γ2

1

4ε1γ2

by setting ε = 1
2 −

ε1
γ1

which then proves the result after applying an averaging argument.

5.7.9 Proof of Theorem 5.20

As before, we use Lemma 5.22 to construct a landmarked space with a linear predic-

tor f̃ : x 7→ 〈w,x〉 such that E
z∼µ

r∣∣∣f̃ (Ψ (z))− f(z)
∣∣∣z ≤ 2ε1. We have ‖w‖2 ≤ B and

sup
x∈X
{‖Ψ(x)‖} ≤ 1. Now lets overload notation to denote by Ψ(x) the concatenation of the

images of the m document-query pairs in x under Ψ(·) and by f̃(Ψ(x)), the m-dimensional

vector obtained by applying f̃ to each of the m components of Ψ(x).

Since the squared loss function is 2B-Lipschitz in its first argument in the region of

interest, we get

E
x∼D

r
`sq

(
f̃(Ψ(x)), η(r(x))

)z
= E

x∼D

t
m∑
i=1

`sq

(
f̃(Ψ(zi)), η(r(x))i

)|

=
m∑
i=1

E
x∼D

r
`sq

(
f̃(Ψ(zi)), η(r(x))i

)z
=

m∑
i=1

E
x∼D

J`sq (f(zi), η(r(x))i)K +
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m∑
i=1

E
x∼D

r
`sq

(
f̃(Ψ(zi)), η(r(x))i

)
− `sq (f(zi), η(r(x))i)

z

≤
m∑
i=1

E
x∼D

J`sq (f(zi), η(r(x))i)K + 2B

m∑
i=1

E
x∼D

r∣∣∣f̃(Ψ(zi))− f(zi)
∣∣∣z

=

m∑
i=1

E
x∼D

J`sq (f(zi), η(r(x))i)K + 2B

m∑
i=1

E
z∼µ

r∣∣∣f̃(Ψ(z))− f(z)
∣∣∣z

≤
m∑
i=1

E
x∼D

J`sq (f(zi), η(r(x))i)K + 4Bmε1

= E
x∼D

t
m∑
i=1

`sq (f(zi), η(r(x))i)

|

+ 4Bmε1

= E
x∼D

J`sq (f(x), η(r(x)))K + 4Bmε1

≤ ε0 + 4Bmε1

where x = (q, p1, . . . , pm) and zi = (pi, q). In the first and the last but one step we

have used decomposability of the squared loss, in the fourth step we have used Lipschitz

properties of the squared loss, in the fifth step we have used properties of the generative

mechanism assumed for ranking instances, in the sixth step we have used the guarantee

given by Lemma 5.22. Throughout we have repeatedly used linearity of expectation. This

bounds the excess error due to landmarking to d dimensions by 64B2m2
√

log(1/δ)
d using

Lemma 5.22. Similarly, Lemma 5.23 also allows us to bound the excess error due to

training by 3B2
√

log(1/δ)
n which puts our total squared loss at ε0 + ε1 for large enough d

and n.

We now invoke (Ravikumar et al., 2011, Theorem 10) that states that if the surrogate

loss function `(·, ·) being used is a Bregman divergence generated by a function that is

CS-strongly convex with respect to some norm ‖·‖ then we can bound `NDCG (s, r) ≤
CF√
CS
·
√
` (s, r) where CF = 2

∥∥∥∥( 1
F (1) , . . . ,

1
F (m)

)>∥∥∥∥
∗
, F is the decay function used in the

definition of NDCG and ‖·‖∗ is the dual norm of ‖·‖. Note that we are using the “noiseless”

version of the result where r(x) is a deterministic function of x.

In our case the squared loss is 2-strongly convex with respect to the L2 norm which

is its own dual. Hence CS = 2 and CF = O
(√

m
logm

)
, if f̂ : x 7→ 〈ŵ,Ψ(x)〉 is our final

output, we get, for some constant C,

E
x∼D

r
`NDCG

(
f̂(x), r(x)

)z
≤ C

√
m

logm
·
√
ε0 + 4Bmε1 ≤ C

√
m

logm
·
√
ε0+C

2m√
logm

·
√
Bε1

which proves the claim. This affects the bounds given by Lemmata 5.22 and 5.23 since

the dependence of the excess error on d and n will now be in terms of the inverse of their

fourth roots instead of inverse of the square roots as was the case in regression and ordinal

regression.
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5.7.10 Proof of Theorem 5.21

For notational convenience, we shall assume that the RKHS HK is finite dimensional

so that we can talks in terms of finite dimensional matrices and vectors. As before, let

f(z; W) = 〈W,ΦK(z)〉 and let W′ be the minimizer of the following program.

min
W∈HK

1

2
‖W‖2HK + C E

x∼D
J`sq (f(x; W), η(r(x)))K

≡ min
W∈HK

1

2
‖W‖2HK + C E

x∼D

t
m∑
i=1

`sq (f(zi; W), η(r(x))i)

|

≡ min
W∈HK

1

2
‖W‖2HK + C

m∑
i=1

E
x∼D

J`sq (f(zi; W), η(r(x))i)K

≡ min
W∈HK

1

2
‖W‖2HK +mC E

z∼µ
J`sq (f(z; W), r̃(z))K + CD

where for any z ∈ Q×P, r̃(z) gives us the expected normalized relevance of this document-

query pair across ranking instances and CD is some constant independent of W and

dependent solely on the underlying distributions.

Using the goodness of the kernel K and the argument given in the proof of Lemma 5.24,

it is possible to show that the vector W′ has squared loss at most 1
2Cγ2 + ε0. Hence the

only task remaining is to show that their exists a bounded weight function w such that

for all z ∈ P ×Q, we have f(z; W) = 〈W′,ΦK(z)〉 = E
z′∼µ

Jw(z)K(z, z′)K which will prove

the claim.

To do so we assume that the (finite) set of document-query pairs is (z1, . . . , zk) with zi

having probability µi and relevance ri = r̃(zi). Then the above program can equivalently

be written as

min
W∈HK

1

2
‖W‖2HK +mC

k∑
i=1

µi`sq (〈W,ΦK(zi)〉 , ri)

≡ min
W∈HK

1

2
‖W‖2HK +mC

∥∥∥√PX>W −
√
Pr
∥∥∥2

2

≡ min
W∈HK

1

2
‖W‖2HK +mC

∥∥∥X̃>W − r̃
∥∥∥2

2

≡ min
α∈Rmn

1

2
‖Xα‖2HK +mC

∥∥∥X̃>Xα− r̃
∥∥∥2

2

where X = (ΦK(z1), . . . ,ΦK(zk)), r = (r1, . . . , rk)
>, P is the k × k diagonal matrix with

Pii = µi, X̃ = X
√
P and r̃ =

√
Pr. The last step follows by the Representer Theorem

which tells us that at the optima, W′ = Xα for some α ∈ Rk.

Some simple linear algebra shows us that the minimizer α has the form

α =

(
X>X̃X̃>X +

1

2mC
X>X

)−1

X>X̃ r̃
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=

(
GPG+

G

2mC

)−1

GPr

=

(
PG+

I

2mC

)−1

G−1GPr

=

(
PG+

I

2mC

)−1

Pr

where G = X>X is the Gram matrix given by the kernel K. In the third step we have

assumed that G does not have vanishing eigenvalues which can always be ensured by

adding a small positive constant to the diagonal. Thus we have(
PG+

I

2mC

)
α = Pr

looking at the ith element of both sides we have

µi

k∑
j=1

αjK(zi, zj) +
αi
m2C

= µiri

which gives us αi = 2mCµi (ri − 〈W′,ΦK(zi)〉). Now assume, without loss of generality,

that the relevance scores are normalized, i.e. ri ≤ 1 for all i. Thus we have

1

2

∥∥W′∥∥2

HK
+mC

∥∥∥X̃>W′ − r̃
∥∥∥2

2
≤ 1

2
‖0‖2HK +mC

∥∥∥X̃>0− r̃
∥∥∥2

2

which gives us 1
2 ‖W

′‖2HK ≤ mC ‖r̃‖22 ≤ mC
k∑
i=1

µi = mC which gives us ‖W′‖ ≤
√

2mC.

Since the kernel is already a normalized kernel, ‖ΦK(zi)‖ ≤ 1 which gives us, by an

application of Cauchy-Schwartz, |αi| ≤ 2mCµi(1 +
√
m2C) ≤ 5µimC

√
mC.

If we now establish a weight function over the domain wi = αi
µi

, then |wi| ≤ 5mC
√
mC

and we can show that for all z, we have 〈W′,ΦK(z)〉 = E
z′∼µ

Jw(z)K(z, z′)K. Setting

C = 1
2ε1γ2 finishes the proof.

5.8 Supplementary Experimental Results

Below we present additional experimental results for regression and ordinal regression

problems.

Regression Experiments

We present results on various benchmark datasets considered in Section 5.4 for Gaussian

K(x,y) = exp
(
−‖x−y‖

2
2

2σ2

)
and Euclidean: K(x,y) = −‖x− y‖22 kernels. Following stan-

dard practice, we fixed σ to be the average pairwise distance between data points in the

training set.
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Ordinal Regression Experiments

We present results on various benchmark datasets considered in Section 5.4 for Gaussian

K(x,y) = exp
(
−‖x−y‖

2
2

2σ2

)
and Manhattan: K(x,y) = −‖x− y‖1 kernels. Following

standard practice, we fixed σ to be the average pairwise distance between data points in

the training set.
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(a) Mean squared error for landmarking (RegLand), sparse landmarking (RegLand-Sp) and kernel
regression (KR) for the Gaussian kernel.

(b) Mean squared error for landmarking (RegLand), sparse landmarking (RegLand-Sp) and kernel
regression (KR) for the Euclidean kernel.

Figure 5.3: Performance of landmarking algorithms with increasing number of landmarks
on real-valued regression datasets.
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(a) Average absolute error for landmarking (ORLand) and kernel regression (KR) on ordinal re-
gression datasets for the Manhattan kernel.

(b) Average absolute error for landmarking (ORLand) and kernel regression (KR) on ordinal
regression datasets for the Gaussian kernel.

Figure 5.4: Performance of landmarking algorithms with increasing number of landmarks
on ordinal regression datasets.



Chapter 6

Online Learning with Pairwise

Loss Functions

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Online to Batch Conversion Bounds for Bounded Loss Functions 119

6.3.1 Discussion on the nature of our bounds . . . . . . . . . . . . . . . . . 122

6.4 Fast Convergence Rates for Strongly Convex Loss Functions . . . 122

6.5 Analyzing Online Learning Algorithms that use Finite Buffers . . 124

6.5.1 Examples of Stream Oblivious Policies . . . . . . . . . . . . . . . . . . 125

6.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.6.1 Rademacher Complexity Derivations . . . . . . . . . . . . . . . . . . . 128

6.6.2 AUC maximization for Linear Prediction . . . . . . . . . . . . . . . . 129

6.6.3 Linear Similarity and Mahalanobis Metric learning . . . . . . . . . . . 130

6.6.4 Two-stage Multiple kernel learning . . . . . . . . . . . . . . . . . . . . 131

6.7 OLP : Online Learning with Pairwise Loss Functions . . . . . . . . 133

6.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.10 Regret Bounds for Reservoir Sampling Algorithms . . . . . . . . . 136

6.11 Implementing the RS-x Algorithm . . . . . . . . . . . . . . . . . . . 136

6.12 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.12.1 Proof of Lemma 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.12.2 Proof of Theorem 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.12.3 Proof of Theorem 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.12.4 Proof of Lemma 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.12.5 Proof of Theorem 6.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.12.6 Proof of Theorem 6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.12.7 Proof of Theorem 6.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.12.8 Proof of Theorem 6.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.13 Additional Experimental Results . . . . . . . . . . . . . . . . . . . . 154



116 Chapter 6. Online Learning with Pairwise Loss Functions

Abstract In this chapter, we study the generalization properties of online learning

based stochastic methods for supervised learning problems where the loss function is de-

pendent on more than one training sample (e.g., metric learning, ranking). We present a

generic decoupling technique that enables us to provide Rademacher complexity-based gen-

eralization error bounds. Our bounds are in general tighter than those obtained by Wang

et al. (2012) for the same problem. Using our decoupling technique, we are further able

to obtain fast convergence rates for strongly convex pairwise loss functions. We are also

able to analyze a class of memory efficient online learning algorithms for pairwise learning

problems that use only a bounded subset of past training samples to update the hypothesis

at each step. Finally, in order to complement our generalization bounds, we propose a

novel memory efficient online learning algorithm for higher order learning problems with

bounded regret guarantees.

6.1 Introduction

Several supervised learning problems involve working with pairwise or higher order loss

functions, i.e., loss functions that depend on more than one training sample. Take for

example the metric learning problem (Jin et al., 2009), where the goal is to learn a metric

M that brings points of a similar label together while keeping differently labeled points

apart. In this case the loss function used is a pairwise loss function `(M, (x, y), (x′, y′)) =

φ (yy′ (1−M(x,x′))) where φ is the hinge loss function. In general, a pairwise loss function

is of the form ` : H × X × X → R+ where H is the hypothesis space and X is the input

domain. Other examples include preference learning (Xing et al., 2002), ranking (Agarwal

and Niyogi, 2009), AUC maximization (Zhao et al., 2011) and multiple kernel learning

(Kumar et al., 2012).

In practice, algorithms for such problems use intersecting pairs of training samples to

learn. Hence the training data pairs are not i.i.d. and consequently, standard generalization

error analysis techniques do not apply to these algorithms. Recently, the analysis of batch

algorithms learning from such coupled samples has received much attention (Cao et al.,

2012; Clémençon et al., 2008; Brefeld and Scheffer, 2005) where a dominant idea has been

to use an alternate representation of the U-statistic and provide uniform convergence

bounds. Another popular approach has been to use algorithmic stability (Agarwal and

Niyogi, 2009; Jin et al., 2009) to obtain algorithm-specific results.

While batch algorithms for pairwise (and higher-order) learning problems have been

studied well theoretically, online learning based stochastic algorithms are more popular in

practice due to their scalability. However, their generalization properties were not studied

until recently. Wang et al. (2012) provided the first generalization error analysis of online

learning methods applied to pairwise loss functions. In particular, they showed that such

higher-order online learning methods also admit online to batch conversion bounds (similar
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to those for first-order problems obtained by Cesa-Bianchi et al. (2001)) which can be

combined with regret bounds to obtain generalization error bounds. However, due to

their proof technique and dependence on L∞ covering numbers of function classes, their

bounds are not tight and have a strong dependence on the dimensionality of the input

space.

In literature, there are several instances where Rademacher complexity based tech-

niques achieve sharper bounds than those based on covering numbers (Kakade et al.,

2008). However, the coupling of different input pairs in our problem does not allow us to

use such techniques directly.

In this chapter we introduce a generic technique for analyzing online learning algo-

rithms for higher order learning problems. Our technique, that uses an extension of

Rademacher complexities to higher order function classes (instead of covering numbers),

allows us to give bounds that are tighter than those of Wang et al. and that, for several

learning scenarios, have no dependence on input dimensionality at all.

The key to our proof is a technique we call Symmetrization of Expectations which acts

as a decoupling step and allows us to reduce excess risk estimates to Rademacher com-

plexities of function classes. Wang et al., on the other hand, perform a symmetrization

with probabilities which, apart from being more involved, yields suboptimal bounds. An-

other advantage of our technique is that it allows us to obtain fast convergence rates for

learning algorithms that use strongly convex loss functions. Our result, which uses a novel

two stage proof technique, extends a similar result in the first order setting by Kakade

and Tewari (2008) to the pairwise setting.

Wang et al. (and our results mentioned above) assume an online learning setup in

which a stream of points z1, . . . , zn is observed and the penalty function used at the tth

step is L̂t(h) = 1
t−1

∑t−1
τ=1 `(h, zt, zτ ). Consequently, the results of Wang et al. expect

regret bounds with respect to these all-pairs penalties L̂t. This requires one to use/store

all previously seen points which is computationally/storage wise expensive and hence in

practice, learning algorithms update their hypotheses using only a bounded subset of the

past samples (Zhao et al., 2011).

In the above mentioned setting, we are able to give generalization bounds that only

require algorithms to give regret bounds with respect to finite-buffer penalty functions

such as L̂buf
t (h) = 1

|B|
∑

z∈B `(h, zt, z) where B is a buffer that is updated at each step.

Our proofs hold for any stream oblivious buffer update policy including FIFO and the

widely used reservoir sampling policy (Vitter, 1985; Zhao et al., 2011)1.

To complement our online to batch conversion bounds, we also provide a memory effi-

cient online learning algorithm that works with bounded buffers. Although our algorithm

is constrained to observe and learn using the finite-buffer penalties L̂buf
t alone, we are

still able to provide high confidence regret bounds with respect to the all-pairs penalty

1 ↑ Independently, Wang et al. (2013) also extended their proof to give similar guarantees. However,
their bounds hold only for the FIFO update policy and have worse dependence on dimensionality in several
cases (see Section 6.5).
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functions L̂t. We note that Zhao et al. (2011) also propose an algorithm that uses finite

buffers and claim an all-pairs regret bound for the same. However, their regret bound

does not hold due to a subtle mistake in their proof.

We also provide empirical validation of our proposed online learning algorithm on AUC

maximization tasks and show that our algorithm performs competitively with that of Zhao

et al., in addition to being able to offer theoretical regret bounds.

Our Contributions:

(a) We provide a generic online-to-batch conversion technique for higher-order supervised

learning problems offering bounds that are sharper than those of Wang et al..

(b) We obtain fast convergence rates when loss functions are strongly convex.

(c) We analyze online learning algorithms that are constrained to learn using a finite

buffer.

(d) We propose a novel online learning algorithm that works with finite buffers but is

able to provide a high confidence regret bound with respect to the all-pairs penalty

functions.

6.2 Problem Setup

For ease of exposition, we introduce an online learning model for higher order supervised

learning problems in this section; concrete learning instances such as AUC maximization

and metric learning are given in Section 6.6. For sake of simplicity, we restrict ourselves to

pairwise problems in this chapter; our techniques can be readily extended to higher order

problems as well.

For pairwise learning problems, our goal is to learn a real valued bivariate function

h∗ : X × X → Y, where h∗ ∈ H, under some loss function ` : H × Z × Z → R+ where

Z = X × Y.

The online learning algorithm is given sequential access to a stream of elements z1, z2, . . . , zn

chosen i.i.d. from the domain Z. Let Zt := {z1, . . . , zt}. At each time step t = 2 . . . n,

the algorithm posits a hypothesis ht−1 ∈ H upon which the element zt is revealed and the

algorithm incurs the following penalty:

L̂t(ht−1) =
1

t− 1

t−1∑
τ=1

`(ht−1, zt, zτ ). (6.1)

For any h ∈ H, we define its expected risk as:

L(h) := E
z,z′

q
`(h, z, z′)

y
. (6.2)
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Our aim is to present an ensemble h1, . . . , hn−1 such that the expected risk of the ensemble

is small. More specifically, we desire that, for some small ε > 0,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) + ε,

where h∗ = arg min
h∈H

L(h) is the population risk minimizer. Note that this allows us to do

hypothesis selection in a way that ensures small expected risk. Specifically, if one chooses

a hypothesis as ĥ := 1
(n−1)

∑n
t=2 ht−1 (for convex `) or ĥ := arg min

t=2,...,n
L(ht) then we have

L(ĥ) ≤ L(h∗) + ε.

Since the model presented above requires storing all previously seen points, it becomes

unusable in large scale learning scenarios. Instead, in practice, a sketch of the stream is

maintained in a buffer B of capacity s. At each step, the penalty is now incurred only on

the pairs {(zt, z) : z ∈ Bt} where Bt is the state of the buffer at time t. That is,

L̂buf
t (ht−1) =

1

|Bt|
∑
z∈Bt

`(ht−1, zt, z). (6.3)

We shall assume that the buffer is updated at each step using some stream oblivious policy

such as FIFO or Reservoir sampling (Vitter, 1985) (see Section 6.5).

In Section 6.3, we present online-to-batch conversion bounds for online learning algo-

rithms that give regret bounds w.r.t. penalty functions given by (6.1). In Section 6.4, we

extend our analysis to algorithms using strongly convex loss functions. In Section 6.5 we

provide generalization error bounds for algorithms that give regret bounds w.r.t. finite-

buffer penalty functions given by (6.3). Finally in section 6.7 we present a novel memory

efficient online learning algorithm with regret bounds.

6.3 Online to Batch Conversion Bounds for Bounded Loss

Functions

We now present our generalization bounds for algorithms that provide regret bounds with

respect to the all-pairs loss functions (see Eq. (6.1)). Our results give tighter bounds and

have a much better dependence on input dimensionality than the bounds given by Wang

et al.. See Section 6.3.1 for a detailed comparison.

As was noted by Wang et al., the generalization error analysis of online learning al-

gorithms in this setting does not follow from existing techniques for first-order problems

(such as (Cesa-Bianchi et al., 2001; Kakade and Tewari, 2008)). The reason is that the

terms Vt = L̂t(ht−1) do not form a martingale due to the intersection of training samples

in Vt and Vτ , τ < t.

Our technique, that aims to utilize the Rademacher complexities of function classes

in order to get tighter bounds, faces yet another challenge at the symmetrization step,
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a precursor to the introduction of Rademacher complexities. As the reader will recall2,

there are two main aspects involved in Rademacher-average based proofs. For a learning

problem, say binary classification, given training points x1, . . . ,xn, we first rewrite the

population risk as the expected empirical risk on a fresh randomly sampled set of points

x̃1, . . . , x̃n - since these points are never actually seen and are simply introduced for the

sake of analysis, they are often referred to as “ghost variables”.

However, since these ghost points are chosen from the same distribution as the train-

ing points, they are indistinguishable from them. More specifically, the following two

estimators (A) and (B) are indistinguishable in the sense that E J(A)K = E J(B)K

(A) : sup
h∈H
{`(h,x1)− `(h, x̃1)}

(B) : sup
h∈H
{`(h, x̃1)− `(h,x1)}

This, combined with the fact that (A) = −(B) gives us E J(A)K = E J−(A)K = E Jε · (A)K
where ε is a Rademacher variable which establishes the so-called symmetrization step.

However, in the case of pairwise loss functions it turns out that due to the coupling between

the “head” variable zt and the “tail” variables zτ in the loss function L̂t, a standard

symmetrization between true zτ and ghost z̃τ samples does not succeed in generating

Rademacher averages and instead yields complex looking terms.

More specifically, suppose we have true variables zt and ghost variables z̃t and are in

the process of bounding the expected excess risk by analyzing expressions of the form

Eorig = `(ht−1, zt, zτ )− `(ht−1, z̃t, z̃τ ).

Performing a traditional symmetrization of the variables zτ with z̃τ would give us expres-

sions of the form

Esymm = `(ht−1, zt, z̃τ )− `(ht−1, z̃t, zτ ).

At this point the analysis hits a barrier since unlike first order situations, we cannot relate

Esymm to Eorig by means of introducing Rademacher variables.

We circumvent this problem by using a technique that we call Symmetrization of Ex-

pectations. The technique allows us to use standard symmetrization to obtain Rademacher

complexities. More specifically, we analyze expressions of the form

E′orig = E
z

J`(ht−1, z, zτ )K− E
z

J`(ht−1, z, z̃τ )K

which upon symmetrization yield expressions such as

E′symm = E
z

J`(ht−1, z, z̃τ )K− E
z

J`(ht−1, z, zτ )K

2 ↑We refer the reader to Section 2.3.2 for an introduction to the basic technique of proving Rademacher-
average based generalization bounds.
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which allow us to introduce Rademacher variables since E′symm = −E′orig. This idea is

exploited by the lemma given below that relates the expected risk of the ensemble to the

penalties incurred during the online learning process. In the following we use the following

extension of Rademacher averages (Kakade et al., 2008) to bivariate function classes:

Rn(H) = E

t

sup
h∈H

1

n

n∑
τ=1

ετh(z, zτ )

|

where the expectation is over ετ , z and zτ . We shall denote composite function classes as

follows : ` ◦ H := {(z, z′) 7→ `(h, z, z′), h ∈ H}.

Lemma 6.1. Let h1, . . . , hn−1 be an ensemble of hypotheses generated by an online learn-

ing algorithm working with a bounded loss function ` : H× Z× Z→ [0, B]. Then for any

δ > 0, we have with probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ 1

n− 1

n∑
t=2

L̂t(ht−1) +
2

n− 1

n∑
t=2

Rt−1(` ◦ H) + 3B

√
log n

δ

n− 1
.

The proof of the lemma involves decomposing the excess risk term into a martingale

difference sequence and a residual term in a manner similar to Wang et al.. The mar-

tingale sequence, being a bounded one, is shown to converge using the Azuma-Hoeffding

inequality. The residual term is handled using uniform convergence techniques involving

Rademacher averages. The complete proof of the lemma is given in the Section 6.12.1.

Similar to Lemma 6.1, the following converse relation between the population and

empirical risk of the population risk minimizer h∗ can also be shown.

Lemma 6.2. For any δ > 0, we have with probability at least 1− δ,

1

n− 1

n∑
t=2

L̂t(h∗) ≤ L(h∗) +
2

n− 1

n∑
t=2

Rt−1(` ◦ H) + 3B

√
log 1

δ

n− 1
.

An online learning algorithm will be said to have an all-pairs regret bound Rn if it

presents an ensemble h1, . . . , hn−1 such that

n∑
t=2

L̂t(ht−1) ≤ inf
h∈H

n∑
t=2

L̂t(h) + Rn.

Suppose we have an online learning algorithm with a regret bound Rn. Then combining

Lemmata 6.1 and 6.2 gives us the following online to batch conversion bound:

Theorem 6.3. Let h1, . . . , hn−1 be an ensemble of hypotheses generated by an online

learning algorithm working with a B-bounded loss function ` that guarantees a regret bound

of Rn. Then for any δ > 0, we have with probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
4

n− 1

n∑
t=2

Rt−1(` ◦ H) +
1

n− 1
Rn + 6B

√
log n

δ

n− 1
.
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As we shall see in Section 6.6, for several learning problems, the Rademacher complex-

ities behave as Rt−1(` ◦ H) ≤ Cd · O
(

1√
t−1

)
where Cd is a constant dependent only on

the dimension d of the input space and the O (·) notation hides constants dependent on

the domain size and the loss function. This allows us to bound the excess risk as follows:

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1

n− 1
Rn +O

(
Cd +

√
log(n/δ)√
n− 1

)
.

Here, the error decreases with n at a standard 1/
√
n rate (up to a

√
log n factor),

similar to that obtained by Wang et al.. However, for several problems the above bound

can be significantly tighter than those offered by covering number based arguments. We

provide below a detailed comparison of our results with those of Wang et al..

6.3.1 Discussion on the nature of our bounds

As mentioned above, our proof enables us to use Rademacher complexities which are typ-

ically easier to analyze and provide tighter bounds Kakade et al. (2008). In particular, as

shown in Section 6.6, for L2 regularized learning formulations, the Rademacher complex-

ities are dimension independent i.e. Cd = 1. Consequently, unlike the bounds of Wang

et al. that have a linear dependence on d, our bound becomes independent of the input

space dimension. For sparse learning formulations with L1 or trace norm regularization,

we have Cd =
√

log d giving us a mild dependence on the input dimensionality.

Our bounds are also tighter that those of Wang et al. in general. Whereas we provide

a confidence bound of δ < exp
(
−nε2 + log n

)
, Wang et al. offer a weaker bound δ <

(1/ε)d exp
(
−nε2 + log n

)
.

An artifact of the proof technique of Wang et al. (2012) is that their proof is required

to exclude a constant fraction of the ensemble (h1, . . . , hcn) from the analysis, failing which

their bounds turn vacuous. Our proof on the other hand is able to give guarantees for the

entire ensemble.

In addition to this, as the following sections show, our proof technique enjoys the

flexibility of being extendable to give fast convergence guarantees for strongly convex loss

functions as well as being able to accommodate learning algorithms that use finite buffers.

6.4 Fast Convergence Rates for Strongly Convex Loss Func-

tions

In this section we extend results of the previous section to give fast convergence guarantees

for online learning algorithms that use strongly convex loss functions of the following form:

`(h, z, z′) = g(
〈
h, φ(z, z′)

〉
) + r(h),
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where g is a convex function and r(h) is a σ-strongly convex regularizer (see Section 6.6

for examples) i.e. ∀h1, h2 ∈ H and α ∈ [0, 1], we have

r(αh1 + (1− α)h2) ≤ αr(h1) + (1− α)r(h2)− σ

2
α(1− α) ‖h1 − h2‖2 .

For any norm ‖·‖, let ‖·‖∗ denote its dual norm.

Our analysis reduces the pairwise problem to a first order problem and a martingale

convergence problem. We require the following fast convergence bound in the standard

first order batch learning setting:

Theorem 6.4. Let F be a closed and convex set of functions over X . Let ℘(f,x) =

p(〈f, φ(x)〉) + r(f), for a σ-strongly convex function r, be a loss function with P and P̂
as the associated population and empirical risk functionals and f∗ as the population risk

minimizer. Suppose ℘ is L-Lipschitz and ‖φ(x)‖∗ ≤ R,∀x ∈ X . Then w.p. 1− δ, for any

ε > 0, we have for all f ∈ F ,

P(f)− P(f∗) ≤ (1 + ε)
(
P̂(f)− P̂(f∗)

)
+

Cδ
εσn

where Cδ = C2
d ·(4(1+ε)LR)2 (32 + log(1/δ)) and Cd is the dependence of the Rademacher

complexity of the class F on the input dimensionality d.

The above theorem is a minor modification of a similar result by Sridharan et al. (2008)

and the proof (given in Section 6.12.2) closely follows their proof as well. We can now

state our online to batch conversion result for strongly convex loss functions.

Theorem 6.5. Let h1, . . . , hn−1 be an ensemble of hypotheses generated by an online

learning algorithm working with a B-bounded, L-Lipschitz and σ-strongly convex loss func-

tion `. Further suppose the learning algorithm guarantees a regret bound of Rn. Let

Vn = max
{
Rn, 2C

2
d log n log(n/δ)

}
Then for any δ > 0, we have with probability at least

1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1

n− 1
Rn + Cd · O

(√
Vn log n log(n/δ)

n− 1

)
,

where the O (·) notation hides constants dependent on domain size and the loss function

such as L,B and σ.

The decomposition of the excess risk in this case is not made explicitly but rather

emerges as a side-effect of the proof progression. The proof starts off by applying The-

orem 6.4 to the hypothesis in each round with the following loss function ℘(h, z′) :=

E
z

J`(h, z, z′)K. Applying the regret bound to the resulting expression gives us a martingale

difference sequence which we then bound using Bernstein-style inequalities and a proof

technique from (Kakade and Tewari, 2008). The complete proof is given in Section 6.12.3.

We now note some properties of this result. The effective dependence of the above

bound on the input dimensionality is C2
d since the expression

√
Vn hides a Cd term. We
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have C2
d = 1 for non sparse learning formulations and C2

d = log d for sparse learning

formulations. We note that our bound matches that of Kakade and Tewari (for first-order

learning problems) up to a logarithmic factor.

6.5 Analyzing Online Learning Algorithms that use Finite

Buffers

In this section, we present our online to batch conversion bounds for algorithms that

work with finite-buffer loss functions L̂buf
t . In our finite buffer online learning model, one

observes a stream of elements z1, . . . , zn. A sketch of these elements is maintained in a

buffer B of size s, i.e., at each step t = 2, . . . , n, the buffer contains a subset of the elements

Zt−1 of size at most s. At each step t = 2 . . . n, the online learning algorithm posits a

hypothesis ht−1 ∈ H, upon which the element zt is revealed and the algorithm incurs the

loss

L̂buf
t (ht−1) =

1

|Bt|
∑
z∈Bt

`(ht−1, zt, z),

where Bt is the state of the buffer at time t. Note that |Bt| ≤ s. We would be interested in

algorithms that are able to give a finite-buffer regret bound, i.e., for which, the proposed

ensemble h1, . . . , hn−1 satisfies

n∑
t=2

L̂buf
t (ht−1)− inf

h∈H

n∑
t=2

L̂buf
t (h) ≤ Rbuf

n .

We assume that the buffer is updated after each step in a stream-oblivious manner

(see discussion below). For randomized buffer update policies (such as reservoir sampling

Vitter (1985)), this corresponds to the assumption that we are supplied at each step with

some fresh randomness rt (see examples below) along with the data point zt. Thus the

data received at time t is a tuple wt = (zt, rt). We shall refer to the random variables

rt as auxiliary variables. It is important to note that stream obliviousness dictates that

rt as a random variable is independent of zt. Let W t−1 := {w1, . . . ,wt−1} and Rt−1 :=

{r1, . . . , rt−1}. Note that Rt−1 completely decides the indices present in the buffer Bt at

step t independent of Zt−1. For any h ∈ H, define

L̃buf
t := E

zt

r
L̂buf
t

∣∣∣W t−1
z
.

For our guarantees to hold, we require the buffer update policy used by the learning

algorithm to be stream oblivious. More specifically, we require the buffer update rule to

decide upon the inclusion of a particular point zi in the buffer based only on its stream in-

dex i ∈ [n]. Some examples of stream oblivious policies are given below. Stream oblivious

policies allow us to decouple buffer construction randomness from training sample ran-

domness which makes analysis easier; we leave the analysis of stream aware buffer update

policies as a topic of future research.
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6.5.1 Examples of Stream Oblivious Policies

Below we give some examples of stream oblivious policies for updating the buffer:

1. FIFO: in this policy, the data point zt arriving at time t > s is inducted into

the buffer by evicting the data point z(t−s) from the buffer. Since this is a non-

randomized policy, there is no need for auxiliary randomness and we can assume

that rt follows the trivial law

rt ∼ 1{r=1}.

2. RS : the Reservoir Sampling policy was introduced by Vitter (1985). In this policy,

at time t > s, the incoming data point zt is inducted into the buffer with probability

s/t. If chosen to be included, it results in the eviction of a random element of the

buffer. In this case the auxiliary random variable is a 2-tuple that follows the law

rt = (r1
t , r

2
t ) ∼

(
Bernoulli

(s
t

)
,
1

s

s∑
i=1

1{r2=i}

)
.

3. RS-x (see Algorithm 7): in this policy, the incoming data point zt at time t > s,

replaces each data point in the buffer independently with probability 1/t. Thus the

incoming point has the potential to evict multiple buffer points while establishing

multiple copies of itself in the buffer. In this case, the auxiliary random variable is

defined by a Bernoulli process:

rt = (r1
t , r

2
t . . . , r

s
t ) ∼

(
Bernoulli

(
1

t

)
,Bernoulli

(
1

t

)
, . . . ,Bernoulli

(
1

t

))
.

4. RS-x2 (see Algorithm 9): this is a variant of RS-x in which the number of evictions

is first decided by a Binomial trial and then those many random points in the buffer

are replaced by the incoming data point. This can be implemented as follows:

rt = (r1
t , r

2
t ) ∼

(
Binomial

(
s,

1

t

)
,Perm(s)

)
where Perm(s) gives a random permutation of s elements.

In the above mentioned setting, we can prove the following online to batch conversion

bound for bounded loss functions:

Theorem 6.6. Let h1, . . . , hn−1 be an ensemble of hypotheses generated by an online

learning algorithm working with a finite buffer of capacity s and a B-bounded loss function

`. Moreover, suppose that the algorithm guarantees a regret bound of Rbuf
n . Then for any

δ > 0, we have with probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1

n− 1
Rbuf
n +O

(
Cd√
s

+B

√
log n

δ

s

)
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where Cd is the dependence of Rn(H) on the input dimensionality d.

Proof Sketch. We shall prove the result in two steps. In the first step we shall prove the

following uniform convergence style result

Lemma 6.7. Let h1, . . . , hn−1 be an ensemble of hypotheses generated by an online learn-

ing algorithm working with a B-bounded loss function ` and a finite buffer of capacity s.

Then for any δ > 0, we have with probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ 1

n− 1

n∑
t=2

L̂buft (ht−1) +B

√
2 log n

δ

s
+

2

n− 1

n∑
t=2

Rmin{t−1,s}(` ◦ H).

At a high level, our proof progression shall follow that of Lemma 6.1. However, the

execution of the proof will have to be different in order to accommodate the finiteness of

the buffer and randomness used to construct it. Similarly, we shall also be able to show

the following result.

Lemma 6.8. For any δ > 0, we have with probability at least 1− δ,

1

n− 1

n∑
t=2

L̂buft (h∗) ≤ L(h∗) + 3B

√
log n

δ

s
+

2

n− 1

n∑
t=2

Rmin{t−1,s}(` ◦ H).

Note that for classes whose Rademacher averages behave as Rn(H) ≤ Cd · O
(

1√
n

)
,

applying Lemma 6.10 gives us Rn(` ◦ H) ≤ Cd · O
(

1√
n

)
as well which allows us to show

2

n− 1

n∑
t=2

Rmin{t−1,s}(` ◦ H) = Cd · O
(

1√
s

)
.

Combining Lemmata 6.7 and 6.8 along with the definition of bounded buffer regret

Rbuf
n gives us the first part of Theorem 6.6.

We can strengthen the above result for strongly convex loss functions as well:

Theorem 6.9. Let h1, . . . , hn−1 be an ensemble of hypotheses generated by an online

learning algorithm working with a finite buffer of capacity s and a B-bounded loss function

that is Lipschitz and strongly convex as well, then with confidence at least 1− δ, we have

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1

n− 1
Rbuf
n + Cd · O

(√
Wn log n

δ

sn

)

where Wn = max
{
Rbuf
n ,

2C2
dn log(n/δ)

s

}
and Cd is the dependence of Rn(H) on the input

dimensionality d.

The above bound guarantees an excess error of Õ (1/s) for algorithms (such as Follow-

the-leader (Hazan et al., 2006)) that offer logarithmic regret Rbuf
n = O (log n). We stress
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that this theorem is not a direct corollary of our results for the infinite buffer case (The-

orems 6.3 and 6.5). Instead, our proof requires a more careful analysis of the excess risk

in order to accommodate the finiteness of the buffer and the randomness (possibly) used

in constructing it.

More specifically, care needs to be taken to handle randomized buffer update policies

such as RS which introduce additional randomness into the analysis. A naive application

of techniques used to prove results for the unbounded buffer case would result in bounds

that give non trivial generalization guarantees only for large buffer sizes such as s = ω(
√
n).

Our bounds, on the other hand, only require s = ω̃(1).

Key to our proofs is a conditioning step where we first analyze the conditional excess

risk by conditioning upon randomness used by the buffer update policy. Such conditioning

is made possible by the stream-oblivious nature of the update policy and thus, stream-

obliviousness is required by our analysis. Subsequently, we analyze the excess risk by

taking expectations over randomness used by the buffer update policy.

Note that the above results only require an online learning algorithm to provide regret

bounds w.r.t. the finite-buffer penalties L̂buf
t and do not require any regret bounds w.r.t the

all-pairs penalties L̂t.
For instance, the finite buffer based online learning algorithms OAMseq and OAMgra

proposed in Zhao et al. are able to provide a regret bound w.r.t. L̂buf
t (Zhao et al., 2011,

Lemma 2) but are not able to do so w.r.t the all-pairs loss function (see Section 6.7 for a

discussion). Using Theorem 6.6, we are able to give a generalization bound for OAMseq

and OAMgra and hence explain the good empirical performance of these algorithms as

reported in Zhao et al.. Note that Wang et al. are not able to analyze OAMseq and

OAMgra since their analysis is restricted to algorithms that use the (deterministic) FIFO

update policy whereas OAMseq and OAMgra use the (randomized) RS policy of Vitter.

6.6 Applications

In this section we make explicit our online to batch conversion bounds for several learning

scenarios and also demonstrate their dependence on input dimensionality by calculating

their respective Rademacher complexities. Recall that our definition of Rademacher com-

plexity for a pairwise function class is given by,

Rn(H) = E

t

sup
h∈H

1

n

n∑
τ=1

ετh(z, zτ )

|

.

For our purposes, we would be interested in the Rademacher complexities of composition

classes of the form ` ◦ H := {(z, z′) 7→ `(h, z, z′), h ∈ H} where ` is some Lipschitz loss

function. Frequently we have `(h, z, z′) = φ (h(x,x′)Y (y, y′)) where Y (y, y′) = y − y′ or

Y (y, y′) = yy′ and φ : R → R is some margin loss function (Steinwart and Christmann,

2008b). Suppose φ is L-Lipschitz and Y = sup
y,y′∈Y

|Y (y, y′)|. Then we have
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Theorem 6.10. Rn(` ◦ H) ≤ LYRn(H).

The proof uses standard contraction inequalities and is given in Section 6.12.6. This

reduces our task to computing the values of Rn(H) which we do using a two stage proof

technique (see discussion below). For any subset X of a Banach space and any norm ‖·‖p,
we define ‖X‖p := sup

x∈X
‖x‖p. Let the domain X ⊂ Rd. We also define norm bounded balls

in the Banach space as Bp(r) :=
{

x : ‖x‖p ≤ r
}

for any r > 0.

6.6.1 Rademacher Complexity Derivations

In this section we shall derive Rademacher complexity bounds for hypothesis classes used

in various learning problems. Crucial to our derivations shall be the following result by

Kakade et al. (2008). Recall the usual definition of Rademacher complexity of a univariate

function class F = {f : X → R}

Rn(F) = E

t

sup
f∈F

1

n

n∑
i=1

εif(xi)

|

.

Theorem 6.11 (Kakade et al. (2008), Theorem 1). Let W be a closed and convex subset

of some Banach space equipped with a norm ‖·‖ and dual norm ‖·‖∗. Let F : W → R be

σ-strongly convex with respect to ‖·‖∗. Assume W ⊆
{
w : F (w) ≤W 2

∗
}

. Furthermore, let

X = {x : ‖x‖ ≤ X} and FW := {w 7→ 〈w,x〉 : w ∈ W,x ∈ X}. Then, we have

Rn(FW) ≤ XW∗

√
2

σn
.

We note that Theorem 6.11 is applicable only to first order learning problems since

it gives bounds for univariate function classes. However, our hypothesis classes consist

of bivariate functions which makes a direct application difficult. Recall our extension of

Rademacher averages to bivariate function classes:

Rn(H) = E

t

sup
h∈H

1

n

n∑
i=1

εih(z, zi)

|

where the expectation is over εi, z and zi. To overcome the above problem we will use

the following two step proof technique:

1. Order reduction: We shall cast our learning problems in a modified input domain

where predictors behave linearly as univariate functions. More specifically, given a

hypothesis class H and domain X , we shall construct a modified domain X̃ and a

map ψ : X × X → X̃ such that for any x,x′ ∈ X and h ∈ H, we have h(x,x′) =

〈h, ψ(x,x′)〉.
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Hypothesis class Rademacher Complexity

Bq(‖W‖q) 2 ‖X‖p ‖W‖q
√

p−1
n

B1(‖W‖1) 2 ‖X‖∞ ‖W‖1
√

e log d
n

Table 6.1: Rademacher complexity bounds for AUC maximization. We have 1/p+1/q = 1
and q > 1.

2. Conditioning: For every x ∈ X , we will create a function class

Fx =
{
x′ 7→

〈
h, ψ(x,x′)

〉
: h ∈ H

}
.

Since Fx is a univariate function class, we will use Theorem 6.11 to bound Rn(Fx).

Since Rn(H) = E
x

JRn(Fx)K, we shall obtain Rademacher complexity bounds for H.

We give below some examples of learning situations where these results may be applied.

For sake of convenience we present the examples using loss functions for classification tasks

but the same can be extended to other learning problems such as regression, multi-class

classification and ordinal regression.

6.6.2 AUC maximization for Linear Prediction

In this case the goal is to maximize the area under the ROC curve for a linear classification

problem at hand. This translates itself to a learning situation whereW,X ⊆ Rd. We have

hw(x,x′) = w>x − w>x′ and `(hw, z1, z2) = φ ((y − y′)hw(x,x′)) where φ is the hinge

loss or the exponential loss Zhao et al. (2011).

In order to apply Theorem 6.11, we rewrite the hypothesis as hw(x,x′) = w>(x− x′)

and consider the input domain X̃ = {x− x′ : x,x′ ∈ X} and the map ψ : (x,x′) 7→ x−x′.

Clearly if X ⊆ {x : ‖x‖ ≤ X} then X̃ ⊆ {x : ‖x‖ ≤ 2X} and thus we have
∥∥∥X̃∥∥∥ ≤ 2 ‖X‖

for any norm ‖·‖. It is now possible to regularize the hypothesis class W using a variety

of norms.

If we wish to define our hypothesis class as Bq(·), q > 1, then in order to apply Theo-

rem 6.11, we can use the regularizer F (w) = ‖w‖2q . If we wish the sparse hypotheses class,

B1(W1), we can use the regularizer F (w) = ‖w‖2q with q = log d
log d−1 as this regularizer is

strongly convex with respect to the L1 norm Kakade et al. (2012). Table 6.1 gives a suc-

cinct summary of such possible regularizations and corresponding Rademacher complexity

bounds.

Note that we obtain dimension independence, for example when the classifiers are L2

regularized which allows us to bound the Rademacher complexities of kernelized function

classes for bounded kernels as well.

Kernelized AUC maximization: Since the L2 regularized hypothesis class has a di-

mension independent Rademacher complexity, it is possible to give guarantees for al-

gorithms performing AUC maximization using kernel classifiers as well. In this case

we have a Mercer kernel K with associated reproducing kernel Hilbert space HK and
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Hypothesis Class Rademacher Complexity

B2,2(‖W‖2,2) ‖X‖22 ‖W‖2,2
√

1
n

B2,1(‖W‖2,1) ‖X‖2 ‖X‖∞ ‖W‖2,1
√

e log d
n

B1,1(‖W‖1,1) ‖X‖2∞ ‖W‖1,1
√

2e log d
n

BS(1)(‖W‖S(1)) ‖X‖22 ‖W‖S(1)

√
e log d
n

Table 6.2: Rademacher complexity bounds for Similarity and Metric learning

feature map ΦK : X → HK . Our predictors lie in the RKHS, i.e., w ∈ HK and

we have hw(x,x′) = w> (ΦK(x)− ΦK(x′)). In this case we will have to use the map

ψ : (x,x′) 7→ ΦK(x) − ΦK(x′) ∈ HK . If the kernel is bounded, i.e., for all x,x′ ∈ X , we

have |K(x,x′)| ≤ κ2, then we can get a Rademacher average bound of 2κ ‖W‖2
√

1
n .

6.6.3 Linear Similarity and Mahalanobis Metric learning

A variety of applications, such as in vision, require one to fine tune one’s notion of prox-

imity by learning a similarity or metric function over the input space. We consider some

such examples below. In the following, we have W ∈ Rd×d.

1. Mahalanobis metric learning : in this case we wish to learn a Mahalanobis metric

MW(x,x′) = (x− x′)>W(x− x′) using the loss function

`(MW, z, z′) = φ
(
yy′
(
1−M2

W(x,x′)
))

Jin et al. (2009) for a hypothesis class W ⊂ Rd×d.

2. Linear kernel learning : in this case we wish to learn a linear kernel functionKW(x,x′) =

x>Wx′,W � 0. A variety of loss functions have been proposed to aid the learning

process

(a) Kernel-target Alignment : the loss function used is `(KW, z, z′) = φ (yy′KW(x,x′))

where φ is used to encode some notion of alignment Cristianini et al. (2001);

Cortes et al. (2010b).

(b) S-Goodness: this is used in case one wishes to learn a good similarity function

that need not be positive semi definite Bellet et al. (2012); Balcan and Blum

(2006) by defining `(KW, z) = φ

(
y E

(x′,y′)
Jy′KW(x,x′)K

)
.

In order to apply Theorem 6.11, we will again rewrite the hypothesis and consider a dif-

ferent input domain. For the similarity learning problem, write the similarity function as

KW(x,x′) =
〈
W,xx′>

〉
and consider the input space X̃ =

{
xx′> : x,x′ ∈ X

}
⊆ Rd×d

along with the map ψ : (x,x′) 7→ xx′>. For the metric learning problem, rewrite

the metric as MW(x,x′) =
〈
W, (x− x′)(x− x′)>

〉
and consider the input space X̃ ={

(x− x′)(x− x′)> : x,x′ ∈ X
}
⊆ Rd×d along with the map ψ : (x,x′) 7→ (x−x′)(x−x′)>.
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Hypothesis Class Rademacher Avg. Bound

S2(1) κ2
√

p
n

∆(1) κ2
√

e log p
n

Table 6.3: Rademacher complexity bounds for Multiple kernel learning

In this case it is possible to apply a variety of matrix norms to regularize the hypothesis

class. We consider the following (mixed) matrix norms : ‖·‖1,1, ‖·‖2,1 and ‖·‖2,2. Note

that the (2, 2)-norm regularization offers a dimension independent bound.

We also consider the Schatten norm ‖X‖S(p) := ‖σ(X)‖p that includes the widely used

trace norm ‖σ(X)‖1. As before, we define norm bounded balls in the Banach space as

follows: Bp,q(r) :=
{

x : ‖x‖p,q ≤ r
}

.

Using results on construction of strongly convex functions with respect to theses norms

from Kakade et al. (2012), it is possible to get bounds on the Rademacher averages of the

various hypothesis classes. However these bounds involve norm bounds for the modified

domain X̃ . We make these bounds explicit by expressing norm bounds for X̃ in terms of

those for X . From the definition of X̃ for the similarity learning problems, we get, for any

p, q ≥ 1,
∥∥∥X̃∥∥∥

p,q
≤ ‖X‖p ‖X‖q. Also, since every element of X̃ is of the form xx′>, it has

only one non zero singular value ‖x‖2 ‖x′‖2 which gives us
∥∥∥X̃∥∥∥

S(p)
≤ ‖X‖22 for any p ≥ 1.

For the metric learning problem, we can similarly get
∥∥∥X̃∥∥∥

p,q
≤ 4 ‖X‖p ‖X‖q and∥∥∥X̃∥∥∥

S(p)
≤ 4 ‖X‖22 for any p ≥ 1 which allows us to get similar bounds as those for

similarity learning but for an extra constant factor. We summarize our bounds in Table 6.2.

We note that Cao et al. (2012) devote a substantial amount of effort to calculate these

values for the mixed norms on a case-by-case basis (and do not consider Schatten norms

either) whereas, using results exploiting strong convexity and strong smoothness from

(Kakade et al., 2012), we are able to get the same as simple corollaries.

6.6.4 Two-stage Multiple kernel learning

The analysis of the previous example can be replicated for learning non-linear Mercer ker-

nels as well. Additionally, since all Mercer kernels yield Hilbertian metrics, these methods

can be extended to learning Hilbertian metrics as well. However, since Hilbertian metric

learning has not been very popular in literature, we restrict our analysis to kernel learning

alone. We present this example using the framework proposed by Kumar et al. (2012) due

to its simplicity and generality.

The goal here is to improve the SVM classification algorithm by learning a good kernel

K that is a positive combination of base kernels. We are given p Mercer kernels K1, . . . ,Kp

that are bounded, i.e., for all i, |Ki(x,x
′)| ≤ κ2 for all x,x′ ∈ X and our task is to find

a combination of these kernels given by a vector µ ∈ Rp,µ ≥ 0 such that the kernel

Kµ(x,x′) =
∑p

i=1µiKi(x,x
′) is a good kernel Balcan and Blum (2006). In this case the
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loss function used is `(µ, z, z′) = φ (yy′Kµ(x,x′)) where φ(·) is meant to encode some

notion of alignment. Kumar et al. (2012) take φ(·) to be the hinge loss.

To apply Theorem 6.11, we simply use the “K-space” construction proposed in Kumar

et al. (2012). We writeKµ(x,x′) = 〈µ, z(x,x′)〉 where z(x,x′) = (K1(x,x′), . . . ,Kp(x,x
′)).

Consequently our modified input space looks like X̃ = {z(x,x′) : x,x′ ∈ X} ⊆ Rp with

the map ψ : (x,x′) 7→ z(x,x′). Popular regularizations on the kernel combination vector

µ include the sparsity inducing L1 regularization that constrains µ to lie on the unit sim-

plex ∆(1) = {µ : ‖µ‖1 = 1,µ ≥ 0} and L2 regularization that restricts µ to lie on the unit

sphere S2(1) = {µ : ‖µ‖2 = 1,µ ≥ 0}. Arguments similar to the one used to discuss the

case of AUC maximization for linear predictors give us bounds on the Rademacher aver-

ages for these two hypothesis classes in terms of
∥∥∥X̃∥∥∥

2
and

∥∥∥X̃∥∥∥
∞

. Since
∥∥∥X̃∥∥∥

2
≤ κ2√p

and
∥∥∥X̃∥∥∥

∞
≤ κ2, we obtain explicit bounds on the Rademacher averages that are given

in Table 6.3.

Several previous works (eg. Cortes et al. (2010b)) have provided Rademacher average

bounds for the hypothesis class that consists of predictors that come from these kernel

spaces. More specifically, the hypothesis class in these works is

F =

{
f ∈ HK : ‖f‖HK ≤ 1,K =

p∑
i=1

µiKi,µ ≥ 0, ‖µ‖q = 1

}

where q = 1, 2. The bounds presented above, however, consider the hypothesis class of

the kernel functions themselves, true to the spirit of two-stage multiple kernel learning.

In other words, our hypothesis class is

K =

{
K : K =

p∑
i=1

µiKi,µ ≥ 0, ‖µ‖q = 1

}

where q = 1, 2. Our objective here is to simply learn a good kernel and leave the predictor

learning task to the second stage.

We note that for the L1 regularized case, our bound has a similar dependence on the

number of kernels, i.e.,
√

log p as the bounds presented in Cortes et al. (2010a). For the

L2 case however, we have a worse dependence of
√
p than Cortes et al. (2010a) who get

a 4
√
p dependence. This may be attributed to the fact that we analyze the problem in a

black box manner and use fairly generic bounds by looking at the class K and are thus not

able to exploit the internal structure and additional constraints placed on the hypothesis

class F . However, it is a bit unfair to compare the two bounds since Cortes et al. (2010a)

consider single stage kernel learning algorithms that try to learn the kernel combination

as well as the classifier in a single step whereas we are dealing with a two-stage process

where classifier learning is disjoint from the kernel learning step.

In particular, we have a worse dependence on the κ parameter - whereas our dependence

is quadratic, Cortes et al. (2010b) have only a linear dependence. This is due to the extra

constraint ‖f‖HK ≤ 1 placed on the elements of the hypothesis class F . This tightly
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Algorithm 7 RS-x : Stream Subsampling with Replacement

Input: Buffer B, new point zt, buffer size s, timestep t.
1: if |B| < s then {There is space}
2: B ← B ∪ {zt}
3: else {Overflow situation}
4: if t = s+ 1 then {Repopulation step}
5: TMP← B ∪ {zt}
6: Repopulate B with s points sampled uniformly with replacement from TMP.
7: else {Normal update step}
8: Independently, replace each point of B with zt with probability 1/t.
9: end if

10: end if
11: return B

Algorithm 8 OLP : Online Learning with Pairwise Loss Functions

Input: Step length scale η, Buffer size s
Output: An ensemble w2, . . . ,wn ∈ W with low regret

1: w0 ← 0, B ← φ
2: for t = 1 to n do
3: Obtain a training point zt
4: Set step length ηt ← η√

t

5: wt ← ΠW

[
wt−1 + ηt

|B|
∑

z∈B∇w`(wt−1, zt, z)
]

{ΠW projects onto the set W}
6: B ← Update-buffer(B, zt, s, t) {using RS-x}
7: end for
8: return w2, . . . ,wn

bounds the components of the function f in the various RKHSes HK1 , . . . ,HKp whereas

our analysis is completely oblivious to functions in the RKHSes and hence considers an

enlarged hypothesis class. It should be possible, as well as would be interesting, to get

better bounds by doing a fine case-by-case analysis for the multiple kernel learning case.

6.7 OLP : Online Learning with Pairwise Loss Functions

In this section, we present an online learning algorithm for learning with pairwise loss

functions in a finite buffer setting. The key contribution in this section is a buffer update

policy that when combined with a variant of the GIGA algorithm (Zinkevich, 2003) allows

us to give high probability regret bounds.

In previous work, Zhao et al. presented an online learning algorithm that uses finite

buffers with the RS policy and proposed an all-pairs regret bound. The RS policy ensures,

over the randomness used in buffer updates, that at any given time, the buffer contains

a uniform sample from the preceding stream. Using this property, (Zhao et al., 2011,

Lemma 2) claimed that E
r
L̂buf
t (ht−1)

z
= L̂t(ht−1) where the expectation is taken over the

randomness used in buffer construction. However, a property such as E
r
L̂buf
t (h)

z
= L̂t(h)

holds only for functions h that are either fixed or obtained independently of the random



134 Chapter 6. Online Learning with Pairwise Loss Functions

variables used in buffer updates (over which the expectation is taken). Since ht−1 is learned

from points in the buffer itself, the above property, and consequently the regret bound,

does not hold.

We remedy this issue by showing a relatively weaker claim; we show that with high

probability we have L̂t(ht−1) ≤ L̂buf
t (ht−1) + ε. At a high level, this claim is similar to

showing uniform convergence bounds for L̂buf
t . However, the reservoir sampling algorithm

is not particularly well suited to prove such uniform convergence bounds as it essentially

performs sampling without replacement (see Section 6.10 for a discussion). We overcome

this hurdle by proposing a new buffer update policy RS-x (see Algorithm 7) that, at each

time step, guarantees s i.i.d. samples from the preceding stream. The following theorem

formalizes the properties of the sampling algorithm.

Theorem 6.12. Suppose we have a stream of elements z1, . . . , zn being sampled into a

buffer B of size s using the RS-x algorithm. Then at any time t ≥ s+ 2, each element of

B is an i.i.d. sample from the set Zt−1.

However, it turns out that are certain issues in implementing the RS-x buffer update

policy. To remedy this, we propose an efficient alternate implementation of the same

policy, details of which can be found in Section 6.11. Our algorithm uses this buffer

update policy in conjunction with an online learning algorithm OLP (see Algorithm 8)

that is a variant of the well-known GIGA algorithm of Zinkevich. We provide the following

all-pairs regret guarantee for our algorithm:

Theorem 6.13. Suppose the OLP algorithm working with an s-sized buffer generates an

ensemble w1, . . . ,wn−1. Then with probability at least 1− δ,

Rn

n− 1
≤ O

(
Cd

√
log n

δ

s
+

√
1

n− 1

)

See Section 6.12.8 for the proof. A drawback of our bound is that it offers sublinear

regret only for buffer sizes s = ω(log n). A better regret bound for constant s or a lower-

bound on the regret is an open problem.

6.8 Experimental Evaluation

In this section we present experimental evaluation of our proposed OLP algorithm. We

stress that the aim of this evaluation is to show that our algorithm, that enjoys high

confidence regret bounds, also performs competitively in practice with respect to the

OAMgra algorithm proposed by Zhao et al. since our results in Section 6.5 show that

OAMgra does enjoy good generalization guarantees despite the lack of an all-pairs regret

bound.

In our experiments, we adapted the OLP algorithm to the AUC maximization problem

and compared it with OAMgra on 18 different benchmark datasets. We used 60% of



6.9. Discussion 135

 0.6

 0.7

 0.8

 0.9

 0  10  20  30  40  50  60

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(a) Sonar

 0.8

 0.9

 1

 0  50  100  150  200  250  300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(b) Segment

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(c) IJCNN

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  50  100  150  200  250  300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(d) Covertype

Figure 6.1: Performance of OLP (using RS-x) and OAMgra (using RS) by Zhao et al.
(2011) on AUC maximization tasks with varying buffer sizes.

the available data points up to a maximum of 20000 points to train both algorithms.

We refer the reader to Section 6.11 for a discussion on the implementation of the RS-

x algorithm. Figure 6.1 presents the results of our experiments on 4 datasets across 5

random training/test splits. Results on other datasets can be found in Section 6.13. The

results demonstrate that OLP performs competitively to OAMgra while in some cases

having slightly better performance for small buffer sizes.

6.9 Discussion

In this work we studied the generalization capabilities of online learning algorithms for

pairwise loss functions from several different perspectives. Using the method of Sym-

metrization of Expectations, we first provided sharp online to batch conversion bounds for

algorithms that offer all-pairs regret bounds. Our results for bounded and strongly convex

loss functions closely match their first order counterparts. We also extended our analysis

to algorithms that are only able to provide finite-buffer regret bounds using which we were

able to explain the good empirical performance of some existing algorithms. Finally we

presented a new memory-efficient online learning algorithm that is able to provide all-pairs

regret bounds in addition to performing well empirically.
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Several interesting directions can be pursued for future work, foremost being the de-

velopment of online learning algorithms that can guarantee sub-linear regret at constant

buffer sizes or else a regret lower bound for finite buffer algorithms. Secondly, the idea

of a stream-aware buffer update policy is especially interesting both from an empirical as

well as theoretical point of view and would possibly require novel proof techniques for its

analysis. Lastly, scalability issues that arise when working with higher order loss functions

also pose an interesting challenge.

6.10 Regret Bounds for Reservoir Sampling Algorithms

The Reservoir Sampling algorithm (Vitter, 1985) essentially performs sampling without

replacement which means that the samples present in the buffer are not i.i.d. samples from

the preceding stream. Due to this, proving regret bounds by way of uniform convergence

arguments becomes a bit more difficult. However, there has been a lot of work on analyzing

learning algorithms that learn from non-i.i.d. data such as data generated by ergodic

processes. Of particular interest is a result by Serfling 3 that gives Hoeffding style bounds

for data generated from a finite population without replacement.

Although Serfling’s result does provide a way to analyze the RS algorithm, doing so

directly would require using arguments that involve covering numbers that offer bounds

that are dimension dependent and that are not tight. It would be interesting to see if

equivalents of the McDiarmid’s inequality and Rademacher averages can be formulated

for samples obtained without replacement to get tighter results. For our purposes, we

remedy the situation by proposing a new sampling algorithm that gives us i.i.d. samples

in the buffer allowing existing techniques to be used to obtain regret bounds.

6.11 Implementing the RS-x Algorithm

Although the RS-x algorithm presented in the chapter allows us to give clean regret

bounds, it suffers from a few drawbacks. From a theoretical point of view, the algorithm

is inferior to Vitter’s RS algorithm in terms of randomness usage. The RS algorithm (see

Zhao et al. (2011) for example) uses a Bernoulli random variable and a discrete uniform

random variable at each time step. The discrete random variable takes values in [s] as a

result of which the algorithm uses a total of O (log s) random bits at each step.

The RS-x algorithm as proposed, on the other hand, uses s Bernoulli random variables

at each step (to decide which buffer elements to replace with the incoming point) taking

its randomness usage to O (s) bits. From a practical point of view this has a few negative

consequences:

1. Due to increased randomness usage, the variance of the resulting algorithm increases.

3 ↑ R. J. Serfling, Probability Inequalities for the Sum in Sampling without Replacement, The Annals
of Statistics, 2(1):39-48, 1974.
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Algorithm 9 RS-x2 : An Alternate Implementation of the RS-x Algorithm

Input: Buffer B, new point zt, buffer size s, timestep t
Output: Updated buffer Bnew

1: if |B| < s then {There is space}
2: Bnew ← B ∪ {zt}
3: else {Overflow situation}
4: if t = s+ 1 then {Repopulation step}
5: TMP = B ∪ {zt}
6: Bnew = φ
7: for i = 1 to s do
8: Select random r ∈ TMP with replacement
9: Bnew ← Bnew ∪ {r}

10: end for
11: else {Normal update step}
12: Bnew ← B
13: Sample k ∼ Binomial(s, 1/t)
14: Remove k random elements from Bnew

15: Bnew ← Bnew ∪
(∐k

i=1 {zt}
)

16: end if
17: end if
18: return Bnew

2. At step t, the Bernoulli random variables required all have success probability 1/t.

This quantity drops down to negligible values for even moderate values of t. Note

that Vitter’s RS on the other hand requires a Bernoulli random variable with success

probability s/t which dies down much more slowly.

3. Due to the requirement of such high precision random variables, the imprecisions

of any pseudo random generator used to simulate this algorithm become apparent

resulting in poor performance.

In order to ameliorate the situation, we propose an alternate implementation of the

normal update step of the RS-x algorithm in Algorithm 9. We call this new sampling

policy RS-x2 . We shall formally demonstrate the equivalence of the RS-x and the RS-x2

policies by showing that both policies result in a buffer whose each element is a uniform

sample from the preceding stream with replacement. This shall be done by proving that

the joint distribution of the buffer elements remains the same whether the RS-x normal

update is applied or the RS-x2 normal step is applied (note that RS-x and RS-x2 have

identical repopulation steps). This will ensure that any learning algorithm will be unable to

distinguish between the two update mechanisms and consequently, our regret guarantees

shall continue to hold.

First we analyze the randomness usage of the RS-x2 update step. The update step

first samples a number Kt ∼ B(s, 1/t) from the binomial distribution and then replaces Kt

random locations with the incoming point. Choosing k locations without replacement from

a pool of s locations requires at most k log s bits of randomness. Since Kt is sampled from
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the binomial distribution B(s, 1/t), we have Kt = O (1) in expectation (as well as with

high probability) since t > s whenever this step is applied. Hence our randomness usage

per update is at most O (log s) random bits which is much better than the randomness

usage of RS-x and that actually matches that of Vitter’s RS upto a constant.

To analyze the statistical properties of the RS-x2 update step, let us analyze the state

of the buffer after the update step. In the RS-x algorithm, the state of the buffer after

an update is completely specified once we enumerate the locations that were replaced by

the incoming point. Let the indicator variable Ri indicate whether the ith location was

replaced or not. Let r ∈ {0, 1}s denote a fixed pattern of replacements. Then the original

implementation of the update step of RS-x guarantees that

P
RS-x

[
s∧
i=1

(Ri = ri)

]
=

(
1

t

)‖r‖1 (
1− 1

t

)s−‖r‖1
To analyze the same for the alternate implementation of the RS-x2 update step, we first

notice that choosing k items from a pool of s without replacement is identical to choosing

the first k locations from a random permutation of the s items. Let us denote ‖r‖1 = k.

Then we have,

P
RS-x2

[
s∧
i=1

(Ri = ri)

]
=

s∑
j=1

P

[
s∧
i=1

(Ri = ri) ∧Kt = j

]

= P

[
s∧
i=1

(Ri = ri) ∧Kt = k

]

= P

[
s∧
i=1

(Ri = ri)

∣∣∣∣∣Kt = k

]
P [Kt = k]

We have

P [Kt = k] =

(
s

k

)(
1

t

)k (
1− 1

t

)s−k
The number of arrangements of s items such that some specific k items fall in the first k

positions is k!(s− k)!. Thus we have

P
RS-x2

[
s∧
i=1

(Ri = ri)

]
=

(
s

k

)(
1

t

)k (
1− 1

t

)s−k k!(s− k)!

s!

=

(
1

t

)k (
1− 1

t

)s−k
= P

RS-x

[
s∧
i=1

(Ri = ri)

]

which completes the argument.
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6.12 Proofs

6.12.1 Proof of Lemma 6.1

As a first step, we decompose the excess risk in a manner similar to Wang et al.. For any

h ∈ H let

L̃t(h) := E
zt

r
L̂t(h)

∣∣∣Zt−1
z
.

This allows us to decompose the excess risk as follows:

1

n− 1

n∑
t=2

L(ht−1)− L̂t(ht−1) =
1

n− 1

 n∑
t=2

L(ht−1)− L̃t(ht−1)︸ ︷︷ ︸
Pt

+ L̃(ht−1)− L̂t(ht−1)︸ ︷︷ ︸
Qt

 .

By construction, we have E
zt

q
Qt|Zt−1

y
= 0 and hence the sequence Q2, . . . , Qn forms

a martingale difference sequence. Since |Qt| ≤ B as the loss function is bounded, an

application of the Azuma-Hoeffding inequality shows that with probability at least 1− δ

1

n− 1

n∑
t=2

Qt ≤ B

√
2 log 1

δ

n− 1
. (6.4)

We now analyze each term Pt individually. By linearity of expectation, we have for a ghost

sample Z̃t−1 = {z̃1, . . . , z̃t−1},

L(ht−1) = E
Z̃t−1

t
1

t− 1

t−1∑
τ=1

E
z

J`(ht−1, z, z̃τ )K

|

. (6.5)

The expression of L(ht−1) as a nested expectation is the precursor to performing sym-

metrization with expectations and plays a crucial role in overcoming coupling problems.

This allows us to write Pt as

Pt = E
Z̃t−1

t
1

t− 1

t−1∑
τ=1

E
z

J`(ht−1, z, z̃τ )K

|

− L̃t(ht−1)

≤ sup
h∈H

[
E

Z̃t−1

t
1

t− 1

t−1∑
τ=1

E
z

J`(h, z, z̃τ )K

|

− L̃t(h)

]
︸ ︷︷ ︸

gt(z1,...,zt−1)

.

Since L̃t(h) = E
z

r
1
t−1

∑t−1
τ=1 `(h, z, zτ )

∣∣∣Zt−1
z

and ` is bounded, the expression gt(z1, . . . , zt−1)

can have a variation of at most B/(t−1) when changing any of its (t−1) variables. Hence

an application of McDiarmid’s inequality gives us, with probability at least 1− δ,

gt(z1, . . . , zt−1) ≤ E
Zt−1

Jgt(z1, . . . , zt−1)K +B

√
log 1

δ

2(t− 1)
.
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For any h ∈ H, z′ ∈ Z, let ℘(h, z′) := 1
t−1Ez J`(h, z, z′)K. Then we can write

E
Zt−1

Jg(z1, . . . , zt−1)K = E
Zt−1

t

sup
h∈H

[
E

Z̃t−1

t
t−1∑
τ=1

℘(h, z̃τ )

|

−
t−1∑
τ=1

℘(h, zτ )

]|

≤ E
Zt−1,Z̃t−1

t

sup
h∈H

[
t−1∑
τ=1

℘(h, z̃τ )−
t−1∑
τ=1

℘(h, zτ )

]|

= E
Zt−1,Z̃t−1,{ετ}

t

sup
h∈H

[
t−1∑
τ=1

ετ (℘(h, z̃τ )− ℘(h, zτ ))

]|

≤ 2

t− 1
E

Zt−1,{ετ}

t

sup
h∈H

[
t−1∑
τ=1

ετE
z

J`(h, z, zτ )K

]|

≤ 2

t− 1
E

z,Zt−1,{ετ}

t

sup
h∈H

[
t−1∑
τ=1

ετ `(h, z, zτ )

]|
= 2Rt−1(` ◦ H).

Note that in the third step, the symmetrization was made possible by the decoupling

step in Eq. (6.5) where we decoupled the “head” variable zt from the “tail” variables by

absorbing it inside an expectation. This allowed us to symmetrize the true and ghost

samples zτ and z̃τ in a standard manner. Thus we have, with probability at least 1− δ,

Pt ≤ 2Rt−1(` ◦ H) +B

√
log 1

δ

2(t− 1)
.

Applying a union bound on the bounds for Pt, t = 2, . . . , n gives us with probability at

least 1− δ,

1

n− 1

n∑
t=2

Pt ≤
2

n− 1

n∑
t=2

Rt−1(` ◦ H) +B

√
2 log n

δ

n− 1
. (6.6)

Adding Equations (6.4) and (6.6) gives us the result.

6.12.2 Proof of Theorem 6.4

We begin with a lemma implicit in the proof of Theorem 1 in (Sridharan et al., 2008).

For the function class F and loss function ℘ as above, define a new loss function µ :

(f,x) 7→ ℘(f,x) − ℘(f∗,x) with M and M̂ as the associated population and empirical

risk functionals. Let r =
4L2R2C2

d(32+log(1/δ))
σn . Then we have the following

Lemma 6.14. For any ε > 0, with probability at least 1− δ, the following happens

1. For all f ∈ F such thatM(f) ≤ 16
(
1 + 1

ε

)2
r, we haveM(f) ≤ M̂(f)+4

(
1 + 1

ε

)
r.

2. For all f ∈ F such that M(f) > 16
(
1 + 1

ε

)2
r, we have M(f) ≤ (1 + ε)M̂(f).
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The difference in our proof technique lies in the way we combine these two cases. We

do so by proving the following two simple results.

Lemma 6.15. For all f s.t. M(f) ≤ 16
(
1 + 1

ε

)2
r, we have

M(f) ≤ (1 + ε)

(
M̂(f) + 4

(
1 +

1

ε

)
r

)
.

Proof. We notice that for all f ∈ F , we have M(f) = P(f) − P(f∗) ≥ 0. Thus, using

Lemma 6.14, Part 1, we have M̂(f) + 4
(
1 + 1

ε

)
r ≥M(f) ≥ 0. Since for any a, ε > 0, we

have a ≤ (1 + ε)a, the result follows.

Lemma 6.16. For all f s.t. M(f) > 16
(
1 + 1

ε

)2
r, we have

M(f) ≤ (1 + ε)

(
M̂(f) + 4

(
1 +

1

ε

)
r

)
.

Proof. We use the fact that r > 0 and thus 4(1 + ε)
(
1 + 1

ε

)
r > 0 as well. The result then

follows from an application of Part 2 of Lemma 6.14.

From the definition of the loss function µ, we have for any f ∈ F ,M(f) = P(f)−P(f∗)

and M̂(f) = P̂(f)−P̂(f∗). Combining the above lemmata with this observation completes

the proof.

6.12.3 Proof of Theorem 6.5

The decomposition of the excess risk shall not be made explicitly in this case but shall

emerge as a side-effect of the proof progression. Consider the loss function ℘(h, z′) :=

E
z

J`(h, z, z′)K with P and P̂ as the associated population and empirical risk functionals.

Clearly, if ` is L-Lipschitz and σ-strongly convex then so is ℘. As Equation (6.5) shows,

for any h ∈ H, P(h) = L(h). Also it is easy to see that for any Zt−1, P̂(h) = L̃t(h).

Applying Theorem 6.4 on ht−1 with the loss function ℘ gives us w.p. 1− δ,

L(ht−1)− L(h∗) ≤ (1 + ε)
(
L̃t(ht−1)− L̃t(h∗)

)
+

Cδ
εσ(t− 1)

which, upon summing across time steps and taking a union bound, gives us with

probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
C(δ/n) log n

εσ(n− 1)
+

1 + ε

n− 1

n∑
t=2

(
L̃t(ht−1)− L̃t(h∗)

)
.

Let ξt :=
(
L̃t(ht−1)− L̃t(h∗)

)
−
(
L̂t(ht−1)− L̂t(h∗)

)
. Then using the regret bound

Rn we can write,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1 + ε

n− 1

(
Rn +

n∑
t=2

ξt

)
+
C(δ/n) log n

εσ(n− 1)
.
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We now use Bernstein type inequalities to bound the sum
∑n

t=2 ξt using a proof tech-

nique used in (Kakade and Tewari, 2008; Cesa-Bianchi and Gentile, 2008). We first note

some properties of the sequence below.

Lemma 6.17. The sequence ξ2, . . . , ξn is a bounded martingale difference sequence with

bounded conditional variance.

Proof. That ξt is a martingale difference sequence follows by construction: we can decom-

pose the term ξt = φt − ψt where φt = L̃t(ht−1) − L̂t(ht−1) and ψt = L̃t(h∗) − L̂t(h∗),
both of which are martingale difference sequences with respect to the common filtration

F = {Fn : n = 0, 1, . . .} where Fn = σ (zi : i = 1, . . . , n).

Since the loss function takes values in [0, B], we have |ξt| ≤ 2B which proves that our

sequence is bounded.

To prove variance bounds for the sequence, we first use the Lipschitz properties of the

loss function to get

ξt =
(
L̃t(ht−1)− L̃t(h∗)

)
−
(
L̂t(ht−1)− L̂t(h∗)

)
≤ 2L ‖ht−1 − h∗‖ .

Recall that the hypothesis space is embedded in a Banach space equipped with the norm

‖·‖. Thus we have E
q
ξ2
t

∣∣Zt−1
y
≤ 4L2 ‖ht−1 − h∗‖2. Now using σ-strong convexity of the

loss function we have

L(ht−1) + L(h∗)

2
≥ L

(
ht−1 + h∗

2

)
+
σ

8
‖ht−1 − h∗‖2 ≥ L(h∗) +

σ

8
‖ht−1 − h∗‖2 .

Let σ2
t := 16L2

σ (L(ht−1)− L(h∗)). Combining the two inequalities we get E
q
ξ2
t

∣∣Zt−1
y
≤

σ2
t .

We note that although Kakade and Tewari state their result with a requirement that

the loss function be strongly convex in a point wise manner, i.e., for all z, z′ ∈ Z, the

function `(h, z, z′) be strongly convex in h, they only require the result in expectation.

More specifically, our notion of strong convexity where we require the population risk

functional L(h) to be strongly convex actually suits the proof of Kakade and Tewari as

well.

We now use a Bernstein type inequality for martingales proved in Kakade and Tewari.

The proof is based on a fundamental result on martingale convergence due to Freedman

(1975).

Theorem 6.18. Given a martingale difference sequence Xt, t = 1 . . . n that is uniformly

B-bounded and has conditional variance E
q
X2
t |X1, . . . , Xt−1

y
≤ σ2

t , we have for any δ <

1/e and n ≥ 3, with probability at least 1− δ,

n∑
t=1

Xt ≤ max

{
2σ∗, 3B

√
log

4 log n

δ

}√
log

4 log n

δ
,
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where σ∗ =
√∑n

t=1 σ
2
t .

Let Dn =
∑n

t=2 (L(ht−1)− L(h∗)). Then we can write the variance bound as

σ∗ =

√√√√ n∑
t=1

σ2
t =

√√√√ n∑
t=1

16L2

σ
(L(ht−1)− L(h∗)) = 4L

√
Dn

σ
.

Thus, with probability at least 1− δ, we have

n∑
t=1

ξt ≤ max

{
8L

√
Dn

σ
, 6B

√
log

4 log n

δ

}√
log

4 log n

δ
.

Denoting ∆ =
√

log 4 logn
δ for notational simplicity and using the above bound in the

online to batch conversion bound gives us

Dn

n− 1
≤ 1 + ε

n− 1

(
Rn + max

{
8L

√
Dn

σ
, 6B∆

}
∆

)
+
C(δ/n) log n

εσ(n− 1)
.

Solving this quadratic inequality is simplified by a useful result given in (Kakade and

Tewari, 2008, Lemma 4)

Lemma 6.19. For any s, r, d, b,∆ > 0 such that

s ≤ r + max
{

4
√
ds, 6b∆

}
∆,

we also have

s ≤ r + 4
√
dr∆ + max {16d, 6b}∆2.

Using this result gives us a rather nasty looking expression which we simplify by ab-

sorbing constants inside the O (·) notation. We also make a simplifying ad-hoc assumption

that we shall only set ε ∈ (0, 1]. The resulting expression is given below:

Dn ≤ (1 + ε)Rn +O

C2
d log n log(n/δ)

ε
+ log

log n

δ
+

√(
Rn +

C2
d log n log(n/δ)

ε

)
log

log n

δ

 .

Let Vn = max
{
Rn, 2C

2
d log n log (n/δ)

}
. Concentrating only on the portion of the expres-

sion involving ε and ignoring the constants, we get

εRn +
C2
d log n log(n/δ)

ε
+

√
C2
d log n log(n/δ)

ε
log

log n

δ

≤ εRn +
2C2

d log n log(n/δ)

ε
≤ εVn +

2C2
d log n log(n/δ)

ε

≤ 2Cd
√

2Vn log n log(n/δ),

where the second step follows since ε ≤ 1 and the fourth step follows by using ε =
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√
2C2

d logn log(n/δ)
Vn

≤ 1. Putting this into the excess risk expression gives us

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1

n− 1
Rn + Cd · O

(√
Vn log n log(n/δ)

n− 1

)

which finishes the proof.

6.12.4 Proof of Lemma 6.7

We first decompose the excess risk term as before

n∑
t=2

L(ht−1)− L̂buf
t (ht−1) =

n∑
t=2

L(ht−1)− L̃buf
t (ht−1)︸ ︷︷ ︸

Pt

+ L̃buf
t (ht−1)− L̂buf

t (ht−1)︸ ︷︷ ︸
Qt

.

By construction, the sequenceQt forms a martingale difference sequence, i.e., E
zt

q
Qt|Zt−1

y
=

0 and hence by an application of Azuma Hoeffding inequality we have

1

n− 1

n∑
t=2

Qt ≤ B

√
2 log 1

δ

n− 1
. (6.7)

We now analyze each term Pt individually. To simplify the analysis a bit we assume that

the buffer update policy keeps admitting points into the buffer as long as there is space

so that for t ≤ s+ 1, the buffer contains an exact copy of the preceding stream. This is a

very natural assumption satisfied by FIFO as well as reservoir sampling. We stress that

our analysis works even without this assumption but requires a bit more work. In case we

do make this assumption, the analysis of Lemma 6.1 applies directly and we have, for any

t ≤ s+ 1, with probability at least 1− δ,

Pt ≤ Rt−1(` ◦ H) +B

√
log 1

δ

2(t− 1)

For t > s+ 1, for an independent ghost sample {w̃1, . . . , w̃t−1} we have,

E
W̃ t−1

r
L̃buf
t

z
= E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

}

~

= E
R̃t−1

u

v E
Z̃t−1

u

v 1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

∣∣∣∣∣∣ R̃t−1

}

~

}

~ .

The conditioning performed above is made possible by stream obliviousness. Now suppose

that given R̃t−1 the indices τ̃1, . . . , τ̃s are present in the buffer B̃t at time t. Recall that

this choice of indices is independent of Z̃t−1 because of stream obliviousness. Then we can
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write the above as

E
R̃t−1

u

v E
Z̃t−1

u

v 1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

∣∣∣∣∣∣ R̃t−1

}

~

}

~ = E
R̃t−1

u

v E
Z̃t−1

u

v1

s

s∑
j=1

E
z

q
`(ht−1, z, z̃τ̃j )

y
}

~

}

~

= E
R̃t−1

u

v E
z̃1,...,z̃s

u

v1

s

s∑
j=1

E
z

J`(ht−1, z, z̃j)K

}

~

}

~

= E
R̃t−1

JL(ht−1)K = L(ht−1).

We thus have

E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

}

~ = L(ht−1). (6.8)

We now upper bound Pt as

Pt = L(ht−1)− L̃buf
t (ht−1)

= E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

}

~− L̃buf
t (ht−1)

≤ sup
h∈H

 E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(h, z, z̃)K

}

~− L̃buf
t (h)


︸ ︷︷ ︸

gt(w1,...,wt−1)

.

Now it turns out that applying McDiarmid’s inequality to gt(w1, . . . ,wt−1) directly would

yield a very loose bound. This is because of the following reason: since L̂buf
t (h) =

1
|Bt|

∑
z∈Bt `(h, zt, z) depends only on s data points, changing any one of the (t− 1) vari-

ables wi brings about a perturbation in gt of magnitude at most O (1/s). The problem is

that gt is a function of (t−1)� s variables and hence a direct application of McDiarmid’s

inequality would yield an excess error term of
√

t log(1/δ)
s2

which would in the end require

s = ω(
√
n) to give any non trivial generalization bounds. In contrast, we wish to give

results that would give non trivial bounds for s = ω̃(1).

In order to get around this problem, we need to reduce the number of variables in the

statistic while applying McDiarmid’s inequality. Fortunately, we observe that gt effectively

depends only on s variables, the data points that end up in the buffer at time t. This

allows us to do the following. For any Rt−1, define

δ(Rt−1) := P
Zt−1

[
gt(w1, . . . ,wt−1) > ε|Rt−1

]
.

We will first bound δ(Rt−1). This will allow us to show

P
W t−1

[gt(w1, . . . ,wt−1) > ε] ≤ E
Rt−1

q
δ(Rt−1)

y
,
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where we take expectation over the distribution on Rt−1 induced by the buffer update

policy. Note that since we are oblivious to the nature of the distribution over Rt−1, our

proof works for any stream oblivious buffer update policy. Suppose that given Rt−1 the

indices τ1, . . . , τs are present in the buffer Bt at time t. Then we have

gt(w1, . . . ,wt−1;Rt−1) = sup
h∈H

 E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(h, z, z̃)K

}

~− 1

s

s∑
j=1

E
z

q
`(h, z, zτj )

y


=: g̃t(zτ1 , . . . , zτs).

The function g̃t can be perturbed at most B/s due to a change in one of zτj . Applying

McDiarmid’s inequality to the function g̃t we get with probability at least 1− δ,

g̃t(zτ1 , . . . , zτs) ≤ E
Zt−1

Jg̃t(zτ1 , . . . , zτs)K +B

√
log 1

δ

2s

We analyze E
Zt−1

Jg̃t(zτ1 , . . . , zτs)K below. In the third step in the calculations we sym-

metrize the true random variable zτj with the ghost random variable z̃τ̃j . This is con-

trasted with traditional symmetrization where we would symmetrize zi with z̃i. In our

case, we let the buffer construction dictate the matching at the symmetrization step.

E
Zt−1

Jg̃t(zτ1 , . . . , zτs)K

= E
Zt−1

u

vsup
h∈H

 E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(h, z, z̃)K

}

~− 1

s

s∑
j=1

E
z

q
`(h, z, zτj )

y
}

~

≤ E
R̃t−1

u

v E
Zt−1,Z̃t−1

u

vsup
h∈H

1

s

s∑
j=1

E
z

q
`(h, z, z̃τ̃j )

y
− 1

s

s∑
j=1

E
z

q
`(h, z, zτj )

y
}

~

∣∣∣∣∣∣ R̃t−1

}

~

= E
R̃t−1

u

v E
Zt−1,Z̃t−1,εj

u

vsup
h∈H

1

s

s∑
j=1

εj

(
E
z

q
`(h, z, z̃τ̃j )

y
− E

z

q
`(h, z, zτj )

y)}

~

∣∣∣∣∣∣ R̃t−1

}

~

≤ 2 E
R̃t−1

u

v E
Zt−1,εj

u

vsup
h∈H

1

s

s∑
j=1

εjE
z

q
`(h, z, zτj )

y
}

~

∣∣∣∣∣∣ R̃t−1

}

~

≤ 2 E
R̃t−1

JRs(` ◦ H)K ≤ 2Rs(` ◦ H).

Thus we get, with probability at least 1− δ over z1, . . . , zt−1,

gt(w1, . . . ,wt−1;Rt−1) ≤ 2Rs(` ◦ H) +B

√
log 1

δ

2s

which in turn, upon taking expectations with respect to Rt−1, gives us with probability
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at least 1− δ over w1, . . . ,wt−1,

Pt = gt(w1, . . . ,wt−1) ≤ 2Rs(` ◦ H) +B

√
log 1

δ

2s
.

Applying a union bound on the bounds for Pt, t = 2, . . . , n gives us with probability at

least 1− δ,

1

n− 1

n∑
t=2

Pt ≤
2

n− 1

n∑
t=2

Rmin{t−1,s}(` ◦ H) +B

√
log n

δ

2s
. (6.9)

Adding Equations (6.7) and (6.9) gives us the result.

6.12.5 Proof of Theorem 6.9

Our task here is to prove bounds on the following quantity

1

n− 1

n∑
t=2

L(ht−1)− L(h∗).

Proceeding as before, we will first prove the following result

P
Zn

[
1

n− 1

n∑
t=2

L(ht−1)− L(h∗) > ε

∣∣∣∣∣Rn
]
≤ δ. (6.10)

This will allow us, upon taking expectations over Rn, show the following

P
Wn

[
1

n− 1

n∑
t=2

L(ht−1)− L(h∗) > ε

]
≤ δ,

which shall complete the proof.

In order to prove the statement given in Equation (6.10), we will use Theorem 6.4.

As we did in the case of all-pairs loss functions, consider the loss function ℘(h, z′) :=

E
z

J`(h, z, z′)K with P and P̂ as the associated population and empirical risk functionals.

Clearly, if ` is L-Lipschitz and σ-strongly convex then so is ℘. By linearity of expectation,

for any h ∈ H, P(h) = L(h). Suppose that given Rt−1 the indices τ1, . . . , τs are present

in the buffer Bt at time t. Applying Theorem 6.4 on ht−1 at the tth step with the loss

function ℘ gives us that given Rt−1, with probability at least 1−δ over the choice of Zt−1,

L(ht−1)− L(h∗) ≤ (1 + ε)
(
L̃buf
t (ht−1)− L̃buf

t (h∗)
)

+
Cδ

εσ(min {s, t− 1})
,

where we have again made the simplifying (yet optional) assumption that prior to time

t = s + 1, the buffer contains an exact copy of the stream. Summing across time steps

and taking a union bound, gives us that given Rn, with probability at least 1− δ over the
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choice of Zn,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
C(δ/n)

εσ

(
log 2s

n− 1
+

1

s

)
+

1 + ε

n− 1

n∑
t=2

L̃buf
t (ht−1)− L̃buf

t (h∗).

Let us define as before

ξt :=
(
L̃buf
t (ht−1)− L̃buf

t (h∗)
)
−
(
L̂buf
t (ht−1)− L̂buf

t (h∗)
)
.

Then using the regret bound Rbuf
n we can write,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1 + ε

n− 1

(
Rbuf
n +

n∑
t=2

ξt

)
+
C(δ/n)

εσ

(
log 2s

n− 1
+

1

s

)
.

Assuming s < n/ log n simplifies the above expression to the following:

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1 + ε

n− 1

(
Rbuf
n +

n∑
t=2

ξt

)
+

2C(δ/n)

εσs
.

Note that this assumption is neither crucial to our proof nor very harsh since for s = Ω (n),

we can always apply the results from the infinite-buffer setting using Theorem 6.5. Moving

forward, by using the Bernstein-style inequality from Kakade and Tewari (2008), one can

show with that probability at least 1− δ, we have

n∑
t=1

ξt ≤ max

{
8L

√
Dn

σ
, 6B

√
log

4 log n

δ

}√
log

4 log n

δ
,

where Dn =
∑n

t=2 (L(ht−1)− L(h∗)). This gives us

Dn

n− 1
≤ 1 + ε

n− 1

(
Rbuf
n + max

{
8L

√
Dn

σ
, 6B∆

}
∆

)
+

2C(δ/n)

εσs
.

Using (Kakade and Tewari, 2008, Lemma 4) and absorbing constants inside the O (·)
notation we get:

Dn ≤ (1 + ε)Rbuf
n +O

(
C2
dn log(n/δ)

εs
+ log

log n

δ

)
+O

√(Rbuf
n +

C2
dn log(n/δ)

εs

)
log

log n

δ

 .

Let Wn = max
{
Rbuf
n ,

2C2
dn log(n/δ)

s

}
. Concentrating only on the portion of the expression

involving ε and ignoring the constants, we get

εRbuf
n +

C2
dn log(n/δ)

εs
+

√
C2
dn log(n/δ)

εs
log

log n

δ

≤ εRbuf
n +

2C2
dn log(n/δ)

εs
≤ εWn +

2C2
dn log(n/δ)

εs
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≤ 2Cd

√
2Wnn log(n/δ)

s
,

where the second step follows since ε ≤ 1 and s ≤ n and the fourth step follows by using

ε =

√
2C2

dn log(n/δ)
Wns

≤ 1 Putting this into the excess risk expression gives us

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1

n− 1
Rbuf
n + Cd · O

(√
Wn log(n/δ)

sn

)
,

which finishes the proof. Note that in case Wn = Rbuf
n , we get

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1

n− 1
Rbuf
n + Cd · O

(√
Rbuf
n log(n/δ)

sn

)
.

On the other hand if Rbuf
n ≤ 2C2

dn log(n/δ)
s , we get

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1

n− 1
Rbuf
n + C2

d · O
(

log(n/δ)

s

)
.

6.12.6 Proof of Theorem 6.10

Recall that we are considering a composition classes of the form `◦H := {(z, z′) 7→ `(h, z, z′), h ∈ H}
where ` is some Lipschitz loss function. We have `(h, z1, z2) = φ (h(x1, x2)Y (y1, y2)) where

Y (y1, y2) = y1− y2 or Y (y1, y2) = y1y2 and φ : R→ R involves some margin loss function.

We also assume that φ is point wise L-Lipschitz. Let Y = sup
y1,y2∈Y

|Y (y1, y2)|.

Let φ̃(x) = φ(x) − φ(0). Note that φ̃(·) is point wise L-Lipschitz as well as satisfies

φ̃(0) = 0. Let Y = sup
y,y′∈Y

|Y (y, y′)|.

We will require the following contraction lemma that we state below.

Theorem 6.20 (Implicit in proof of Ledoux and Talagrand (2002), Theorem 4.12). Let

H be a set of bounded real valued functions from some domain X and let x1, . . . ,xn be

arbitrary elements from X . Furthermore, let φi : R → R, i = 1, . . . , n be L-Lipschitz

functions such that φi(0) = 0 for all i. Then we have

E

t

sup
h∈H

1

n

n∑
i=1

εiφi(h(xi))

|

≤ LE

t

sup
h∈H

1

n

n∑
i=1

εih(xi)

|

.

Using the above inequality we can state the following chain of (in)equalities:

Rn(` ◦ H) = E

t

sup
h∈H

1

n

n∑
i=1

εi`(h, z, zi)

|

= E

t

sup
h∈H

1

n

n∑
i=1

εiφ (h(x,xi)Y (y, yi))

|



150 Chapter 6. Online Learning with Pairwise Loss Functions

= E

t

sup
h∈H

1

n

n∑
i=1

εiφ̃ (h(x,xi)Y (y, yi))

|

+ φ(0)E

t
1

n

n∑
i=1

εi

|

= E

t

sup
h∈H

1

n

n∑
i=1

εiφ̃ (h(x,xi)Y (y, yi))

|

≤ LY E

t

sup
h∈H

1

n

n∑
i=1

εih(x,xi)

|

= LYRn(H),

where the fourth step follows from linearity of expectation. The fifth step is obtained by

applying the contraction inequality to the functions ψi : x 7→ φ̃(aix) where ai = Y (y, yi).

We exploit the fact that the contraction inequality is actually proven for the empirical

Rademacher averages due to which we can take ai = Y (y, yi) to be a constant dependent

only on i, use the inequality, and subsequently take expectations. We also have, for any i

and any x, y ∈ R,

|ψi(x)− ψi(y)| =
∣∣∣φ̃(aix)− φ̃(aiy)

∣∣∣
≤ L |aix− aiy|

≤ L |ai| |x− y|

≤ LY |x− y| ,

which shows that every function ψi(·) is LY -Lipschitz and satisfies ψi(0) = 0. This makes

an application of the contraction inequality possible on the empirical Rademacher averages

which upon taking expectations give us the result.

6.12.7 Proof of Theorem 6.12

To prove the results, let us assume that the buffer contents are addressed using the vari-

ables ζ1, . . . , ζs. We shall first concentrate on a fixed element, say ζ1 (which we shall call

simply ζ for notational convenience) of the buffer and inductively analyze the probability

law Pt obeyed by ζ at each time step t ≥ s+ 2.

We will prove that the probability law obeyed by ζ at time t is Pt(ζ) = 1
t−1

∑t−1
τ=1 1{ζ=zτ}.

The law is interpreted as saying the following: for any τ ≤ t − 1, P [ζ = zτ ] = 1
t−1 and

shows that the element ζ is indeed a uniform sample from the set Zt−1. We would similarly

be able to show this for all locations ζ2, . . . , ζs which would prove that the elements in

the buffer are indeed identical samples from the preceding stream. Since at each step, the

RS-x algorithm updates all buffer locations independently, the random variables ζ1, . . . , ζs

are independent as well which would allow us to conclude that at each step we have s i.i.d.

samples in the buffer as claimed.

We now prove the probability law for ζ. We note that the repopulation step done

at time t = s + 1 explicitly ensures that at step t = s + 2, the buffer contains s i.i.d

samples from Zs+1 i.e. Ps+2(ζ) = 1
s+1

∑s+1
τ=1 1{ζ=zτ}. This forms the initialization of our
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inductive argument. Now suppose that at the tth time step, the claim is true and ζ obeys

the law Pt(ζ) = 1
t−1

∑t−1
τ=1 1{ζ=zτ}. At the tth step, we would update the buffer by making

the incoming element zt replace the element present at the location indexed by ζ with

probability 1/(t+ 1). Hence ζ would obey the following law after the update

(
1− 1

t

)
Pt(ζ) +

1

t
1{ζ=zt} =

1

t

t∑
τ=1

1{ζ=zτ}

which shows that at the (t+ 1)th step, ζ would follow the law Pt+1(ζ) = 1
t

∑t
τ=1 1{ζ=zτ}

which completes the inductive argument and the proof.

6.12.8 Proof of Theorem 6.13

We now prove Theorem 6.13 that gives a high confidence regret bound for the OLP

learning algorithm when used along with the RS-x buffer update policy. Our proof

proceeds in two steps: in the first step we prove a uniform convergence type guarantee

that would allow us to convert regret bounds with respect to the finite-buffer penalties

L̂buf
t into regret bounds in in terms of the all-pairs loss functions L̂t. In the second step

we then prove a regret bound for OLP with respect to the finite-buffer penalties.

We proceed with the first step of the proof by proving the lemma given below. Recall

that for any sequence of training examples z1, . . . , zn, we define, for any h ∈ H, the

all-pairs loss function as L̂t(h) = 1
t−1

∑t−1
τ=1 `(h, zt, zτ ). Moreover, if the online learning

process uses a buffer, the we also define the finite-buffer loss function as L̂buf
t (ht−1) =

1
|Bt|

∑
z∈Bt `(ht−1, zt, z).

Lemma 6.21. Suppose we have an online learning algorithm that incurs buffer penalties

based on a buffer B of size s that is updated using the RS-x algorithm. Suppose further

that the learning algorithm generates an ensemble h1, . . . , hn−1. Then for any t ∈ [1, n−1],

with probability at least 1 − δ over the choice of the random variables used to update the

buffer B until time t, we have

L̂t(ht−1) ≤ L̂buft (ht−1) + Cd · O

√ log 1
δ

s


Proof. Suppose t ≤ s+ 1, then since at that point the buffer stores the stream exactly, we

have

L̂t(ht−1) = L̂buf
t (ht−1)

which proves the result. Note that, as Algorithm 8 indicates, at step t = s+ 1 the buffer

is updated (using the repopulation step) only after the losses have been calculated and

hence step t = s+ 1 still works with a buffer that stores the stream exactly.

We now analyze the case t > s + 1. At each step τ > s, the RS-x algorithm uses

s independent Bernoulli random variables (which we call auxiliary random variables) to



152 Chapter 6. Online Learning with Pairwise Loss Functions

update the buffer, call them rτ1 , . . . , r
τ
s where rτj is used to update the jth item ζj in the

buffer. Let rtj := {rs+1
j , r2

j , . . . , r
t
j} ∈ {0, 1}

t denote an ensemble random variable composed

of t− s independent Bernoulli variables. It is easy to see that the element ζj is completely

determined at the tth step given rt−1
j .

Theorem 6.12 shows, for any t > s + 1, that the buffer contains s i.i.d. samples from

the set Zt−1. Thus, for any fixed function h ∈ H, we have for any j ∈ [s],

E
rt−1
j

J`(h, zt, ζj)K =
1

t− 1

t−1∑
τ=1

`(h, zt, zτ )

which in turn shows us that

E
rt−1
1 ,...,rt−1

s

r
L̂buf
t (h)

z
=

1

t− 1

t−1∑
τ=1

`(h, zt, zτ ) = L̂t(h)

Now consider a ghost sample of auxiliary random variables r̃t−1
1 , . . . , r̃t−1

s . Since our hy-

pothesis ht−1 is independent of these ghost variables, we can write

E
r̃t−1
1 ,...,r̃t−1

s

r
L̂buf
t (ht−1)

z
= L̂t(ht−1)

We recall that error in the proof presented in Zhao et al. (2011) was to apply such a result

on the true auxiliary variables upon which ht−1 is indeed dependent. Thus we have

L̂t(ht−1)− L̂buf
t (ht−1) = E

r̃t−1
1 ,...,r̃t−1

s

r
L̂buf
t (ht−1)

z
− L̂buf

t (ht−1)

≤ sup
h∈H

[
E

r̃t−1
1 ,...,r̃t−1

s

r
L̂buf
t (h)

z
− L̂buf

t (h)

]
︸ ︷︷ ︸

gt(r
t−1
1 ,...,rt−1

s )

Now, the perturbation to any of the ensemble variables rj (a perturbation to an ensemble

variable implies a perturbation to one or more variables forming that ensemble) can only

perturb only the element ζj in the buffer. Since L̂buf
t (ht−1) = 1

s

∑
z∈Bt `(ht−1, zt, z) and

the loss function is B-bounded, this implies that a perturbation to any of the ensemble

variables can only perturb g(rt−1
1 , . . . , rt−1

s ) by at most B/s. Hence an application of

McDiarmid’s inequality gives us, with probability at least 1− δ,

gt(r
t−1
1 , . . . , rt−1

s ) ≤ E
rt−1
j

q
gt(r

t−1
1 , . . . , rt−1

s )
y

+B

√
log 1

δ

2s

Analyzing the expectation term we get

E
rt−1
j

q
gt(r

t−1
1 , . . . , rt−1

s )
y

= E
rt−1
j

t

sup
h∈H

[
E

r̃t−1
1 ,...,r̃t−1

s

r
L̂buf
t (h)

z
− L̂buf

t (h)

]|
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≤ E
rt−1
j ,r̃t−1

j

u

vsup
h∈H

1

s

s∑
j=1

`(h, zt, ζ̃j)− `(h, zt, ζj)

}

~

= E
rt−1
j ,r̃t−1

j ,εj

u

vsup
h∈H

1

s

s∑
j=1

εj

(
`(h, zt, ζ̃j)− `(h, zt, ζj)

)}

~

≤ 2 E
rt−1
j ,r̃t−1

j ,εj

u

vsup
h∈H

1

s

s∑
j=1

εj`(h, zt, ζj)

}

~ ≤ 2Rs(` ◦ H)

where in the third step we have used the fact that symmetrizing a pair of true and ghost

ensemble variables is equivalent to symmetrizing the buffer elements they determine. In

the last step we have exploited the definition of Rademacher averages with the (empirical)

measure 1
t−1

∑t−1
τ=1 δzτ imposed over the domain Z.

For hypothesis classes for which R̂s(` ◦ H) = Cd · O
(√

1
s

)
, this proves the claim.

Using a similar proof progression we can also show the following:

Lemma 6.22. For any fixed h ∈ H and any t ∈ [1, n − 1], with probability at least 1 − δ
over the choice of the random variables used to update the buffer B until time t, we have

L̂buft (h) ≤ L̂t(h) + Cd · O

√ log 1
δ

s


Combining Lemmata 6.21 and 6.22 and taking a union bound over all time steps, the

following corollary gives us a buffer to all-pairs conversion bound.

Lemma 6.23. Suppose we have an online learning algorithm that incurs buffer penalties

based on a buffer B of size s that is updated using the RS-x algorithm. Suppose further

that the learning algorithm generates an ensemble h1, . . . , hn−1. Then with probability at

least 1− δ over the choice of the random variables used to update the buffer B, we have

Rn ≤ Rbuf
n + Cd (n− 1) · O

(√
log n

δ

s

)
,

where we recall the definition of the all-pairs regret as

Rn :=

n∑
t=2

L̂t(ht−1)− inf
h∈H

n∑
t=2

L̂t(h)

and the finite-buffer regret as

Rbuf
n :=

n∑
t=2

L̂buft (ht−1)− inf
h∈H

n∑
t=2

L̂buft (h).

Proof. Let ĥ := arg inf
h∈H

∑n
t=2 L̂t(h). Then Lemma 6.22 gives us, upon summing over t
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and taking a union bound,

n∑
t=2

L̂buf
t (ĥ) ≤

n∑
t=2

L̂t(ĥ) + Cd(n− 1) · O

(√
log n

δ

s

)
, (6.11)

whereas Lemma 6.21 similarly guarantees

n∑
t=2

L̂t(ht−1) ≤
n∑
t=2

L̂buf
t (ht−1) + Cd(n− 1) · O

(√
log n

δ

s

)
, (6.12)

where both results hold with high confidence. Adding the Equations (6.11) and (6.12) and

using
∑n

t=2 L̂buf
t (ht−1) ≤ inf

h∈H

∑n
t=2 L̂buf

t (ĥ) + Rbuf
n completes the proof.

To finish the proof, we give a finite-buffer regret bound for the OLP algorithm.

Lemma 6.24. Suppose the OLP algorithm working with an s-sized buffer generates an

ensemble w1, . . . ,wn−1. Further suppose that the loss function ` being used is L-Lipschitz

and the space of hypothesesW is a compact subset of a Banach space with a finite diameter

D with respect to the Banach space norm. Then we have

Rbuf
n ≤ LD

√
n− 1

Proof. We observe that the algorithm OLP is simply a variant of the GIGA algorithm

Zinkevich (2003) being applied with the loss functions `GIGA
t : w 7→ L̂buf

t (w). Since `GIGA
t

inherits the Lipschitz constant of L̂buf
t which in turn inherits it from `, we can use the

analysis given by Zinkevich (2003) to conclude the proof.

Combining Lemmata 6.23 and 6.24 completes the proof of Theorem 6.13

6.13 Additional Experimental Results

Here we present experimental results on 14 different benchmark datasets (refer to Fig-

ure 6.2) comparing the OLP algorithm using the RS-x2 buffer policy with the OAMgra

algorithm using the RS buffer policy. We continue to observe the trend that OLP per-

forms competitively to OAMgra while enjoying a slight advantage in small buffer situations

in most cases.
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Figure 6.2: Comparison between OAMgra (using RS policy) and OLP (using RS-x policy)
on AUC maximization tasks - Part I.
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Figure 6.3: Comparison between OAMgra (using RS policy) and OLP (using RS-x policy)
on AUC maximization tasks - Part II.
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We addressed several problems as a part of this thesis, details of which were presented

in the preceding chapters. The purpose of this chapter is to assess the contributions and

look for avenues of future research. This we will do in three parts corresponding to the

three main problem areas addresses by the thesis (refer to Chapter 2).

7.1 Accelerated Kernel Learning

Chapter 3 addressed the problem of speeding up the training and prediction routines of

kernel classifiers by way of constructing random features for dot product kernels. The

chapter presented crisp theoretical guarantees for the approach as well as empirically

demonstrated its utility on some benchmark data sets.

There has been continuing work in this area of random features; of particular interest

is the work of Pham and Pagh (2013) which extends the work to give faster random feature

constructions for the special case of polynomial kernelsK(x,y) = (〈x,y〉+ c)p. Their work

makes innovative use of sketching techniques prevalent in the data streaming community

to get a near quadratic reduction in feature construction time for these kernels. This seems

to be very encouraging although it remains to be seen if other kernels in the dot product

family can also admit such fast feature constructions. Moreover, our method seems to

be preferable for non-homogeneous kernels (c > 0) which also opens up possibilities for

improvements both ways.

Of particular interest are methods that bypass the kernel approximation step and

directly aim to approximate the decision boundary offered by a particular kernel (for

example the work of Jose et al. (2013)). These methods have an advantage over random

feature based techniques in that they are data and label aware whereas random feature

methods are completely oblivious to data as well as labels (which albeit offers them an

indirect advantage of being reusable for different tasks and data sets). It would be very

interesting to develop data-aware methods that offer theoretical guarantees such as random

features. Nyström methods come close as in they take into account the distribution, but

they are still task (i.e. label) oblivious.
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The issue of speeding up training and prediction routines can also be raised for indef-

inite kernel learning but we shall address that in the next section.

7.2 Indefinite Kernel Learning

In Chapters 4 and 5, we addressed the problem of learning with indefinite kernels by

presenting a model of learning, building up on earlier work of Balcan and Blum (2006),

that is capable of utilizing indefinite kernels in the learning process. We showed that our

models offered fast training and prediction routines, as well as crisp generalization bounds.

For the case of real valued regression, we were able to extend the model to one that

admitted a provable support vector effect, something we later confirmed experimentally

as well.

These models present several interesting questions - first of all, is it possible to extend

the models, and develop corresponding algorithms for other learning problems such as

classification and ranking, so as to have the support vector effect ? This would be inter-

esting from both a theoretical, as well as a practical point of view. This might involve

novel applications of sparse learning techniques in the learning process and would, in some

sense, unify kernel based learning as a paradigm without prejudice to a certain class of

kernels.

The second most important problem is that of the choice of the kernel, something that

the Mercer kernel learning community has also been interested for some time now (see

(Varma and Babu, 2009) for references). There have been very few explorations into this

problem for indefinite kernels (for example (Bellet et al., 2012)) and given our learning

models that hinge on “good” similarity functions, the problem becomes equally interesting

for indefinite kernels as well. We shall look more into this question in the next section.

Thirdly, there are other learning problems such as clustering which have not received

much attention from the indefinite kernel learning community (except perhaps the work

of Balcan et al. (2008b) which is very theoretical). It would be interesting to take these

problems up for further investigation.

7.3 The Kernel Choice Problem

In Chapter 6, we addressed the problem of learning pairwise kernels in an online fashion.

Our model supported learning with arbitrary pairwise loss functions that covered kernel

learning without prejudice to the type of the kernel and addressed problems such as Mercer

kernel learning, indefinite kernel learning, metric learning, bipartite ranking etc. We

provided crisp online-to-batch conversion bounds that offered optimal convergence rates

for strongly convex loss functions. We also proposed an online learning based algorithm

based on the classical GIGA algorithm and a novel stream sampling algorithm (RS-x and

RS-x2) that offered sublinear regret with (poly-)logarithmic space usage.
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Online techniques are particularly attractive due to their resource efficiency and have

even been used to build solvers for batch problems (for example (Shalev-Shwartz et al.,

2011)). The same would be very desirable to solve kernel learning problems as well.

However, for that to happen, some more work is required in the online learning setup. For

instance, the current regret bounds given by the OLP algorithm scale as O
(√

logn
s

)
. It

is an open problem to see if this can be improved to 1
nΩ(1) while still using s = logO(1) n

sized buffer or else to show that there exists a regret lower bound preventing so.

Doing so might involve, among other things, coming up with better buffer management

strategies. In particular, stream-aware buffer policies are expected to yield better regret

as well as generalization bounds. It would be an interesting problem to devise and analyze

such policies.
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Abstract This appendix is with reference to Chapter 4. Here we formally show that

our proposed model for classification with indefinite kernels is a generalization of previous

models presented in Balcan and Blum (2006) and Wang et al. (2007). We split the discus-

sion into two sections each of which discusses the model presented in one of the previous

works.

A.1 Extending the distance-based model of Wang et al.

Wang et al. (2007) consider a model of learning with distance functions. Their model is

similar to ours but for the difference that they restrict themselves to the use of a single

transfer function namely the sign function f = sgn(). More formally, they have the

following notion of a good distance function.

Definition A.1 ((Wang et al., 2007) Definition 4). A distance function X , d : X ×X → R
is said to be an (ε, γ,B)-good distance for a classification problem where ε, γ,B > 0 if there

exist two class conditional probability distributions D̃(x|`(x) = 1) and D̃(x|`(x) = −1) such

that for all x ∈ X , D̃(x|`(x)=1)
D(x|`(x)=1) <

√
B and D̃(x|`(x)=−1)

D(x|`(x)=−1) <
√
B where D(x|`(x) = 1) and

D(x|`(x) = −1) are the class conditional probability distributions of the problem, such that

at least a 1− ε probability mass of examples x ∼ D satisfies

D̃
x′,x′′∼D̃×D̃

[
d(x, x′) < d(x, x′′)|`(x′) = `(x), `(x′′) 6= `(x)

]
≥ 1

2
+ γ (A.1)

It can be shown (and is implicit in the proof of Theorem 5 in Wang et al. (2007)) that

the above condition is equivalent to

E
x′,x′′∼D×D

q
w`(x)(x

′)w−`(x)(x
′′) sgn

(
d(x, x′′)− d(x, x′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y
≥ 2γ

where w1(x) := D̃(x|`(x)=1)
D(x|`(x)=1) and w−1(x) := D̃(x|`(x)=−1)

D(x|`(x)=−1) . Now define$(x′, x′′) := w`(x′)(x
′)w`(x′′)(x

′′)

and take f = sgn() as the transfer function in our model. We have, for a 1− ε fraction of
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points,

E
x′,x′′∼D×D

q
$
(
x′, x′′

)
f
(
K(x, x′)−K(x, x′′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y
≥ Cfγ

which is clearly equivalent to

E
x′,x′′∼D×D

q
w`(x)(x

′)w−`(x)(x
′′) sgn

(
K(x, x′)−K(x, x′′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y
≥ γ

since Cf = 1 for the sgn() function. Thus the model of learning presented in (Wang et al.,

2007) is an instantiation of our proposed model.

A.2 Extending the similarity-based model of Balcan and

Blum

Balcan and Blum (2006) present a model of learning with similarity functions. Their

model does not consider landmark pairs, just singletons. Accordingly, instead of assigning

a weight to each landmark pair, they simply assign a weight to each element of the domain.

Consequently one arrives at the following notion of a good similarity.

Definition A.2 ((Balcan and Blum, 2006), Definition 3). A similarity measure K : X ×
X → R is said to be an (ε, γ)-good similarity for a classification problem where ε, γ > 0 if

for some weighing function w : X → [−1, 1], at least a 1− ε probability mass of examples

x ∼ D satisfies

E
x′∼D

q
w
(
x′
)
K(x, x′)|`(x′) = `(x)

y
≥ E

x′∼D

q
w
(
x′
)
K(x, x′)|`(x′) 6= `(x)

y
+ γ (A.2)

Now define w+ := E
x′∼D

Jw (x) |`(x) = 1K and w− := E
x′∼D

Jw (x) |`(x) = −1K. Further-

more, take $(x′, x′′) = w(x′)w(x′′) as the weight function and f = id() as the transfer

function in our model. Then we have, for a 1− ε fraction of the points,

E
x′,x′′∼D×D

q
$
(
x′, x′′

)
f
(
K(x, x′)−K(x, x′′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y
≥ Cfγ

≡ E
x′,x′′∼D×D

q
$
(
x′, x′′

) (
K(x, x′)−K(x, x′′)

)
|`(x′) = `(x), `(x′′) 6= `(x)

y
≥ γ

≡ E
x′,x′′∼D×D

q
$
(
x′, x′′

)
K(x, x′)|`(x′) = `(x), `(x′′) 6= `(x)

y
≥

E
x′,x′′∼D×D

q
$
(
x′, x′′

)
K(x, x′′)|`(x′) = `(x), `(x′′) 6= `(x)

y
+ γ

≡ w−`(x) E
x′∼D

q
w(x′)K(x, x′)|`(x′) = `(x)

y
≥ w`(x) E

x′∼D

q
w(x′)K(x, x′)|`(x′) 6= `(x)

y
+ γ

≡ E
x′∼D

q
w′(x′)K(x, x′)|`(x′) = `(x)

y
≥ E

x′∼D

q
w′(x′)K(x, x′)|`(x′) 6= `(x)

y
+ γ

where Cf = 1 for the id() function and w′(x) = w(x)w−`(x). Note that this again guaran-

tees a classifier with margin γ in the landmarked space. Thus the model of (Balcan and

Blum, 2006) can also be derived in our model.
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Abstract This appendix is with reference to Chapters 4 and 5. Here we present

generalization bounds for learning algorithms that use landmarking techniques (such as

those proposed in the aforementioned chapters) and re-use landmark points as training

points.

B.1 Introduction

Our analyses presented in Chapters 4 and 5 (as well as the analyses presented in Balcan

and Blum (2006); Wang et al. (2007)) use some data as landmark points and then require

a fresh batch of training points to learn a classifier in the landmarked space. In practice,

however, it might be useful to reuse training data to act as landmark points as well.

This is especially true of the approaches outlined in Wang et al. (2007) and Chapter 4

which require labeled landmarks. We give below, generalization bounds for similarity-

based learning algorithms that indulge in such “double dipping”. The argument uses a

technique outlined in Ben-David et al. (2008) and utilizes Rademacher-average based proof

techniques used elsewhere in the thesis. We present a generic argument that, in a manner

similar to Lemma 5.23, can be specialized to the various learning problems considered in

Chapters 4 and 5.

To make the presentation easier we set up some notation. For any predictor f , let

Lf = E
x∼D

J`(f(x), y(x))K denote the population risk and for any training set S of size

n, let L̂Sf = 1
n

∑
xi∈S `(f(xi), y(xi)) denote the empirical risk. For any landmark set

S = (x1, . . . ,xn), we let ΨS : x 7→ (K(x,x1), . . . ,K(x,xn)). For any weight vector w ∈
Rn, ‖w‖∞ ≤ B in the landmarked space, denote the predictor f(S,w) := 1

n 〈w,ΨS(x)〉 =

x 7→ 1
n

n∑
i=1

wiK(x,xi). Also let FS :=
{
x 7→ 1

n 〈w,ΨS(x)〉
}

=
{
f(S,w) : w ∈ Rn, ‖w‖∞ ≤ B

}
.
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B.2 Stable Embeddings and Sample-dependent Analyses

We note that the embedding defined above is “stable” in the sense that changing a single

landmark does not change the embedding too much with respect to bounded predictors.

More formally, for any set of n points S = (x1, . . . ,xn), define g(S) := sup
f∈FS

{
Lf − L̂Sf

}
.

Let Si be another set of n points that (arbitrarily) differs from S just at the ith point

and coincides with S on the rest. Then we have, for any fixed w of bounded L∞ norm

(i.e. ‖w‖∞ ≤ B) and bounded similarity function (i.e. K(x,y) ≤ 1),

sup
x

{∣∣f(S,w)(x)− f(Si,w)(x)
∣∣} = sup

x


∣∣∣∣∣∣ 1n

n∑
j=1

wjK(x,xj)−
1

n

n∑
i=1

wjK(x,x′j)

∣∣∣∣∣∣


= sup
x

{∣∣∣∣ 1nwi

(
K(x,xi)−K(x,x′i)

)∣∣∣∣}
≤ 2B

n

Note that, although Chapter 4 uses pairs of labeled points to define the embedding,

the following argument can easily be extended to incorporate this since the embedding is

identical to the embedding ΨS described above with respect to being “stable”. In fact this

analysis holds for any stable embedding defined using training points.

Our argument proceeds by showing that with high probability (over choice of the set

S) we have

sup
w

{∣∣∣Lf(S,w)
− L̂Sf(S,w)

∣∣∣} ≤ ε
By the definition of FS , the above requirement translates to showing that with high

probability,

sup
f∈FS

{∣∣∣Lf − L̂Sf ∣∣∣} ≤ ε
which highlights the fact that we are dealing with a problem of sample dependent hy-

pothesis spaces1. Note that this exactly captures the double dipping procedure of reusing

training points as landmark points.

Such a result can be used to give a crisp generalization bound as follows: using

Lemma 5.22 and task specific guarantees, we have, with high probability, the existence of

a good predictor in the landmarked space of a randomly chosen landmark set S i.e. with

very high probability over choice of S, we have inf
f∈FS

{Lf} ≤ ε0. Let this be achieved by

the predictor f∗. Using the uniform convergence guarantee above we get L̂Sf∗ ≤ ε0 + ε

(with some loss of confidence due to application of a union bound).

Now consider the predictor f̂ := inf
f∈FS

{
L̂Sf
}

. Clearly L̂S
f̂
≤ L̂Sf∗ ≤ ε0 + ε. Invoking the

1 ↑ We were not able to find any written manuscript detailing the argument of Ben-David et al. (2008).
However the argument itself is fairly generic in allowing one to prove generalization bounds for sample
dependent hypothesis spaces.
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uniform convergence bound yet again shows us that

Lf̂ ≤ L̂
S
f̂

+ sup
f∈FS

{
Lf − L̂Sf

}
≤ ε0 + 2ε

Note that we incur some more loss of confidence due to another application of the union

bound. This tells us that with high probability, a predictor learned by choosing a random

landmark set and training on the landmark set itself would yield a good predictor.

B.3 Double-dipping via Sample-dependent Hypothesis Spaces

We will proceed via a vanilla uniform convergence argument involving symmetrization

and an application of McDiarmid’s inequality (restated below for convenience). However,

proving the stability prerequisite for the application of McDiarmid’s inequality shall require

use of stability of both the predictor f(S,w) as well as the embedding ΨS . Let the loss

function ` be CL-Lipschitz in its first argument.

Theorem B.1 (McDiarmid’s inequality McDiarmid (1989)). Let X1, . . . , Xn be indepen-

dent random variables taking values in some set X . Furthermore, let f : X n → R be a

function of n variables that satisfies, for all i ∈ [n] and all x1, . . . , xn, x
′
i ∈ X ,

∣∣f (x1, . . . , xi, . . . , xn)− f
(
x1, . . . , x

′
i, . . . , xn

)∣∣ ≤ ci
then for all ε > 0, we have

P [f − E JfK > ε] ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
Note that the inequality can be made two sided simply by taking f = −f . For

this reason we shall not worry about the sidedness of the application of this inequality.

We shall invoke McDiarmid’s inequality on the function g(S) := sup
f∈FS

{
Lf − L̂Sf

}
with

S = (x1, . . . ,xn) being the random variables. To do so we first prove the stability of the

function g(S) with respect to its variables and then bound the value of E
S

Jg(S)K.

Theorem B.2. For any S, Si, we have
∣∣g(S)− g(Si)

∣∣ ≤ 6BCL
n .

Proof. We have

g(S) = sup
f∈FS

{
Lf − L̂Sf

}
= sup

f∈FS

{
Lf − L̂Sf − L̂S

i

f + L̂Sif
}

≤ sup
f∈FS

{
Lf − L̂S

i

f

}
+ sup
f∈FS

{
L̂Sf − L̂S

i

f

}
≤ sup

f∈FS

{
Lf − L̂S

i

f

}
+

2BCL
n

where in the fourth step we have used the fact that the loss function is Lipschitz and the
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embedding function ΨS is bounded. We also have

sup
f∈FS

{
Lf − L̂S

i

f

}
= sup

w

{
Lf(S,w)

− L̂Sif(S,w)

}
= sup

w

{
Lf(S,w)

− Lf(Si,w)
+ Lf(Si,w)

− L̂Sif(Si,w)
+ L̂Sif(Si,w)

− L̂Sif(S,w)

}
≤ sup

w

{
Lf(Si,w)

− L̂Sif(Si,w)

}
+ sup

w

{
Lf(S,w)

− Lf(Si,w)

}
+sup

w

{
L̂Sif(Si,w)

− L̂Sif(S,w)

}
≤ sup

w

{
Lf(Si,w)

− L̂Sif(Si,w)

}
+

2BCL
n

+
2BCL
n

= sup
f∈FSi

{
Lf − L̂S

i

f

}
+

4BCL
n

= g(Si) +
4BCL
n

where in the fourth step we have used the stability of the embedding function and that

the loss function is CL-Lipschitz in its first argument. This ensures that for all x we

have
∣∣` (f(S,w)(x), y(x)

)
− `
(
f(Si,w)(x), y(x)

)∣∣ ≤ 2BCL
n

. We note that since this holds for

all x, it also holds in expectation over any (empirical) distribution as well. Putting the

two inequalities together gives us g(S) ≤ g(Si) +
6BCL
n

. Similarly we also have g(Si) ≤

g(S)+
6BCL
n

which gives us the result. where in the fourth step we have used the stability

of the embedding function and that the loss function is CL-Lipschitz in its first argument.

This ensures that for all x we have
∣∣` (f(S,w)(x), y(x)

)
− `

(
f(Si,w)(x), y(x)

)∣∣ ≤ 2BCL
n

.

We note that since this holds for all x, it also holds in expectation over any (empirical)

distribution as well. Putting the two inequalities together gives us g(S) ≤ g(Si) +
6BCL
n

.

Similarly we also have g(Si) ≤ g(S) +
6BCL
n

which gives us the result.

We now have that the function g(S) is O
(

1

n

)
-stable with respect to each of its inputs.

We now move on to bound its expectation. For any function class F we define its empirical

Rademacher average as follows

R̂n(F) := E
σ

u

v sup
f∈F

 1

n

∑
xi∈S

σif(xi)


∣∣∣∣∣∣S

}

~

Also let F := {x 7→ 〈w,x〉 : ‖w‖2 ≤ B} and X := {x : ‖x‖2 ≤ 1}.

Theorem B.3. E
S

t

sup
f∈FS

{
Lf − L̂Sf

}|

≤ 2BCL

√
1
n
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Proof. We have

E
S

t

sup
f∈FS

{
Lf − L̂Sf

}|

= E
S

t

sup
f∈FS

{
E
S′

r
L̂S′f

z
− L̂Sf

}|

≤ E
S,S′

t

sup
f∈FS

{
L̂S′f − L̂Sf

}|

≤ E
S,S′

t

sup
f∈FS∪S′

{
L̂S′f − L̂Sf

}|

= E
S,S′,σ

u

v sup
f∈FS∪S′

 1

n

∑
xi∈S,x′i∈S′

σi
(
`(f(x′i), y(x′i))− `(f(xi), y(xi))

)
}

~

≤ 2 E
S,S′,σ

u

v sup
f∈FS∪S′

 1

n

∑
xi∈S

σi`(f(xi), y(xi))


}

~

= 2 E
S,S′,σ

u

vsup
w

 1

n

∑
xi∈S

σi`(f(S∪S′,w)(xi), y(xi))


}

~

≤ 2 E
S,S′,σ

u

vsup
f∈F

 1

n

∑
xi∈S

σi`(f(xi), y(xi))


}

~

= 2 E
S

r
R̂n(` ◦ F)

z
≤ 2CL E

S

r
R̂n(F)

z
≤ 2BCL

√
1

n

where in the third step we have used the fact that FS ⊇ FS′ if S ⊇ S′ (this is the mono-

tonicity requirement in Ben-David et al. (2008)). Note that this is essential to establish

symmetry so that Rademacher variables can be introduced in the next (symmetrization)

step. In the seventh step, we have used the fact that for every S such that |S| = n and

w ∈ Rn such that ‖w‖∞ ≤ B, there exists a function f ∈ F such that for all x, there

exists a x′ ∈ X such that f(S,w)(x) = f(x′). In the last step we have used a result from

Ambroladze and Shawe-Taylor (2004) which allows calculation of Rademacher averages

for composition classes and an intermediate result from the proof of Lemma 5.23 which

gives us Rademacher averages for the function class F .

Thus, by an application of McDiarmid’s inequality we have, with probability (1− δ)
over choice of the landmark (training) set,

sup
f∈FS

{
Lf − L̂Sf

}
≤ E

t

sup
f∈FS

{
Lf − L̂Sf

}|

+ 6BCL

√
log 1/δ

2n
≤ 4BCL

√
log 1/δ

n
.

Similarly, we can also prove

sup
f∈FS

{
L̂Sf − Lf

}
≤ 4BCL

√
log 1/δ

n
,

which concludes our argument justifying double dipping.
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