
Derandomization & Time-Space Trade-off
in Efficient Computation

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Diptarka Chakraborty

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

August, 2016

CERTIFICATE

It is certified that the work contained in the thesis entitled “Derandomization & Time-

Space Trade-off in Efficient Computation”, by Diptarka Chakraborty, has been carried out

under our supervision and that this work has not been submitted elsewhere for a degree.

Manindra Agrawal

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Satyadev Nandakumar

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

August, 2016

Synopsis

Pseudorandomness

Incorporating randomness in any feasible computation is of fundamental importance in

the field of theoretical computer science. In order to simulate any efficient randomized

algorithm, we do not need pure random bits or uniform distribution. Instead, what we

need is that behaves almost same as uniform distribution or in other words the distribution

looks similar to uniform distribution to that algorithm. This is the basic idea of the notion

called pseudorandomness which is defined via two provably equivalent notions known as

computational indistinguishability and unpredictability.

Characterization of Distributions in terms of Pseudorandomness Once we have

the definition of pseudorandomness, it is natural to ask the question how to characterize

distributions on the basis of the amount of pseudorandomness present in them. Generally,

to classify random sources, information theoretic notion known as min-entropy is used.

In case of computational analogue of entropy, we have several such notions like Yao-type

(or compression based) pseudoentropy, HILL-type pseudoentropy, next-bit pseudoentropy.

However, it is not clear which of the above notions is the most appropriate or whether they

are at all suitable. In this thesis, we propose an alternate characterization of distributions

to quantify the amount of pseudorandomness present in them. For this purpose we adapt

the theory of dimension defined via betting functions called s-gales, a generalized notion of

martingales and log-loss unpredictability. Then we introduce the notion of “non-uniform”

gale and a new probabilistic definition of success of a gale over a distribution. We show

v

vi

some important properties of dimension which make our definition robust. Next, we give a

comparative study between our notion of dimension and different notions of pseudoentropy.

Pseudorandom Extractor After quantification of pseudorandomness of a distribution

the next natural question is how to extract out pseudorandom part out of any distribution.

This is analogous to the question of constructing randomness extractor. Unfortunately,

it is not possible to construct any randomness extractor deterministically. To extract

out almost all the randomness, we need extra Ω(log n) pure random bits. It was not

clear whether Ω(log n) many extra random bits are also required to extract out only the

pseudorandom part. In this thesis, we consider the following: Given a distribution with

dimension s, the problem is to output O(sn) many bits that are pseudorandom. We show

Ω(log n) lower bound on the number of extra pure random bits required to solve the

above stated problem. However, constructibility of such pseudorandom extractor using

only O(log n) extra random bits is still open. On the other hand, for distributions having

high HILL-type pseudoentropy, any randomness extractor and in case of high Yao-type

pseudoentropy, any “reconstruction type” randomness extractor will serve our purpose.

Unfortunately, a distributions with high dimension may have very low pseudoentropy of

either type and by our work, actually the same counterexample will work for both the cases.

However, for a special case, namely for nonpseudorandom bit-fixing sources, we show that

the construction same as that of deterministic randomness extractor for bit-fixing random

sources will work.

Approaching towards P vs. BPP In this thesis, to the end of the first part we also

show that for proving P = BPP, it is sufficient to construct an algorithm that stretches

O(log n) pure random bits to n bits such that the output distribution has a non-zero

dimension instead of being pseudorandom, because from such algorithm we can easily

construct a hard function satisfying certain hardness requirements sufficient to build an

optimal pseudorandom generator.

vii

Relations among Complexity Classes L, NL and SC

In the domain of space bounded computation, one of the most important questions is

whether non-determinism adds any extra power to the log-space computation or not. A

much weaker question, whether NL is inside SC (simultaneous polynomial time and poly-

logarithmic space class) or not is also yet to be resolved. The most obvious way to tackle

this weaker question is to try for an SC algorithm for the reachability problem for directed

graphs, which is known to be NL-complete. For this problem, the trade-off between two

basic algorithms is that BFS takes linear space and linear time whereas Savitch’s algorithm

takes O(log2 n) space but θ(nlogn) time. Wigderson posed the following question: Can we

design a polynomial-time algorithm for the directed graph reachability problem that uses

only O(n1−ε) space for some small constant ε > 0? Till now best known algorithm is by

Barnes, Buss, Ruzzo and Schieber and uses O(n/2k
√

logn) space, for any constant k while

keeping time polynomial. However, for directed planar graphs a recent result by Imai et al.

achieved O(n1/2+ε) space, for any ε > 0 and polynomial time bound simultaneously. Later

in a joint work with Pavan, Tewari, Vinodchandran and Yang, we extended this approach

to give Õ(n2/3g1/3) space (by Õ(s(n)) we mean O(s(n)(log n)O(1))) and polynomial time

bound for directed graphs embedded on orientable surface of genus g.

Reachability in H-minor-free Graphs In this thesis, we extend our result of high-

genus graphs to H-minor-free graphs by using Robertson and Seymour’s Graph Minor

Decomposition Theorem and provide Õ(n2/3) space algorithm. Our main contribution is

to provide a space efficient construction of separator for this particular graph class and

for that purpose we use the construction of planarizing set used for deciding reachability

in high-genus graphs. Moreover, using a similar type of decomposition theorem given by

Thierauf and Wagner, we achieve the bound same as that given for directed planar graphs

by Imai et al. for K3,3-free and K5-free graphs, which is a strict superset of planar graphs.

Reachability in Directed Layered Planar Graphs Just like for directed graphs,

reachability problem for directed layered graphs is also NL-complete and thus giving an

viii

SC algorithm for this problem also suffices to show NL ⊆ SC. No better bound than that

given for general directed graphs is known for this problem. So it is natural to study this

problem under planarity restriction and under that restriction also, best known bound is

same as achieved by Imai et al. mentioned earlier. In this thesis, we provide a polynomial

time algorithm for reachability problem for directed layered planar graphs that uses only

nε space, for any ε > 0. For this purpose, we consider the reachability problem for layered

grid graphs as directed layered planar case is log-space reducible to it. Finally, by using a

modified DFS strategy into a courser grid structure along with a clever “marking scheme”,

we prove our result for this reduced problem.

Results for Red-Blue Path and other Problems in Planar Graphs It seems

that problems on planar graphs are easier than that on general directed graphs. So it is

natural to search for some problem that restricted to planar graphs is also NL-complete.

One such candidate is Red-Blue Path problem for planar DAGs. In this thesis, we provide

an O(n1/2+ε) space, for any ε > 0 and polynomial time algorithm for this problem using the

space efficient construction of planar separator given by Imai et al. while giving algorithm

to solve directed planar reachability problem. This is the first simultaneous O(n1/2+ε)

space, for any ε > 0 and polynomial time bound known for any NL-complete problem.

However, as the corresponding complexity class is not closed under log-space reductions,

we do not get any containment result for the class NL. We also extend our result to several

other problems like shortest path in planar graphs, even path problem in planar DAGs,

perfect matching problem for planar bipartite graphs and also for even perfect matching

problem in planar bipartite graphs. For none of the above problems any simultaneous

sublinear space and polynomial time bound was known before.

To my parents...

Acknowledgements

I am extremely thankful to my advisors Manindra Agrawal and Satyadev Nandakumar for

their continuous guidance and immense support to carry research throughout my PhD.

They taught me how to climb the mountain named theoretical computer science and

explore the unexplored region without the fear of slipping down and made me realize that

sudden slipping down may actually lead to a wonderful valley of several beautiful yet

possibly unproved theorems.

I have been very fortunate to have Manindra Agrawal as my supervisor. He gave me

enough freedom to play with my own ideas. However, probably the biggest lesson I have

learnt from him is not to be afraid of any problem irrespective of how scary it apparently

looks like. He never asked me to solve any problem, instead told me to only understand

the problem clearly, and finally that understanding has helped me to devise solution in

many scenarios. I am very much fond of his way of thinking about any seemingly new

problem. I wish one day I could think artistically like him. I want to thank not only him

but his family as well, for inviting me on several occasions.

During my PhD I have worked with both Satyadev and Raghunath and I do not know

how much thanks I should give them because no matter how many words I spend, I am

sure it will fall much shorter than what they actually deserve. They both have always

been very generous with their time to listen my several seemingly nonsense ideas and

being patient with me. Whenever I felt low I just walked into one of their rooms and

start discussing on some arbitrary topics and most of the time the topics were completely

orthogonal to our research domain.

I express my gratitude to all the faculty members of CSE department of IIT Kanpur

for their excellent teaching during the time of course work and also for providing me a

nice friendly environment inside the department. I particularly thank Sumit Ganguly,

Piyush Kurur and Nitin Saxena for all the discussions I had with them. I sincerely thank

Surender Baswana for his truly amazing classes and only due to him I have learnt to listen

and enjoy the music of algorithms. I also thank Somenath Biswas for inspiring me in doing

research in complexity theory.

xi

I had the opportunity to make two academic visits during the term. I would like to

thank Michal for hosting me in the Charles University in Prague and Andrej for hosting

me in The Chinese University of Hong Kong and also for all the discussions I had with

both of them. I want to thank Elazar and Siyao for all the interesting discussions on

theory and other things and I am sure without them my visit in Prague and Hong Kong

would not have been as enjoyable as it actually was. I also thank my other collaborators,

particularly Pavan and Vinodchandran.

Life in IIT Kanpur have been very enjoyable and full of fun due to the company I had

there. Many thanks to Garima, Keerti, Jaydeep, Atanu, Biman, Rohit, Arpita, Seetha

Ram and all other friends. Special thanks to Sumanta, Debarati and Amit for being

incredible friends and for always being there irrespective of how I behave with them. I

would not have learnt as much as I did without them.

Most of all, thanks to my parents and my maternal uncle for their love, constant

support and encouragement. Without their support and encouragement this work would

not have been possible.

I thank the institute as a whole for providing us such a beautiful environment. Last

but not the least, I would like to thank my overall PhD time for teaching me how to be

happy or at least be pseudo-happy even on failures and giving me the strength to overcome

all the tough situations I faced in research as well as in personal life.

Contents

List of Publications xvii

List of Figures xix

I Pseudorandomness & Derandomization 1

1 Introduction 3

1.1 Organization of Part I of the Thesis . 5

2 Preliminaries 7

2.1 Notations . 7

2.2 Pseudorandomness . 7

2.3 Gales and Predictors . 8

2.4 Equivalence between s-Gale and Predictor 9

2.5 Basics of Information Theory . 9

3 Dimension and Pseudorandomness 11

3.1 Quantification of Pseudorandomness . 11

3.1.1 Defining Dimension . 11

3.2 Unpredictability and Dimension . 13

3.3 Properties of Dimension . 16

4 Pseudoentropy and Dimension 23

4.1 Different Notions of Pseudoentropy . 23

4.2 High HILL-type pseudo min-entropy implies high dimension 24

4.3 Equivalence between dimension and next-bit pseudo Shannon entropy . . . 26

5 Pseudorandom Extractor and Derandomization 31

5.1 Pseudorandom Extractors and Lower Bound 31

xiii

5.1.1 Deterministic Pseudorandom Extractor for Nonpseudorandom Bit-

fixing Sources . 33

5.1.2 Discussion on Pseudorandom Extractor for Nonpseudorandom Sam-

plable Distributions . 40

5.2 Approaching Towards P = BPP . 41

6 Conclusion 43

II Time-space Trade-off in Small Space Computation 45

7 Introduction 47

7.1 The Reachability Problem . 47

7.1.1 Our Contribution on the Reachability Problem 48

7.2 Some Other Graph Theoretic Problems . 50

7.2.1 Our Contribution . 51

7.3 Organization of Part II of the Thesis . 53

8 Preliminaries 55

8.1 Notations . 55

8.2 Graph Embedding and Planarity . 55

8.3 Separator and Directed Planar Reachability 57

8.4 A Reachability Algorithm for High-genus Graphs 57

9 New Time-Space Upperbounds for Directed Reachability in H-minor-

free Graphs 59

9.1 A Reachability Algorithm for H-minor-free Graphs 60

9.1.1 Graph Minor Decomposition Theorem 60

9.1.2 Constructing Separator for H-minor-free Graphs 61

10 An O(nε) Space and Polynomial Time Algorithm for Reachability in

Directed Layered Planar Graphs 65

10.1 Class nSC and its Properties . 65

10.2 Reachability in Layered Planar Graphs . 67

10.2.1 The Auxiliary Graph H . 67

10.2.2 Description of the Algorithm . 69

11 Simultaneous Time-Space Upper Bounds for Certain Problems in Planar

Graphs 75

11.1 Shortest Path Problem in Directed Planar Graphs 76

11.1.1 Detecting Negative Weight Cycle in Directed Planar Graphs 79

11.2 Red-Blue Path Problem . 80

11.2.1 Deciding Red-Blue Path in Planar DAGs 80

11.2.2 Deciding Even Path in Planar DAGs 84

11.3 Perfect Matching in Planar Bipartite Graphs 88

11.3.1 Finding a Perfect Matching . 88

11.3.2 Constructing a Hall Obstacle . 90

11.3.3 Deciding Even Perfect Matching . 91

12 Conclusion 93

Bibliography 95

Index 103

List of Publications

[ACDN15] Dimension, Pseudorandomness and Extraction of Pseudorandomness
with Manindra Agrawal, Debarati Das and Satyadev Nandakumar
In Proceedings of the 35th International Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), pages 221-235, 2015

[CT15a] An O(nε) Space and Polynomial Time Algorithm for Reachability in
Directed Layered Planar Graphs
with Raghunath Tewari
In Proceedings of the 26th International Symposium on Algorithms and Compu-
tation (ISAAC), pages 614-624, 2015

[CT15c] Simultaneous Time-Space Upper Bounds for Red-Blue Path Problem
in Planar DAGs
with Raghunath Tewari
In Proceedings of the 9th International Workshop on Algorithms and Computa-
tion (WALCOM), pages 258-269, 2015

[CT15b] Simultaneous Time-Space Upper Bounds for Certain Problems in Pla-
nar Graphs
with Raghunath Tewari
CoRR, abs/1502.02135, 2015
(This is an extended version of the paper entitled “Simultaneous Time-Space
Upper Bounds for Red-Blue Path Problem in Planar DAGs” that appeared in
WALCOM 2015)

[CPT+14] New Time-Space Upperbounds for Directed Reachability in High-
genus and H-minor-free Graphs
with Aduri Pavan, Raghunath Tewari, N. V. Vinodchandran and Lin Forrest
Yang
In Proceedings of the 34th International Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), pages 585-595, 2014

Contents of Chapter 3, 4 and 5 are based on the results of [ACDN15]. Chapter 9 is
based on a part of [CPT+14] and Chapter 10 is based on [CT15a]. The work in Chapter 11
is based on [CT15b], a preliminary version of which is [CT15c].

xvii

List of Figures

8.1 The graphs K3,3 and K5 . 56

9.1 The graphs K5 and V8 (also known as Wagner’s graph) 63

10.1 (a) An example of layered grid graph G and its decomposition into blocks
(b) Corresponding auxiliary graph H . 68

10.2 Crossing between two paths inside a block Gl 70
10.3 Crossing between two paths . 72

11.1 Red-Blue Edge Gadget . 83
11.2 For undirected cycle of length 3 . 85
11.3 For undirected cycle of length (k + 2) . 85
11.4 When G′ contains an odd length cycle . 87
11.5 When G contains an even length s− t path 88

xix

Part I

Pseudorandomness &
Derandomization

1

Chapter 1

Introduction

Incorporating randomness in any feasible computation is one of the basic primitives in the-
oretical computer science. Fortunately, any efficient (say, polynomial time) randomized
algorithm does not actually require pure random bits. What it needs is a source that looks
random to it and this is where the notion of pseudorandomness [BM84, Yao82] comes into
picture. Since its introduction, pseudorandomness has been fundamental to the domain of
cryptography, complexity theory and computational learning theory. Pseudorandomness
is mainly a computational approach to study the nature of randomness, and computational
indistinguishability [GM84] plays a pivotal role in this. Informally, a distribution is said
to be pseudorandom if no efficient algorithm can distinguish it from the uniform distri-
bution. Another way of looking at the notion of pseudorandomness is via the notion of
unpredictability of distributions, due to Yao [Yao82]. Computational indistinguishability
and unpredictability are provably two equivalent ways to define pseudorandom distribu-
tions. A distribution is unpredictable if there is no efficient algorithm that, given a prefix
of a string coming from that distribution, can guess the next bit with a significant success
probability. This line of research naturally posed the question of constructing algorithms
that can generate pseudorandom distributions, known as pseudorandom generators. Till
now we know such constructions by assuming the existence of one-way functions. It is well
known that constructibility of an optimal pseudorandom generator implies complete de-
randomization (i.e., P = BPP) and exponential hardness assumption on one-way function
enables us to do that. However, Nisan and Wigderson [NW94] showed that the existence
of an exponential hard function, which is a much weaker assumption, is also sufficient for
this purpose. The assumption was further weakened in [IW96].

In order to characterize the class of random sources, information theoretic notion
of min-entropy is normally used. A computational analogue of entropy was introduced
by Yao [Yao82] and was based on compression. H̊astad, Impagliazzo, Levin and Luby
[HILL99] extended the definition of min-entropy in computational settings while giving
the construction of a pseudorandom generator from any one-way function. This definition
of computational version of min-entropy is known as HILL-type pseudoentropy and it
basically extends the definition of pseudorandomness syntactically. Relations among above
two types of pseudoentropy was further studied in [BSW03] and so far it is not known
whether these two types of computational analogues of entropy are equivalent or not
with respect to polynomial-size circuits. Another type of definition also appears in the
literature, namely metric-type pseudoentropy which is nothing but reversal of quantifiers in

3

4

the definitions of HILL-type pseudoentropy. It has been shown in [BSW03] that this latter
variant of pseudoentropy is actually same as HILL-type pseudoentropy with respect to the
class of all polynomial-size circuits. However, for some less powerful model like bounded-
width read-once oblivious branching programs they are not same. On the other hand, if
we consider very powerful model of computation like PH-circuits, then all three notions
are equivalent up to some small factor [BSW03]. A more relaxed notion of pseudoentropy,
known as next-bit Shannon pseudoentropy, was later introduced by Haitner, Reingold and
Vadhan [HRV10] in the context of an efficient construction of a pseudorandom generator
from any one-way function. In a follow up work [VZ12], the same notion was alternatively
characterized by KL-hardness. So far it is not clear which of the above notions is the most
appropriate or whether they are at all suitable to characterize distributions in terms of
the degree of pseudorandomness in it.

In this thesis, we first propose an alternative measure to quantify the amount of pseu-
dorandomness present in a distribution. This measure is motivated by the ideas of dimen-
sion [Lut03b] and logarithmic loss unpredictability [Hit03]. Lutz used the betting functions
known as gales to characterize the Hausdroff dimension of sets of infinite sequences over a
finite alphabet. The definition given by Lutz cannot be carried over directly, because here
we consider the distributions over finite length strings instead of sets containing infinite
length strings. To overcome this difficulty, we allow “non-uniform” gales and introduce a
new probabilistic notion of success of a gale over a distribution. We use this to define two
notions of dimension of a distribution - strong one and a weak one. Both the notions were
already there for the case of infinite strings [Lut11]. A similar approach was previously
attempted to tackle the same question in [G06, Rag11, Das14]. A few results discussed in
this thesis are modified version of the results stated in [Das14]. More specifically the crite-
rion of “win” of any s-gale and as a consequence almost all the results of [Das14] had some
potential drawbacks and are resolved in this thesis. In [Hit03], Hitchcock showed that the
definition of dimension given by Lutz is equivalent to logarithmic loss unpredictability.
In this thesis, we show that this result can be adapted to establish a quantitative equiv-
alence between the notion of logarithmic loss unpredictability of a distribution and our
proposed notion of dimension. Roughly this captures the essence of equivalence between
pseudorandomness defined via indistinguishability and via unpredictability. We show some
important properties of the notion of dimension of a distribution, which eventually makes
this characterization much more powerful and flexible. We also do a comparative study
between our notion of dimension and two provably not equivalent notions of pseudoen-
tropy, namely HILL-type pseudo min-entropy and next-bit pseudo Shannon entropy. We
show that the class of distributions with high dimension is a strict superset of the class of
distributions having high HILL-type pseudo min-entropy. Whereas, there is a much closer
relationship between dimension and next-bit pseudo Shannon entropy.

Once we have a quantification of pseudorandomness of a distribution, the next natural
question is how to extract the pseudorandom part from a given distribution. The question
is similar to the question of constructing randomness extractors which is an efficient algo-
rithm that converts a realistic source to an almost ideal source of randomness. The term
randomness extractor was first defined by Nisan and Zuckerman [NZ93]. Unfortunately
there is no such deterministic algorithm and to extract out almost all the randomness,
extra Ω(log n) pure random bits are always required [NZ96, RTS00]. There is a long line
of research on construction of extractors towards achieving this bound. For a compre-
hensive treatment on this topic, we refer the reader to excellent surveys by Nisan and

5

Ta-Shma [NT99] and Shaltiel [Sha02]. Finally, the desired bound was achieved up to some
constant factor in [LRVW03].

Coming back to the computational analogue, it is natural to study the same question
in the domain of pseudorandomness. Given a distribution with dimension s, the problem
is to output O(sn) many bits that are pseudorandom. A simple argument can show that
deterministic pseudorandom extraction is not possible, but it is not at all clear that how
many pure random bits are necessary to serve the purpose. In this thesis, we show that
we need to actually involve Ω(log n) random bits to extract out (sn)δ, for any constant
δ > 0 many pseudorandom bits from a distribution of dimension at least s. However
explicit (or polynomial time computable) construction of one such extractor with O(log n)
random bits is still unknown. If it is known that the given distribution has high HILL-
type pseudo min-entropy, then any randomness extractor will work [BSW03]. Instead of
HILL-type pseudoentropy, even if we have Yao-type pseudo min-entropy, then also some
special kind of randomness extractor (namely with a “reconstruction procedure”) could
serve our purpose [BSW03]. Unfortunately both of these notions of pseudoentropy can be
very small for a distribution with very high dimension. Actually the same counterexample
will work for both the cases. So it is interesting to come up with a pseudorandom extractor
for a class of distributions having high dimension.

As a first step towards this goal, we consider a special kind of source which we call
the nonpseudorandom bit-fixing source. It is similar to the well studied notion of bit-fixing
random source introduced by Chor et al. [CGH+85], for which we know the construction
of a deterministic randomness extractor due to [KZ03] and [GRS04]. In this thesis, we
show that the same construction yields a deterministic pseudorandom extractor for all
nonpseudorandom bit-fixing sources.

To the end of Part I of this thesis, we make a little progress towards the question
of P vs. BPP by showing that in order to prove P = BPP, it is sufficient to construct
an algorithm that stretches O(log n) pure random bits to n bits such that the output
distribution has a non-zero dimension (not necessarily pseudorandom). The idea is that
using such stretching algorithm, we easily construct a hard function, which eventually
gives us the most desired optimal pseudorandom generator.

1.1 Organization of Part I of the Thesis

The rest of the Part I of this thesis is organized as follows. In Chapter 2 we describe some
common notations used in the Part I of this thesis and also provide a few basic definitions
used in the subsequent chapters. In Chapter 3 using the notion of dimension we first define
a characterization of distributions based on the amount of pseudorandomness present in
them and then in section 3.2, we establish a relationship between dimension and unpre-
dictability of a distribution. In section 3.3 of Chapter 3, we discuss some useful properties
of dimension. In Chapter 4 we talk about different known variants of pseudoentropy and
connections of them with our notion of dimension. In Section 5.1 of Chapter 5, we in-
troduce the notion of a pseudorandom extractor and provide a lower bound on number
of pure random bits required for designing such pseudorandom extractor for distributions
with high dimension. Then in Section 5.1.1 we define a special kind of nonpseudorandom
source, named nonpseudorandom bit-fixing source and give an explicit construction of a
deterministic pseudorandom extractor for such sources. To the end of Chapter 5, in Sec-

6

tion 5.2 we show that to completely derandomize polynomial time algorithms we need to
design a stretching algorithm that stretches O(log n) pure random bits exponentially and
outputs distribution having non-zero dimension.

Chapter 2

Preliminaries

In this chapter, we give the basic definitions and known theorems used in this thesis. Let
us start with the notations used in Part I.

2.1 Notations

We consider the binary alphabet Σ = {0, 1}. We use D[E] to denote Prx∈RD[E], where E
is an event and x is drawn randomly from the distributionD. We denote the uniform distri-
bution on Σm by Um. Given a string w ∈ Σn, w[i] denotes the i-th bit of w and w[1, . . . , i]
denotes the first i bits of w. Now suppose w ∈ Σn and I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}
is a set of indices, then we use the notation wI to denote the string w[i1]w[i2] . . . w[ik].
And we use λ to denote an empty string. For any string w ∈ Σ∗, we use the notation |w|
to denote the length of the string w and for any r ∈ R, by |r| we mean the absolute value
of r.

For the basic definitions of the computational models like Turing machine model and
circuit model and the complexity classes defined on those models used in this thesis, we
refer the reader to any standard book on complexity theory (e.g., [AB09]).

2.2 Pseudorandomness

We start by defining the notion of computational indistinguishability which we will use
frequently in this thesis.

Definition 2.1 (Computational Indistinguishability). A distribution D over Σn is (S, ε)-
indistinguishable from another distribution D′ over Σn (for S ∈ N, ε > 0) if for every
circuit C of size at most S,

|D[C(x) = 1]−D′[C(x) = 1]| ≤ ε.

Pseudorandomness is defined via computational indistinguishability [GM84] as well as
via unpredictability [Yao82]. It is well-known that both the definitions of pseudorandom-
ness are equivalent [Gol01, AB09]. We state both the definitions below.

7

8

Definition 2.2 (Pseudorandomness). For an ensemble of distributions D = {Dn}n∈N,
where the distribution Dn is on Σn and for any S = S(n) > n,1 ε = ε(n) > 0,

1. (via computational indistinguishability) D is said to be (S, ε)-pseudorandom if for all
sufficiently large n, Dn is (O(S(n)), ε(n))-indistinguishable from Un; or equivalently,

2. (via unpredictability [Yao82]) D is said to be (S, ε)-pseudorandom if for all suffi-
ciently large n,

Dn[C(x1, · · · , xi−1) = xi] ≤
1

2
+
ε(n)

n

for all circuits C of size at most O(S(n)) and for all i ∈ [n].

It is always natural to consider asymptotic definitions with respect to all polynomial
size circuits and allowing bias term to be any inverse polynomial. An ensemble of distri-
butions D = {Dn}n∈N, where a distribution Dn is on Σn, is said to be pseudorandom if
for every constant c > 0 and c′ > 0, D is (nc, 1/nc

′
)-pseudorandom [Gol01].

2.3 Gales and Predictors

Martingales are “fair” betting games which are used extensively in probability theory (see
for example, [AL06]). We consider martingale in discrete domain, where it is defined as
discrete-time stochastic process that satisfies certain properties (see for example, [Bil95]).
In this thesis, we use an alternative definition of martingale defined via betting func-
tion [Sch71]. Lutz introduced a generalized notion, that of an s-gale, to characterize
Hausdorff dimension [Lut03a]. Athreya et al. used a similar notion to characterize pack-
ing dimension[AHLM07].

Definition 2.3. [Lut03a] Let s ∈ [0,∞). An s-gale is a function d : Σ∗ → [0,∞) such
that

d(λ) = 1

and for all w ∈ Σ∗, the following holds,

d(w) = 2−s[d(w0) + d(w1)].

A martingale is a 1-gale.

The following proposition establishes a connection between s-gales and martingales.

Proposition 2.3.1 ([Lut03a]). A function d : Σ∗ → [0,∞) is an s-gale if and only if the
function d′ : Σ∗ → [0,∞) defined as d′(w) = 2(1−s)|w|d(w) is a martingale.

It is already known that the notion of an s-gale is equivalent to the notion of predictors,
which have been extensively used in the literature [VZ12]. Given an initial finite segment
of a string, a predictor specifies a probability distribution over Σ for the next symbol in
the string.

Definition 2.4. A function π : Σ∗ × Σ→ [0, 1] is a predictor if for all w ∈ Σ∗,

π(w, 0) + π(w, 1) = 1.
1Throughout this thesis, we consider S(n) > n so that the circuit can at least read the full input.

9

Note: The above definition of a predictor is not much different from the type of
predictor used in Definition 2.2. Predictor used in Definition 2.2 actually comes from the
predictor that can be simulated by a randomized circuit, by hardwiring “good” random
bits. Now if we have a randomized circuit as predictor that given a prefix of a string
outputs the next bit, then by invoking that predictor independently polynomially many
times we can get an estimate on the probability of occurrence of 0 or 1 as the next bit
and using Chernoff bound it can easily be shown that the estimation is correct up to some
inverse exponential error. For the detailed equivalence, the reader may refer to [VZ12].
Throughout the thesis, we only consider the martingales (or s-gales) and predictors that
can be computed using family of non-uniform circuits and from now onwards we refer
them just by martingales (or s-gales) and predictors, and by the size of a martingale (or
an s-gale or a predictor), we refer the size of the circuit corresponding to that martingale
(or s-gale or predictor).

2.4 Equivalence between s-Gale and Predictor

As we mentioned earlier that there is an equivalence between an s-gale and a predictor.
An early reference to this is [Cov74]. Informally, while constructing an s-gale one can
invest money to the next symbol proportional to the probability assigned by the predictor.
Similarly, if on a particular next bit we get larger amount of money by any betting game
then it must be the case that that particular bit will occur with greater probability than
the other bit, and thus we predict that bit position accordingly. Here we follow the
construction given in [Hit03].

We can define an s-gale dπ for each s ∈ [0,∞) from a predictor π as follows:

dπ(λ) = 1

and for all w ∈ Σ∗, a ∈ Σ,
dπ(wa) = 2sdπ(w)π(w, a).

Equivalently we can state that for all w ∈ Σ∗,

dπ(w) = 2s|w|
|w|∏
i=1

π(w[1 · · · i− 1], w[i]).

Conversely, we can use an s-gale d with d(λ) = 1 to define a predictor πd: for all
w ∈ Σ∗ and a ∈ Σ,

πd(w, a) =

{
2−s d(wa)

d(w) if d(w) 6= 0
1
2 otherwise.

In the literature, s-gales have been used to study the dimension of sets of infinite
sequences. We refer the reader to [Hita, Hitb] for an extensive bibliography.

2.5 Basics of Information Theory

In this section, we provide a few basic notations and propositions of information theory
that we use in the subsequent chapters. For a comprehensive treatment of this topic, we

10

refer the reader to an excellent book by Cover and Thomas [CT06].

Definition 2.5 (Shannon Entropy). The Shannon entropy of a discrete random variable
X is defined as

H(X) := −
∑
x

Pr[X = x] logPr[X = x] = −Ex∼X [logPr[X = x]].

The joint entropy H(X,Y) is defined to be −Ex∼X,y∼Y [logPr[X = x, Y = y]] and the
conditional entropy H(Y | X) is defined to be Ex∼X [H(Y | X = x)].

Proposition 2.5.1 (Chain Rule for Shannon Entropy).

H(X,Y) = H(X) +H(Y | X).

Definition 2.6 (KL divergence). The Kullback-Leibler distance or KL divergence between
two distributions P and Q is defined as

KL(P‖Q) := Ep∼P log
Pr[P = p]

Pr[Q = p]
.

Definition 2.7 (Conditional KL divergence). For random variables (P1, P2) and (Q1, Q2),
the conditional KL divergence from (P2|P1) to (Q2|Q1) is defined as

KL((P2|P1)‖(Q2|Q1)) = Ep1∼P1,p2∼P2

[
log

Pr[P2 = p2|P1 = p1]

Pr[Q2 = p2|Q1 = p1]

]
.

Just like Shannon entropy, in this case also, we have chain rule stated below.

Proposition 2.5.2 (Chain Rule for KL divergence).

KL(P1, P2‖Q1, Q2) = KL(P1‖Q1) + KL((P2|P1)‖(Q2|Q1)).

In the domain of randomness, another important information theoretic entropy mea-
sure, namely min-entropy is widely used to measure the amount of randomness present in
a distribution.

Definition 2.8 (Min-entropy). For a distribution D, min-entropy of D is defined as

H∞(D) = min
x
{log(1/D[x])}.

Chapter 3

Dimension and Pseudorandomness

In this chapter, we propose a measure to quantify the amount of pseudorandomness present
in a distribution. For that purpose, we adapt the notion introduced by Lutz [Lut03b] of
an s-gale to define a variant notion of success of an s-gale against a distribution D on Σn.
We also use the theory on logarithmic loss unpredictability [Hit03] defined on predictor to
show a direct equivalence with our proposed notion of dimension. Finally we prove some
important properties of our notion of dimension which make our proposed notion robust.

3.1 Quantification of Pseudorandomness

In this section, we propose a quantification of pseudorandomness present in a distribution.
Throughout the Part I of this thesis, we will talk about non-uniform definitions.

3.1.1 Defining Dimension

Definition 3.1. For any ε > 0, an s-gale d : Σ∗ → [0,∞) is said to ε-succeed over a
distribution Dn on Σn if

Dn[d(w) ≥ 2] >
1

2
+ ε.

Note that the above definition of win of an s-gale is not arbitrary and reader may
refer to the last portion of the proof of Theorem 3.3 to get some intuition behind this
definition. The following lemma states the equivalence between the standard definition of
pseudorandomness and the definition using martingale.

Lemma 3.1.1. Consider an ensemble of distributions D = {Dn}n∈N, where the distribu-
tion Dn is on Σn. If D is (S, ε)-pseudorandom then for all large enough n, there is no
martingale of size at most O(S(n)) that ε(n)-succeeds on Dn. Conversely, if for all large

enough n, there is no martingale of size at most O(S(n)) that ε(n)
n -succeeds on Dn, then

D is (S, ε)-pseudorandom.

Proof. Assume d : Σ∗ → [0,∞) is a martingale which ε(n)-succeeds on Dn for some n ∈ N,
i.e.,

Dn[d(w) ≥ 2] >
1

2
+ ε(n).

11

12

Now note that by the definition of martingale the expected value of d(w) over uniform
distribution is 1. Hence using Markov Inequality,

Un[d(w) ≥ 2] ≤ 1

2
.

Let Cd be a circuit of size O(S(n)) obtained by instantiating d at length n. Now let
C be a circuit which outputs 1 if Cd(w) ≥ 2. Then,

|Dn[C(w) = 1]− Un[C(w) = 1]| > ε(n).

Thus D is not (S, ε)-pseudorandom.

Now for the converse direction, assume that D is not (S, ε)-pseudorandom. Then there
exists an n0 ∈ N such that for any n ≥ n0 there exists an bit position i ∈ [0, n − 1) and
some circuit C of size at most O(S(n)) for which

Dn[C(w1, · · · , wi−1) = wi] >
1

2
+
ε(n)

n
.

Now build a martingale d : Σ∗ → [0,∞) using this circuit C as follows. Let d(λ) =
1. Now, ∀j ∈ [n], j 6= i, d(w[0 . . . j − 1]0) = d(w[0 . . . j − 1]1) = d(w[0 . . . j − 1]), and
d(w[0 . . . i− 1]b) = 2d(w[0 . . . i− 1]), d(w[0 . . . i− 1]b) = 0 if C(w[0 . . . i− 1]) = b.

Now it is clear that

Dn[d(w) ≥ 2] >
1

2
+
ε(n)

n

and for all large enough n, the size of the martingale d is at most O(S(n)).

The next definition gives a complete quantification of distributions in terms of dimen-
sion.

Definition 3.2 (Weak Dimension or Dimension). For an ensemble of distributions D =
{Dn}n∈N, where the distribution Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0,
the (S, ε)-weak dimension or simply dimension of D is defined as

dimS,ε(D) = inf{s ∈ [0,∞) | for infinitely many n, ∃s-gale d of size

at most O(S(n)) which ε(n)-succeeds on Dn}.

We refer the reader to Section 3.3 to find the justification behind the fact that the
above definition of dimension is well-defined. Informally, if the dimension of an ensemble
of distribution is s, we say that it is s-pseudorandom. It is clear from Lemma 3.1.1 that
for any (S, ε)-pseudorandom ensemble of distributions D, dimS,ε(D) ≥ 1. In Section 3.3
we will see that it is actually an equality. Reader may find examples of s-pseudorandom
distribution for arbitrary s ∈ [0, 1], in the proof of Theorem 3.3. We can also define
dimension of distributions in slightly stronger sense.

Definition 3.3 (Strong Dimension). For an ensemble of distributions D = {Dn}n∈N,
where the distribution Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0, the (S, ε)-

13

strong dimension of D is defined as

sdimS,ε(D) = inf{s ∈ [0,∞) | for all large enough n, ∃s-gale d of size

at most O(S(n)) which ε(n)-succeeds on Dn}.

It follows from the definition that weak dimension is smaller or equal to strong dimen-
sion.

Proposition 3.1.1. For an ensemble of distributions D = {Dn}n∈N, where the distribu-
tion Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0, dimS,ε(D) and sdimS,ε(D) are
well defined and

dimS,ε(D) ≤ sdimS,ε(D).

We will show separation between both of these notions of dimensions in Section 3.3.
Now just like the asymptotic definition of pseudorandomness with respect to all polynomial
size circuits and inverse polynomial bias, for any ensemble of distributions D = {Dn}n∈N,
we can give definitions of weak dimension or simply dimension (denoted by dim(D)) and
strong dimension (denoted by sdim(D)) by allowing S(n) to be nO(1) and ε(n) to be n−O(1)

in the Definition 3.2 and 3.3 respectively.

3.2 Unpredictability and Dimension

It is customary to measure the performance of a predictor utilizing a loss function [Hit04].
The loss function determines the penalty incurred by a predictor for erring in its prediction.
Let the next bit be b and the probability induced by the predictor on it is pb.

Commonly used loss functions include the absolute loss function, which penalizes the
amount 1 − pb; and the logarithmic loss function, which penalizes − log(pb). The latter,
which appears complicated at first glance, is intimately related to the concepts of Shannon
Entropy and dimension. In this section, adapting the result of Hitchcock [Hit03], we
establish that there is an equivalence between the notion of dimension that we have defined
in the previous section, and the logarithmic loss function defined on a predictor.

Definition 3.4. The logarithmic loss function on p ∈ [0, 1] is defined to be loss(p) =
− log p.

Using this, we define the running loss that a predictor incurs while it predicts successive
bits of a string in Σn, as the sum of the losses that the predictor makes on individual bits.

Definition 3.5. Let π : Σ∗ × Σ→ [0, 1] be a predictor.

1. The cumulative loss of π on w ∈ Σn, denoted as Loss(π,w), is defined by Loss(π,w)
=
∑n

i=1 loss(π(w[1 . . . i− 1], w[i])).

2. The loss rate of π on w ∈ Σn is LossRate(π,w) = Loss(π,w)
n .

3. The ε-loss rate of π over a distribution Dn on Σn is

LossRateε(π,Dn) = inf{t ∈ [0, 1] | Dn[LossRate(π,w) ≤ t] > 1

2
+ ε}.

14

Intuitively the unpredictability of a distribution is defined as the infimum of the loss
rate that any predictor has to incur on the distribution.

Definition 3.6 (Weak Unpredictability or Unpredictability). For an ensemble of distri-
butions D = {Dn}n∈N, where the distribution Dn is on Σn and for any S = S(n) > n,
ε = ε(n) > 0, the (S, ε)-weak unpredictability or simply unpredictability of D is

unpredS,ε(D) = inf{t ∈ [0, 1] | for infinitely many n, there exists a predictor π of size

at most O(S(n)) such that LossRateε(n)(π,Dn) ≤ t}.

With this, we can prove that dimension can equivalently be defined using unpredictabil-
ity. The proof is motivated from the proof of the equivalence between logarithmic loss
unpredictability and dimension [Hit03].

Theorem 3.1. Consider any s ∈ [0, 1]. For an ensemble of distributions D = {Dn}n∈N,
where the distribution Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0, if dimS,ε(D) ≤
s then unpredSO(1),ε(D) ≤ s. Conversely, unpredS,ε(D) ≤ s implies dimSO(1),ε(D) ≤ s.

Proof. Assume that s′ is any number such that s < s′ and then take a number s′′ such
that s < s′′ ≤ s′ and 2s

′′
is rational1. For some large enough n, suppose d is an s′′-gale of

size at most O(S(n)) that ε(n)-succeeds on Dn. Let πd : Σ∗ × Σ→ [0, 1] be defined by

πd(w, b) =

{
2−s

′′ d(wb)
d(w) if d(w) 6= 0

1
2 otherwise.

For any w ∈ Σn with d(w) ≥ 2, we have

Lossπd(w) = −
n∑
i=1

log πd(w[1 . . . i− 1], w[i])

= − log Πn
i=1πd(w[1 . . . i− 1], w[i])

= s′′n− log d(w)

≤ s′′n− 1 ≤ s′n.

So LossRate(πd, w) ≤ s′. Thus,

Dn[LossRate(πd, w) ≤ s′] ≥ Dn[d(w) ≥ 2] >
1

2
+ ε.

Note that implementation of πd involves division of two at most O(S(n)) bits rational
numbers2 and thus can be done using a circuit of size at most (S(n))O(1) [Vol99].

Conversely, assume that unpredS,ε(D) ≤ t ∈ [0, 1]. Assume that t′ is any number

satisfying t < t′ and then take any number t′′ such that t′ < t′′ and 2t
′′

is rational. For

1We consider 2s
′′

to be rational to ensure that the value of 2s
′′

can be computed using constant size
circuit. Note that we can always find such s′′ due to the fact that the function 2s for s > 0 is continuous,
monotonically increasing and within any two real numbers there exists a rational number.

2As we are considering martingales and predictors that can be implemented by circuits of size O(S(n))
so the output must be a rational number which can be represented by at most O(S(n)) bits.

15

some large enough n, let π be a predictor of size at most O(S(n)) such that

Dn[LossRate(π,w) ≤ t′] > 1

2
+ ε.

If dπ is the t′′-gale defined by

dπ(w) = 2t
′′|w|Π

|w|
i=1π(w[0 . . . i− 1], w[i])

then for any w ∈ Σn with LossRate(π,w) ≤ t′, we have the following,

log dπ(w) = t′′n+
n∑
i=1

log π(w[1 . . . i− 1], w[i])

= t′′n− Lossπ(w) ≥ 1.

The last inequality holds for all sufficiently large n. Hence, for infinitely many n,

Dn[dπ(w) ≥ 2] >
1

2
+ ε.

Moreover, computation of d involves multiplication of n rational numbers of at most
O(S(n)) bits each and thus can be implemented by a circuit of size (S(n))O(1) [Vol99].

Just like dimension, one can also define strong unpredictability in the following way.

Definition 3.7 (Strong Unpredictability). For an ensemble of distributions D = {Dn}n∈N,
where the distribution Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0, the (S, ε)-
strong unpredictability of D is

sunpredS,ε(D) = inf{t ∈ [0, 1] | for all large enough n, there exists a predictor π of size

at most O(S(n)) such that LossRateε(n)(π,Dn) ≤ t}.

Now by following the proof of Theorem 3.1 it is easy to see that a similar relation also
holds between strong dimension and strong unpredictability.

Theorem 3.2. Consider any s ∈ [0, 1]. For an ensemble of distributions D = {Dn}n∈N,
where the distribution Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0, if
sdimS,ε(D) ≤ s then sunpredSO(1),ε(D) ≤ s. Conversely, sunpredS,ε(D) ≤ s implies
sdimSO(1),ε(D) ≤ s.

Analogous to pseudorandomness and dimension, for any ensemble of distributions D =
{Dn}n∈N, one can define weak unpredictability or simply unpredictability (denoted by
unpred(D)) and strong unpredictability (denoted by sunpred(D)) by allowing S(n) to be
nO(1) and ε(n) to be n−O(1) in the Definition 3.6 and 3.7 respectively. Following is a
straight forward implication of Theorem 3.1 and Theorem 3.2.

Corollary 3.2.1. For any ensemble of distributions D = {Dn}n∈N, where the distribution
Dn is on Σn,

dim(D) = unpred(D) and sdim(D) = sunpred(D).

16

3.3 Properties of Dimension

We now establish a few basic properties of our notion of dimension. We begin by exhibiting
existence of an ensemble of distributions with dimension s, for any s ∈ [0, 1].

First, we observe that the dimension of any ensemble of distributions D is the infimum
of a non-empty subset of [0, 1 + ε] for any ε > 0 and hence the dimension of a distribution
is well-defined. The following lemma establishes the above claim.

Lemma 3.3.1. For an ensemble of distributions D = {Dn}n∈N, where the distribution
Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0, sdimS,ε(D) ≤ 1.

Proof. Let us first take any s > 1 such that 2s is rational and then consider the following
function d : Σ∗ → [0,∞). Let d(λ) = 1 and ∀i ∈ [n], d(w[0 . . . i−1]0) = d(w[0 . . . i−1]1) =
2s−1d(w[0 . . . i−1]). It is easy to see that d is an s-gale and for any w ∈ Σn, d(w) = 2(s−1)n.
Thus for all large enough n, d will ε(n)-succeed over Dn. Also note that for all large enough
n, this function d can be implemented using a circuit of size O(n).3 Hence the statement
of the lemma follows.

Above lemma along with Proposition 3.1.1 implies the following corollary.

Corollary 3.3.1. For an ensemble of distributions D = {Dn}n∈N, where the distribution
Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0, dimS,ε(D) ≤ 1.

Since it is clear that any ensemble of distributions has a dimension, the following
theorem establishes the fact that our definition yields a nontrivial quantification of the set
of ensembles of distributions.

Theorem 3.3. Let s ∈ [0, 1]. Then for for any S = S(n) > n, ε = ε(n) > 0, there is
an ensemble of distributions D = {Dn}n∈N, where the distribution Dn is on Σn, such that
(S, ε)-dimension (also strong dimension) of D is s.

Proof. Let us take the ensemble of uniform distributions, i.e., D := {Un}n∈N, where Un is
the uniform distribution on Σn. Then by Lemma 3.1.1 together with Lemma 3.3.1 shows
that for any S and ε, sdimS,ε(D) = 1. By using corollary 3.3.1 instead of Lemma 3.3.1,
one can also show that dimS,ε(D) = 1.

On the other hand we consider an ensemble D = {Dn}n∈N where support size of each
Dn is one, or in other words, Dn imposes all the probability on a single string, say 0n.
Now first take any s > 0 such that 2s is rational and then consider the following function
d : Σ∗ → [0,∞). Let d(λ) = 1 and ∀i ∈ [n], d(w[0 . . . i−1]0) = 2sd(w[0 . . . i−1]). It is easy
to see that d is an s-gale and d(0n) = 2sn. Thus for all large enough n, d will ε(n)-succeed
over Dn. Also note that for all large enough n this function d can be implemented using
a circuit of size O(n). Hence for any S and ε, (S, ε)-dimension as well as (S, ε)-strong
dimension of D is 0.

Otherwise, assume that s ∈ (0, 1). Let us take the ensemble of uniform distributions
D := {Un}n∈N. To each string x ∈ Σn, we append bns c − n many zeros, and denote the

resulting string as x′. Let D′n(x′) = Un(x). For strings y ∈ Σb
n
s
c which do not terminate

in a sequence of bns c − n many zeros, we set D′n(y) = 0.

3As for every string w of length n, the value of d(w) will be same, so one can hardcode the value 2(s−1)n

inside the non-uniform circuit implementing the function d.

17

For any large enough n, let π : Σ∗ × Σ → [0, 1] be the predictor for distribution Un
which testifies that the (SO(1), ε)-strong unpredictability of D is at most 1. Define the
new predictor π′ : Σ∗ × Σ→ [0, 1] by

π′(x, b) =

π(x, b) if|x| < n, b = 0, 1

1 if|x| ≥ n, b = 0

0 otherwise.

For every w ∈ Σb
n
s
c which is in the support of D′n such that LossRate(π,w[1 . . . n]) ≤

(1 + ε1), for any ε1 > 0, we have that

LossRate(π′, w) =
Loss(π,w[1 . . . n])

bns c
≤ (1 + ε1)n

bns c
≤ (s+ ε′), for some ε′ > 0

The last inequality holds for all small enough s/n and this testifies that the (SO(1), ε)-strong
unpredictability (hence the (SO(1), ε)-strong dimension) of the ensemble of distributions
D′ is at most s. Now by Proposition 3.1.1, it follows that dimSO(1),ε(D

′) is also at most s.

Now, assume that (S, ε)-dimension of D′ is less than s. For any s′ such that 0 < s′ < s,
for infinitely many n, there exists an s′-gale d of size at most O(S(n)) which ε(n)-succeeds
on D′n. We show that this would imply that Un is not uniform. Now consider a string
w ∈ Σb

n
s
c, which is in the support of D′n. For any k ∈ {n + 1, · · · , bns c}, d(w[1 . . . k]) ≤

2s
′
d(w[1 . . . k − 1]) and thus d(w) ≥ 2 will imply that d(w[1 . . . n]) ≥ 2−s

′(bn
s
c−n)+1. Now

consider the martingale d′ (needs not be computed by any circuit) corresponding to the
s′-gale d. According to [Lut03a], we have d′(w′) = 2(1−s′)|w′|d(w′), for any string w′ ∈ Σ∗.
Thus,

D′n[d′(w[1 . . . n]) ≥ 2] ≥ D′n[d(w[1 . . . n]) ≥ 2−s
′(bn

s
c−n)+1]

≥ D′n[d(w) ≥ 2]

>
1

2
+ ε(n).

Note that D′n[d′(w[1 . . . n]) ≥ 2] is same as Un[d′(x) ≥ 2], which contradicts the fact that
by Markov inequality, Un[d′(x) ≥ 2] ≤ 1

2 . This shows that dimS,ε(D
′) ≥ s and hence by

Proposition 3.1.1, sdimS,ε(D
′) is also greater than or equal to s.

Informally the following theorem shows that our notion of dimension is able to capture
the fact that if we mix a “good” distribution with a small amount of an extremely “bad”
distribution, then also “quality” of the first distribution would not change much.

Theorem 3.4. Let D = {Dn}n∈N, D1 = {D1
n}n∈N and D2 = {D2

n}n∈N be three ensembles
of distributions such that for some δ = δ(n) ∈ [0, 1], for every n ∈ N, Dn = (1−δ(n))D1

n+
δ(n)D2

n. If for any S = S(n) > n and ε = ε(n) > 0, dimS,ε(D
1) = s1 (sdimS,ε(D

1) = s1),
then dimS,(ε+δ)(D) ≥ s1 (sdimS,(ε+δ)(D) ≥ s1).4

Proof. For the contrary, let us assume that, dimS,(ε+δ)(D) < s1 and assume s = s1 −
ε1, for some ε1, 0 < ε1 < s1. So for infinitely many n, there exists an s-gale of size at most

4Note that bias term in the dimension of D1 depends on δ.

18

O(S(n)) that (ε(n) + δ(n))-succeeds over Dn. Thus,

Dn[d(w) ≥ 2] >
1

2
+ (ε(n) + δ(n)).

Let the strings w for which d(w) ≥ 2 holds be wi, 1 ≤ i ≤ k. So,

Dn(w1) + · · ·+Dn(wk) >
1

2
+ (ε(n) + δ(n)),

where Dn(wi) = (1− δ(n))D1
n(wi) + δ(n)D2

n(wi), for all 1 ≤ i ≤ k.
Now, as D2

n(w1) + · · ·+D2
n(wk) ≤ 1,

D1
n(w1) + · · ·+D1

n(wk) >
1

2
+ ε(n)

and thus dimS,ε(D
1) < s1 which is a contradiction.

The above argument is valid for all n for which there exists an s-gale of size at most
O(S(n)) that (ε(n) + δ(n))-succeeds over Dn and hence the same claim holds even if we
consider strong dimension instead of dimension.

If we follow the proof of Theorem 3.4 with martingale instead of s-gale, we get the
following weaker version of the above theorem, which we will require in the construction
of deterministic extractor for a special kind of sources in Section 5.1.1.

Lemma 3.3.2. Let D = {Dn}n∈N, D1 = {D1
n}n∈N and D2 = {D2

n}n∈N be three ensembles
of distributions such that for some δ = δ(n) ∈ [0, 1], for every n ∈ N, Dn = (1−δ(n))D1

n+
δ(n)D2

n. If for any S = S(n) > n and ε = ε(n) > 0, D1 is (S, ε)-pseudorandom, then D is
(S, ε+ δ)-pseudorandom.

In subsequent sections, we will see how to extract pseudorandom parts from a con-
vex combination of distributions. For that purpose we need the following lemma which
establishes the fact that convex combination of two pseudorandom distributions will be
pseudorandom as well.

Lemma 3.3.3. Consider two ensembles of distributions D1 = {D1
n}n∈N and D2 = {D2

n}n∈N.
Suppose for any S = S(n) > n and ε = ε(n) > 0, both D1 and D2 are (S, ε)-pseudorandom.
If for δ = δ(n) ∈ [0, 1] there exists an ensemble of distributions D = {Dn}n∈N which can
be expressed as for all n ∈ N, Dn = δ(n)D1

n + (1 − δ(n))D2
n, then D is also (S, ε′)-

pseudorandom, where ε′(n) = n · ε(n).5

Proof. The claim clearly holds when δ(n) is either 0 or 1, so assume that 0 < δ(n) < 1.
For the contrary, let us assume that D is not (S, ε′)-pseudorandom where ε′(n) = n · ε(n),
i.e., by Lemma 3.1.1, for infinitely many n ∈ N there exists an martingale d of size at most
O(S(n)) that ε(n)-succeeds on Dn, i.e.,

Dn[d(w) ≥ 2] >
1

2
+ ε(n).

As D2 is (S, ε)-pseudorandom, by Lemma 3.1.1, for all large enough n there exists no
martingale of size at most O(S(n)) that ε(n)-succeeds on D2

n. Thus it is possible to

5Note that this lemma will be useful only when we consider ε(n) < 1
2n

.

19

consider an n ∈ N such that there exists a martingale d of size at most O(S(n)) that
ε(n)-succeeds on Dn, but does not ε(n)-succeed on D2

n. Let the strings w ∈ Σn for which
d(w) ≥ 2 holds be wi, 1 ≤ i ≤ k. So,

Dn(w1) + · · ·+Dn(wk) >
1

2
+ ε(n),

where Dn(wi) = δ(n)D1
n(wi) + (1− δ(n))D2

n(wi), 1 ≤ i ≤ k. Now, since we have that

D2
n(w1) + · · ·+D2

n(wk) ≤
1

2
+ ε(n).

Thus the following holds

D1
n(w1) + · · ·+D1

n(wk) >
1

2
+ ε(n).

As for infinitely many n ∈ N the above happens, so D1 is not (S, ε)-pseudorandom, which
is a contradiction.

We can also slightly generalize the above lemma and get the following theorem.

Theorem 3.5. Let D = {Dn}n∈N, D1 = {D1
n}n∈N and D2 = {D2

n}n∈N be three ensembles
of distributions such that for some δ = δ(n) ∈ [0, 1], for every n ∈ N, Dn = δ(n)D1

n + (1−
δ(n))D2

n. Then for any S = S(n) > n and ε = ε(n) > 0,

dimS,ε(D) ≥ min{dimS,ε(D
1), dimS,ε(D

2)}.

Proof. The claim clearly holds when δ(n) is either 0 or 1, so assume that 0 < δ(n) < 1.
Let dimS,ε(D1) = s1, and dimS,ε(D2) = s2.

For the contrary, let us assume that, dimS,ε(D) < min{s1, s2}. Now consider s =
min{s1, s2} − ε1, for some ε1, 0 < ε1 < min{s1, s2}. Then for infinitely many n, there
exists an s-gale d of size at most O(S(n)) such that

Dn[d(w) ≥ 2] >
1

2
+ ε(n).

As dimS,ε(D
2) = s2, so for all large enough n, there exists no s-gale of size at most O(S(n))

that ε(n)-succeeds on D2
n. Thus we can consider an n such that there exists an s-gale d

of size at most O(S(n)) that ε(n)-succeeds on Dn, but does not ε(n)-succeed on D2
n. Let

the strings w for which d(w) ≥ 2 holds be wi, 1 ≤ i ≤ k. So,

Dn(w1) + · · ·+Dn(wk) >
1

2
+ ε(n)

where Dn(wi) = δ(n)D1
n(wi) + (1− δ(n))D2

n(wi), for 1 ≤ i ≤ k. Also, we have that

D2
n(w1) + · · ·+D2

n(wk) ≤
1

2
+ ε(n).

Thus

D1
n(w1) + · · ·+D1

n(wk) >
1

2
+ ε(n)

20

and this happens for infinitely many n ∈ N implying dimS,ε(D
1) < s1, which is a contra-

diction.

The following theorem shows that in order for a distribution to have dimension less
than 1, it is not sufficient to have a few positions where we can successfully predict - it is
necessary that these positions occur often.

Theorem 3.6. For any S = S(n) > n and ε = ε(n) > 0, there is an ensemble of
distributions D = {Dn}n∈N such that dimS,ε(D) = 1, but D is not (S, ε)-pseudorandom.

Proof. Let Dn on Σn be defined as follows.

Dn(x) =

{
1

2n−1 if x[n] = 0

0 otherwise.

Then D is clearly not (S, ε)-pseudorandom, for any value of S = S(n) > n and ε = ε(n) >
0. Consider a predictor π : Σ∗ × Σ → [0, 1] defined as follows. For strings w of length i,
i ∈ [1, n− 2], set π(w, b) = 0.5, b = 0, 1 and π(w, 0) = 1, π(w, 1) = 0 otherwise. Then

Dn[π(x[1 . . . n− 1], x[n]) = 1] = 1.

However, we will show that dimS,ε(D) = 1. Assume that dimS,ε(D) < 1 and thus
for some ε1, 0 < ε1 < 1, for infinitely many n ∈ N, there exists an s-gale d, where
s = 1 − ε1, of size at most O(S(n)) which ε(n)-succeeds on Dn. Now consider a string
w ∈ Σn, which is in the support of Dn. Now, d(w) ≤ 2sd(w[1 . . . n−1]) and thus d(w) ≥ 2
will imply that d(w[1 . . . n − 1]) ≥ 21−s. Next consider the martingale d′ (needs not be
computed by any circuit) corresponding to the s-gale d. According to [Lut03a], we have
d′(w′) = 2(1−s)|w′|d(w′), for any string w′ ∈ Σ∗. Thus,

Dn[d′(w[1 . . . n− 1]) ≥ 2] ≥ Dn[d(w[1 . . . n− 1]) ≥ 21−s]

≥ Dn[d(w) ≥ 2]

>
1

2
+ ε(n).

The first inequality holds for all large enough n. Note that Dn[d′(w[1 . . . n − 1]) ≥ 2] is
same as Un−1[d′(x) ≥ 2], where x ∈ Σn−1 is drawn according to the distribution Un−1.
However by Markov inequality, Un−1[d′(x) ≥ 2] ≤ 1

2 , which is a contradiction and this
completes the proof.

We now give separation between two notions of dimension by providing an example of
ensemble which has a very high strong dimension, but very low weak dimension.

Theorem 3.7. There exists an ensemble of distributions D = {Dn}n∈N such that for any
S = S(n) > n and ε = ε(n) > 0, dimS,ε(D) < sdimS,ε(D).

Proof. Here we actually show a much stronger claim by giving an example of an ensemble of
distributions D = {Dn}n∈N such that sdimS,ε(D) = 1 whereas dimS,ε(D) = 0. This is the
largest possible gap between weak and strong dimension of any ensemble of distributions.

21

Construct an ensemble of distributions D = {Dn}n∈N as follows: for all the odd value
of n, set Dn = Un where Un is the uniform distribution over Σn and for all even value of
n, set Dn to be such that it imposes all the probability on a single string 0n.

Due to Markov inequality, there exists no martingale that ε(n)-succeeds over distribu-
tion Dn for any odd value of n and by Lemma 3.3.1, strong dimension can be at most 1.
Hence, sdimS,ε(D) = 1. By the argument used in the proof of Theorem 3.3, we can say
that for any s > 0 such that 2s is rational, for all large enough even value of n, there exists
an s-gale of size at most O(S(n)) that ε(n)-succeeds over Dn and hence dimS,ε(D) = 0.

Chapter 4

Pseudoentropy and Dimension

In this chapter we study the relation between our notion of dimension and different variants
of computational or pseudo (min/Shannon) entropy. We first give a brief overview of
different notions of pseudoentropy and then establish relations between our notion of
dimension and two variants of pseudoentropy.

4.1 Different Notions of Pseudoentropy

Let us first recall that for a distribution D, the min-entropy of D is defined as H∞(D) =
minw{log(1/D[w])}. We start with the standard definition of computational min-entropy,
as given by [HILL99].

Definition 4.1 (HILL-type pseudo min-entropy). For any S = S(n) > n and ε = ε(n) >
0, an ensemble of distributions D = {Dn}n∈N has (S, ε)-HILL-type pseudo min-entropy
(or simply (S, ε)-pseudo min-entropy) at least k = k(n), denoted as HHILL,S,ε

∞ (D) ≥ k if
there exists an ensemble of distributions D′ = {D′n}n∈N such that for all large enough n,

1. H∞(D′n) ≥ k(n), and

2. D′n is (O(S(n)), ε(n))-indistinguishable from the distribution Dn.

Another type of pseudo min-entropy has been studied in the literature where the order
of the quantifier of the above definition is reversed and is known as metric-type pseudo
min-entropy.

Definition 4.2 (Metric-type pseudo min-entropy). For any S = S(n) > n and ε =
ε(n) > 0, an ensemble of distributions D = {Dn}n∈N has (S, ε)-Metric-type pseudo min-
entropy at least k = k(n), denoted as Hmetric,S,ε

∞ (D) ≥ k if for every family of non-uniform
circuits C = {Cn}n∈N, where each Cn is of size at most O(S(n)), there exists an ensemble
of distributions D′ = {D′n}n∈N such that for all large enough n,

1. H∞(D′n) ≥ k(n), and

2. |Dn[Cn(x) = 1]−D′n[Cn(x) = 1]| ≤ ε(n).

From the definition it is clear that for every ensemble of distributionsD, Hmetric,S,ε
∞ (D) ≥

HHILL,S,ε
∞ (D). Converse is also true by the following result from [BSW03] up to some small

losses in ε and size of the circuit.

23

24

Theorem 4.1 ([BSW03]). For any S = S(n) > n, ε = ε(n) > 0, δ = δ(n) > 0 and

k = k(n), for an ensemble of distributions D = {Dn}n∈N, if H
metric,S,(ε−δ)
∞ (D) ≥ k, then

HHILL,S′,ε
∞ (D) ≥ k, where S′(n) = Θ(δ(n)2S(n)

n).

Due to the above stated result it is sufficient to study the connections among HILL-
type pseudo min-entropy and our notion of dimension. Any relation between them directly
gives us relation between metric-type pseudo min-entropy and dimension.

Before proceeding further, we want to mention that another type of pseudo min-
entropy, namely Yao-type or compression type is present in the literature. However, in
this thesis we do not consider it. We refer the reader to [BSW03] for further exposition
on this topic.

So far we have talked about pseudo min-entropy. In similar fashion one can also define
pseudo Shannon entropy and a natural generalization of it is conditional pseudo Shannon
entropy [HLR07, HRV10, VZ12].

Definition 4.3 (Conditional pseudo Shannon entropy). A random variable Yn jointly
distributed with Xn is said to have (S, ε)-conditional pseudo Shannon entropy at least k,
for any S ∈ N and ε > 0 if there exists a random variable Zn jointly distributed with Xn

such that

1. H(Zn|Xn) ≥ k, and

2. (Xn, Yn) and (Xn, Zn) are (S, ε)-indistinguishable.

Now suppose Y = {Yn}n∈N is an ensemble of random variables jointly distributed with
another ensemble of distributions X = {Xn}n∈N. For any S = S(n) > n and ε = ε(n) > 0,
Y is said to have (S, ε)-conditional pseudo Shannon entropy at least k = k(n) given X if
there exists another ensemble of distributions Z jointly distributed with X such that for all
sufficiently large n, Yn has (O(S(n)), ε(n))-conditional pseudo Shannon entropy at least
k(n).

The following is another variant of pseudoentropy which was introduced by Haitner,
Reingold and Vadhan [HRV10] while giving efficient construction of pseudorandom gener-
ator from any one-way function.

Definition 4.4 (Next-bit pseudo Shannon entropy). An ensemble of random variables
X = {Xn}n∈N, where Xn = (X1

n, X
2
n, · · · , Xn

n) takes values in Σn, has (S, ε)-next-bit
pseudo Shannon entropy for any S = S(n) > n and ε = ε(n) > 0 at least k = k(n),
denoted as Hnext,S,ε(X) ≥ k if there exists an ensemble of random variables Y = {Yn}n∈N
where Yn = (Y 1

n , Y
2
n , · · · , Y n

n) takes values in Σn and for all sufficiently large n,

1.
∑

iH(Y i
n|X1

n, · · · , Xi−1
n) ≥ k(n), and

2. for all 1 ≤ i ≤ n, (X1
n, · · · , Xi−1

n , Xi
n) and (X1

n, · · · , Xi−1
n , Y i

n) are (O(S(n)), ε(n))-
indistinguishable.

4.2 High HILL-type pseudo min-entropy implies high di-
mension

In this section we do a comparative study between HILL-type pseudo min-entropy and
our notion of dimension.

25

Theorem 4.2. For every ensemble of distributions D = {Dn}n∈N and for any S = S(n) >
n, ε = ε(n) > 0, if HHILL,S,ε

∞ (D) ≥ k, where k = k(n) = sn for some s ∈ [0, 1], then
dimS,ε(D) ≥ s.

Proof. The theorem is a consequence of the following lemma.

Lemma 4.2.1. For every ensemble of distributions X = {Xn}n∈N, if for all large enough
n, H∞(Xn) ≥ k(n), where k(n) = sn for some s ∈ [0, 1], then dimS,ε(X) ≥ s for any
S = S(n) > n and ε = ε(n) > 0.

Now observe that if for all large enough n, distributionDn is (O(S(n)), ε(n))-indistinguishable
from another distribution D′n, then dimS,ε(D) = dimS,ε(D

′) as otherwise the s-gale of size
at most O(S(n)) which ε(n)-succeeds over exactly one of them, acts as a distinguishing
circuit. This fact along with Lemma 4.2.1 completes the proof.

It only remains to establish Lemma 4.2.1.

Proof of Lemma 4.2.1. For the sake of contradiction, let us assume that for infinitely many
n ∈ N, there exists an s-gale d of size at most O(S(n)) that ε(n)-succeeds over Xn, i.e.,

Xn[d(w) ≥ 2] >
1

2
+ ε(n).

Now consider the following set

S := {w ∈ Σn | d(w) ≥ 2}.

As H∞(Xn) ≥ k(n),
|S| > 2sn−1 + 2sn · ε(n).

By taking the corresponding martingale d′ (needs not be computed by any circuit) ac-
cording to the Proposition 2.3.1, we have that for any w ∈ S, d′(w) ≥ 2(1−s)n+1 and as a
consequence,

Un[d′(w) ≥ 2(1−s)n+1] > 2sn−n−1 + 2sn−n · ε(n)

which contradicts the fact that by Markov inequality, Un[d′(w) ≥ 2(1−s)n+1] ≤ 2sn−n−1.

One can extend the definition of HILL-type pseudo min-entropy and metric-type
pseudo min-entropy by allowing S(n) to be nO(1) and ε(n) to be n−O(1) and let us de-
note them by HHILL

∞ (D) and Hmetric
∞ (D) respectively. We can extend the result stated in

Theorem 4.2 as follows.

Corollary 4.2.1. For any ensemble of distributions D = {Dn}n∈N, where Dn is a distri-
bution over Σn,and s ∈ [0, 1], if HHILL

∞ (Dn) ≥ k, where k = k(n) = sn, then dim(D) ≥ s.

By Theorem 4.1 and the discussion before that, it immediately follows thatHHILL
∞ (D) =

Hmetric
∞ (D). Thus if we consider metric-type pseudo min-entropy instead of HILL-type

pseudo min-entropy, we get exactly same result as of Corollary 4.2.1.

The converse direction of the statement of Theorem 4.2 is also true if the distribution
under consideration is pseudorandom. If the converse is true then we can apply any
randomness extractor to get pseudorandom distribution from any distribution having high

26

dimension [BSW03]. However, we should always be careful about the circuit size with
respect to which we call the output distribution pseudorandom. Unfortunately, in general
the converse is not true.

Counterexample for the converse: Suppose one-way functions (see Definition 2.2.1
of [Gol01]) exist, then it is well-known that we can construct a pseudorandom generator
(see Definition 3.3.1 of [Gol01]) G = {Gl}l∈N where Gl : Σl → Σm such that m is any
polynomial in l, say m = l3. For the construction of pseudorandom generator with poly-
nomial stretch from any one-way function, interested reader may refer to [HILL99, VZ12].
Now consider the ensemble of distributions D := {(G(Ul), Ul)}l∈N. For large enough l,
using the argument similar to the proof of Theorem 3.3, it can easily be shown that the
distribution D has dimension 1 as the distribution on the first m bits are pseudorandom,
but pseudo min-entropy is not larger than l.

4.3 Equivalence between dimension and next-bit pseudo Shan-
non entropy

Later, Vadhan and Zheng [VZ12] provided an alternative characterization of conditional
pseudo Shannon entropy by showing an equivalence between it and KL-hardness (defined
below). We use this alternative characterization extensively for our purpose.

Definition 4.5 (KL-hardness). Suppose (Xn, Yn) is a Σn×Σ-valued random variable and
π be any predictor. Then π is said to be a δ-KL-predictor of Yn given Xn if KL(Xn, Yn‖Xn, Cπ) ≤
δ where Cπ(y|x) = π(x, y) for all x ∈ Σn and y ∈ Σ.

Moreover, for any S = S(n) > n and δ = δ(n) > 0, an ensemble Y = {Yn}n∈N, where
each Yn is a random variable taking value in Σ, is said to be (S, δ)-KL-hard given another
ensemble of random variables X = {Xn}n∈N, where each Xn takes value in Σn, if for all
large enough n there is no predictor π of size at most O(S(n)) that is a δ(n)-KL-predictor
of Yn given Xn.

The following theorem provides the equivalence among KL-hardness and conditional
pseudo Shannon entropy of a distribution.

Theorem 4.3 ([VZ12]). For an ensemble (X,Y) = {(Xn, Yn)}n∈N where each (Xn, Yn) is
a Σn × Σ-valued random variable and for any δ = δ(n) > 0, ε = ε(n) > 0,

1. If Y is (S, δ)-KL-hard given X, then for all large enough n, Yn has (S′(n), ε(n))-
conditional pseudo Shannon entropy at least H(Yn|Xn) + δ(n)− ε(n), where S′(n) =
S(n)Ω(1)/poly(n, 1/ε(n)).

2. Conversely, if for all large enough n, Yn has (S(n), ε(n))-conditional pseudo Shannon
entropy at least H(Yn|Xn) + δ(n), then for every σ = σ(n) > 0, Y is (S′, δ′)-KL-
hard given X, where S′(n) = min{S(n)Ω(1)/poly(n, log(1/σ(n))),Ω(σ(n)/ε(n))} and
δ′(n) = δ(n)− σ(n).

Now we are ready to state the main theorem of this subsection which conveys the
fact that the distributions with high dimensions also have high next-bit pseudo Shannon
entropy.

27

Theorem 4.4. For an ensemble of distributions D = {Dn}n∈N, where Dn is a dis-
tribution over Σn, for any S = S(n) > n and ε = ε(n) > 0 such that ε(n) → 0
as n → ∞, if dimS,ε(D) > 2s, then Hnext,S′,ε(D) > k, where k = k(n) = sn and
S′(n) = S(n)Ω(1)/poly(n, 1/ε(n)).1

Proof. For the sake of contradiction, let us assume that Hnext,S′,ε(D) ≤ k. Thus there
exists a subset S ⊆ N of cardinality equals to the cardinality of N such that for all n ∈ S,
Item 1 and Item 2 of Definition 4.4 do not hold simultaneously. On the other hand
dimS,ε(D) > 2s and thus by following the proof of Theorem 3.1, we can say that there
exists a c ∈ (0, 1) such that unpredSc,ε(D) = t > 2s. Now consider some large enough n
belongs to S and break Dn into 1-bit blocks, i.e., Dn = (D1

n, D
2
n, · · · , Dn

n).

For any predictor π : Σ∗ × Σ → [0, 1], let us define πi : Σi−1 × Σ → [0, 1] such that
π(x, a) = πi(x, a),∀x∈Σi−1,a∈Σ for 1 ≤ i ≤ n. Then,

n∑
i=1

KL((D1
n, · · · , Di−1

n), Di
n‖(D1

n, · · · , Di−1
n), πi)

=
n∑
i=1

[∑
wi∈Σi

− log(πi(wi[1 · · · i− 1], wi[i]))Pr[wi]−H(Di
n|D1

n · · ·Di−1
n)

]
=

n∑
i=1

[∑
wi∈Σi

loss(π(wi[1 · · · i− 1], wi[i]))Pr[wi]−H(Di
n|D1

n · · ·Di−1
n)

]
=
∑
w∈Σn

Loss(π,w)Dn(w)−H(Dn)

where the last equality follows from the chain rule of Shannon entropy (Proposition 2.5.1).

Now the definitions of next-bit pseudo Shannon entropy, conditional pseudo Shannon
entropy and KL-predictor along with Item 1 of Theorem 4.3 imply that for any n ∈ S,
there exists a predictor π of size at most O((S(n))c) such that∑

w∈Σn

Loss(π,w)Dn(w) ≤ (s+ ε(n))n.

Hence for any ε1 > 0,

Dn[LossRate(π,w) ≥ (t− ε1)] = Dn[Loss(π,w) ≥ (t− ε1)n]

≤
∑

w∈Σn Loss(π,w)Dn(w)

(t− ε1)n
by Markov inequality

≤ s+ ε(n)

t− ε1
.

Thus,

Dn[LossRate(π,w) ≤ (t− ε1)] ≥ 1− s+ ε(n)

t− ε1
.

As unpredSc,ε(D) = t, by the definition, it implies that for all but finitely many n belong

1Note that Ω(1) constant in the expression of S′(n) here is related to that appeared in Item 1 of
Theorem 4.3, but not exactly the same.

28

to the set S,

1− s+ ε(n)

t− ε1
≤ 1

2
+ ε(n).

For all large enough n, the above inequality gives us t ≤ 2s+ ε2, for any ε2 > ε1 because
ε(n)→ 0 as n→∞. Hence unpredSc,ε(D) ≤ 2s which is a contradiction and this completes
the proof.

The following weak converse can easily be proven.

Theorem 4.5. For an ensemble of distributions D = {Dn}n∈N, where Dn is a distribution
over Σn, for any S = S(n) > n and ε = ε(n) > 0, if Hnext,S,ε(D) > sn, then for any ε′ > 0
dimS′,ε(D) > s− 1

2 − ε
′, where S′(n) = min{(S(n))Ω(1)/poly(n), 1/ε(n)Ω(1)}.2

Proof. Suppose an ensemble of distributions D is given such that Hnext,S,ε(D) > sn. Now
take any large enough n and break Dn into 1-bit blocks, i.e., Dn = (D1

n, D
2
n, · · · , Dn

n). Let
us denote dimS′,ε(D) = t and thus by Theorem 3.1, there exists a constant c > 1 such
that unpredS′c,ε(D) ≤ t. This implies that for infinitely many n, there exists a predictor
π of size at most O(S′c(n)) such that for any ε1 > 0,

Dn[LossRate(π,w) ≤ (t+ ε1)] >
1

2
+ ε(n).

Thus we can write the following,∑
w∈Σn

Loss(π,w)Dn(w) ≤ (t+ ε1)n+ (
1

2
− ε(n))n.

We have already seen that for any predictor π : Σ∗ × Σ→ [0, 1],

n∑
i=1

KL((D1
n, · · · , Di−1

n), Di
n‖(D1

n, · · · , Di−1
n), πi) =

∑
w∈Σn

Loss(π,w)Dn(w)−H(Dn).

Now the definitions of next-bit pseudo Shannon entropy, conditional pseudo Shannon
entropy and KL-predictor along with Item 2 of Theorem 4.3 imply that for all large enough
n, for every σ(n) > 0, ∑

w∈Σn

Loss(π,w)Dn(w) > (s− σ(n))n.

Hence,

(s− σ(n))n < (t+ ε1)n+ (
1

2
− ε(n))n

⇒ s < t+
1

2
+ ε2

for any ε2 > ε1, for infinitely many large enough n and now setting S′(n) to be such that
S′(n)c equals to the value of S′(n) mentioned in Item 2 of Theorem 4.3 concludes the
proof.

2Note that Ω(1) constant of the term S(n)Ω(1) here is related to that appeared in Item 2 of Theorem 4.3,
but not exactly the same.

29

It is natural to allow S(n) to be nO(1) and ε(n) to be n−O(1) and then consider the defi-
nitions of conditional pseudo Shannon entropy, next-bit pseudo Shannon entropy (denoted
as Hnext(X)) and KL-hardness. For details we refer the reader to [VZ12]. Now we use the
equivalence between conditional pseudo Shannon entropy and KL-hardness from [VZ12]
to derive the following corollary of Theorem 4.4.

Corollary 4.3.1. For any ensemble of distributions D = {Dn}n∈N, where Dn is a dis-
tribution over Σn, and for any s ∈ [0, 1], if dim(Dn) > 2s, then Hnext(D) > k for
k = k(n) = sn.

In a similar fashion, we get the following as a corollary of Theorem 4.5.

Corollary 4.3.2. For any ε > 0, s ∈ [0, 1] and k = k(n) = sn, for any ensemble of
distributions D = {Dn}n∈N, where Dn is a distribution over Σn, if Hnext(D) > k, then
dim(D) > s− 1

2 − ε.

Chapter 5

Pseudorandom Extractor and
Derandomization

5.1 Pseudorandom Extractors and Lower Bound

We now introduce the notion of pseudorandom extractor similar to the notion of ran-
domness extractor. Intuitively, a randomness extractor is a function that outputs almost
random (statistically close to uniform) bits from weakly random sources, which need not
be close to the uniformly random source. Two distributions X and Y on a set Λ are said to
be ε− close (statistically close) if maxS⊆Λ{|Pr[X ∈ S]− Pr[Y ∈ S]|} ≤ ε or equivalently
1
2

∑
x∈Λ

|Pr[X = x]− Pr[Y = x]| ≤ ε.

Definition 5.1 (Deterministic Randomness Extractor). For any ε = ε(n) > 0, a family of
functions E = {En}n∈N where En : Σn → Σm(n) is said to be a deterministic ε-extractor for
a class of ensemble of distributions C if for every ensemble of distributions X = {Xn}n∈N
in C, where Xn is on Σn, for all large enough n, the distribution En(Xn) is ε(n)-close to
Um(n).

Likewise, a seeded ε-extractor is defined and the only difference is that now it takes
a d(n)-bit string chosen according to Ud(n), as an extra input. Before going further, we
mention that for ease of presentation, now onwards we will only talk about the definitions
and results derived so far related to pseudorandomness and dimension by considering
all polynomial size circuits and inverse polynomial bias. We now define the notion of a
pseudorandom extractor, the purpose of which is to extract out pseudorandom distribution
from a given distribution.

Definition 5.2 (Pseudorandom Extractor). A family of functions E = {En}n∈N where
En : Σn → Σm(n) is said to be a deterministic pseudorandom extractor for a class of
ensemble of distributions C if for every ensemble of distributions X = {Xn}n∈N in C,
where Xn is on Σn, E(X) is pseudorandom.

A family of functions E = {En}n∈N where En : Σn × Σd(n) → Σm(n) is said to be
a seeded pseudorandom extractor for a class of ensemble of distributions C if for every
ensemble of distributions X = {Xn}n∈N in C, E(X,Ud) is pseudorandom.

In this section, we will concentrate on the class of distributions having dimension at
least s. It is clear from the results stated in Section 4.2 that this class of distribution is

31

32

a strict superset of the class of distributions with HILL-type pseudo min-entropy at least
sn, for which any randomness extractor will act as a pseudorandom extractor [BSW03].
Thus it is natural to ask the following.

Question 5.1. For any s ∈ (0, 1], does there exist a deterministic/seeded pseudorandom
extractor for the class of ensemble of distributions having dimension at least s?

Just like the the case of randomness extraction, one can easily argue that deterministic
pseudorandom extraction is not possible1. The next natural question is what the lower
bound on the seed length will be. We answer this question in the following theorem.

Theorem 5.1. Suppose for any s ∈ (0, 1], E = {En}n∈N where En : Σn × Σd(n) →
Σm(n) be a seeded pseudorandom extractor for the class of ensemble of distributions having
dimension at least s and for some δ > 0, m(n) = (sn)δ. Then d(n) = Ω(log n).

Proof. For the sake of contradiction, let us assume that d(n) = o(log n). Now by doing a
walk according to the output distribution on an odd-length cycle, we achieve the following
claim.

Claim 5.1.1. There is a deterministic 1
4√m -extractor E′ = {E′m}m∈N where E′m : Σm →

Σ
logm

4 for all pseudorandom ensemble of distributions.

This claim follows from the stronger result stated in Theorem 5.3. Now construct
the following function Extn : Σn × Σd(n) → Σc logn for some constant c > 0 such that
Extn(x, y) = E′n(En(x, y)) for all x ∈ Σn, y ∈ Σd(n). The function Ext is a seeded 1

(sn)δ/4
-

extractor with d(n) = o(log n), but it is well known due to [RTS00](Theorem 1.9) that any
such randomness extractor must satisfy d(n) = Ω(logn) and hence we get a contradiction.

However, the question on constructing an explicit or polynomial time computable
seeded pseudorandom extractor with seed length O(log n) is still open and next, we for-
mally pose this question.

Question 5.2. For any s ∈ (0, 1], can one construct a seeded pseudorandom extractor
E = {En}n∈N where En : Σn×Σd(n) → Σm(n) in polynomial time, for the class of ensemble
of distributions having dimension at least s such that m(n) = (sn)δ for some δ > 0 and
d(n) = O(log n)?

Note that it is important to consider dimension in the statement of Question 5.1
and 5.2, because if we consider strong dimension instead of dimension then sometimes
it might be just impossible to extract out pseudorandom distributions. For example one
can consider the ensemble of distributions mentioned in the proof of Theorem 3.7 where
however strong dimension is 1, as for infinitely many n, support of Dn contains just a
single string, thus one cannot hope to get any pseudorandom distribution out of it. In the
next part of this section, we will see a special type of nonpseudorandom source and give
an explicit construction of deterministic pseudorandom extractor for that particular type
of source. Before proceeding further, we want to mention that it is also very interesting to
consider nonpseudorandom distributions samplable by poly-size circuits and we will discuss
on the existence of extractor for that particular source in Section 5.1.2.

1Suppose E = {En}n∈N with En : Σn → Σ is a deterministic pseudorandom extractor, then for all n,
there exists x ∈ Σ such that |E−1

n (x)| ≥ 2n−1. Thus E is not a pseudorandom extractor for a source D
that is a uniform distribution on E−1

n (x) for all n and by Lemma 4.2.1, dim(D) ≥ s for any s < 1.

33

5.1.1 Deterministic Pseudorandom Extractor for Nonpseudorandom Bit-
fixing Sources

In Section 3.3 while proving Theorem 3.3, we have introduced a special type of nonpseu-
dorandom distribution which looks similar to the (n, k)-bit-fixing source defined as a dis-
tribution X over Σn such that there exists a subset I = {i1, . . . , ik} ⊆ {1, . . . , n} where
all the bits at the indices of I are independent and uniformly chosen and rest of the bits
are completely fixed. This distribution was introduced by Chor et al.[CGH+85]. Now we
define an analogous notion for the class of nonpseudorandom distributions, which we term
nonpseudorandom bit-fixing sources.

Definition 5.3 (Nonpseudorandom Bit-fixing Source). Let s ∈ (0, 1). An ensemble of
distributions D = {Dn}n∈N, where Dn is an distribution over Σn, with dimension s
is an (n, s)-nonpseudorandom bit-fixing source if for all n there exists a subset I =
{i1, . . . , idsne} ⊆ {1, . . . , n} such that all the bits at the indices of I come from a pseu-
dorandom distribution and rest of the bits are fixed.

We devote the rest of the section to achieve an affirmative answer to the question of
constructing deterministic pseudorandom extractor for the nonpseudorandom bit-fixing
sources. For this purpose, we show that a careful analysis of the technique used in the
construction of the deterministic randomness extractor for bit-fixing random sources by
Gabizon, Raz and Shaltiel [GRS04] will lead us to the desired deterministic pseudorandom
extractor.

Theorem 5.2. For any s ∈ (0, 1], there is an explicit deterministic pseudorandom extrac-
tor E = {En : Σn → Σm(n)}n∈N, for all (n, s)-nonpseudorandom bit-fixing sources having
polynomial-size support where m(n) = (sn)Ω(1).

We first extract O(log sn) amount of almost random bits and then use the same as
seed in the seeded extractor. To use the seeded extractor, we modify the source such that
it becomes independent of the random bits extracted. Before going into the exact details
of the proof, we first discuss the ingredients required in the proof of the theorem.

Pseudorandom walk and extracting a few random bits

Kamp and Zuckerman [KZ03] use a technique of random walk on odd-length cycles to
extract almost random bits from a bit-fixing source. We adapt this to extract O(log sn)
almost random bits from a (n, s)-nonpseudorandom bit-fixing source.

Theorem 5.3. Let s ∈ [0, 1], k = dsne. Then there is a deterministic 1
4√
k

-extractor

E = {En : Σn → Σ
log k

4 }n∈N for all (n, s)-nonpseudorandom bit-fixing sources.

We prove the above theorem using the property of pseudorandom walk together with
the fact that the second largest eigenvalue of a l length odd cycle is cos(π/l). Note that
a corollary of the above theorem is the claim used in the proof of Theorem 5.1. Before
proving the above theorem, we state two lemmas required for the proof. The first is a very
special case of a lemma given in [KZ03] which was restated in [GRS04].

Lemma 5.1.1 ([GRS04]). Let n ∈ N, k ≤ n and s ∈ [0, 1]. Let G be an odd length
cycle having M vertices and having second largest eigenvalue λ. If we take a walk on G

34

according to the bits from a (n, k)-bit-fixing source, starting from any fixed vertex, then at
the end of the n step of the walk, the distribution P on the vertices will be 1

2λ
k
√
M -close

to UM .

Now we prove a similar result for (n, s)-nonpseudorandom bit-fixing source using the
property of pseudorandom walk. The idea of pseudorandom walk was also used previously
in the domain of space bounded computation by Reingold et al. [RTV06].

Lemma 5.1.2. Let s ∈ [0, 1] and k = dsne. Suppose G is an odd length cycle having
M vertices and having second largest eigenvalue λ. If we take a walk on G according to
the bits from a (n, s)-nonpseudorandom bit-fixing source starting from any fixed vertex,
then for all large enough n, at the end of the n step of the walk, the distribution Q on
the vertices will be 1

2(λk +
√
Mε(n))

√
M -close to UM , where M is polynomial in n and

ε(n) < 1/nc for any constant c > 0.

Proof. Let π be the stationary distribution on the vertices and since we consider an odd
length cycle (a 2-regular graph), the stationary distribution is the uniform distribution on
M vertices. Suppose we take a n step walk on the graph G starting from any vertex v
according to the bits from a (n, k)-bit-fixing source, where k = dsne and the probability
vector on the vertices at the end of the walk is P =

(
p1 p2 . . . pM

)
. Now we take a

n step walk on the graph G starting from the same vertex v according to the bits from a
(n, s)-nonpseudorandom bit-fixing source and the probability vector on the vertices at the
end of the walk is Q =

(
q1 q2 . . . qM

)
, where ∀1≤i≤M , qi ≤ pi + ε(n) and ε(n) < 1/nc

for any constant c > 0. This bound on qi can be justified as follows.

Note that the only difference between (n, s)-nonpseudorandom bit-fixing source and
(n, k)-bit-fixing source is that on the set I, in (n, k)-bit-fixing source, we have Uk instead
of pseudorandom distribution (say D) on Σk. Also observe that actually P and Q are the
distributions on vertices at the end of a k step walk, where the walk was started from the
vertex v and done according to the bits coming from Uk and D respectively, because a
step according to a fixed bit will not change the output distribution and in a (n, k)-bit-
fixing source (also in a (n, s)-nonpseudorandom bit-fixing source), all the n − k bits are
fixed. For a step according to a fixed bit gives rise to a transition matrix that is actually
a permutation matrix and thus it leaves the distance from uniform unchanged. Hence, if
the bound on qi, ∀1≤i≤M is not true then we can use this k step walk on G as a polynomial
(polynomial in k) time algorithm to distinguish between Uk and D. Thus,

||q − π||2 =

M∑
i=1

(qi −
1

M
)2 ≤

M∑
i=1

(pi + ε(n)− 1

M
)2

= ||p− π||2 +Mε(n)2

≤ λ2k +Mε(n)2

≤ (λk +
√
Mε(n))2.

The above lemma together with the fact that the second largest eigenvalue of a l length
odd cycle is cos(π/l), implies Theorem 5.3.

35

Proof of Theorem 5.3. Let us take an odd cycle G with M = 4
√
k vertices. The second

largest eigenvalue of G is cos(π
4√
k
). Now take a walk starting from a fixed vertex of G

according to the bits from (n, s)-nonpseudorandom bit-fixing source and finally output
the vertex number of the graph G. Thus we get log k

4 bits. From Lemma 5.1.2, we reach

distance 1
2((cos(π

4√
k
))k + 8

√
kε(n)) 8

√
k from uniform.

By the Taylor expansion of the cosine function, for 0 < x < 1, cos(x) < 1− x2

2 + x4

24 .

Therefore,
(

cos
(

π
4√
k

))k
< (1 − π2

4
√
k
)k < (exp−

π2

4)
√
k < 4−

√
k. Hence, 1

2((cos(π
4√
k
))k +

8
√
kε(n)) 8

√
k < 1

4√
k
. Thus we get distribution of log k

4 bit strings which is 1
4√
k
-close to

uniform in statistical distance.

Sampling and Partitioning with a short seed

Here we restate some of the results on sampling and partitioning used in construction
of deterministic extractor for bit-fixing sources from [GRS04]. Let S ⊆ [n] be some
subset of size k. Now we consider a process of generating a subset T ⊆ [n] such that
kmin ≤ |S ∩ T | ≤ kmax and this process is known as Sampling .

Definition 5.4. A function Samp : Σt → P ([n]) is called a (n, k, kmin, kmax, δ)-sampler
if for any subset S ⊆ [n], where |S| = k, Prw∈RUt [kmin ≤ |Samp(w) ∩ S| ≤ kmax] ≥ 1− δ

Now consider a similar process known as Partitioning, the task of which is to partition
[n] into m distinct subsets T1, T2, · · · , Tm such that for every 1 ≤ i ≤ m, kmin ≤ |S ∩Ti| ≤
kmax.
According to [GRS04], the above two processes can be performed using only a few random
bits.

Lemma 5.1.3 ([GRS04]). For any constant 0 < α < 1, there exist constants c > 0, 0 <
b < 1 and 1

2 < e < 1 such that for any n ≥ 16 and k ≥ (log n)c, there is an explicit

construction of a function Samp : Σt → P ([n]) which is a (n, k, k
e

2 , 3k
e, O(k−b))-sampler,

where t = α log k.

Lemma 5.1.4 ([GRS04]). For any constant 0 < α < 1, there exist constants c > 0, 0 <
b < 1 and 1

2 < e < 1 such that for any n ≥ 16 and k ≥ (log n)c, there is an explicit
construction that uses only α log k random bits and partition [n] into m = O(kb) many
subsets T1, T2, · · · , Tm such that for any subset S ⊆ [n], where |S| = k, Pr[∀1 ≤ i ≤
m, k

e

2 ≤ |Ti ∩ S| ≤ 3ke] ≥ 1−O(k−b).

Generating an independent seed

In this subsection, we see the way of obtaining a short seed from a nonpseudorandom bit-
fixing source so that we can use them in a seeded pseudorandom extractor to extract out
almost all the pseudorandom part from the source. The main problem of using this short
seed in a seeded pseudorandom extractor is that the already obtained seed is dependent
on the main distribution. Now we describe that this problem can be removed in the case
of nonpseudorandom bit-fixing sources. Even though the result is analogous to [GRS04],
the proofs differ in essential details.

36

Definition 5.5 (Seed Obtainer). A family of functions F = {Fn : Σn → Σn × Σd(n)}n∈N
is said to be a (s, s′, ρ)-seed obtainer (s′ ≤ s) if for every (n, s)-nonpseudorandom bit-
fixing source X = {Xn}n∈N, the distribution R = {Rn = Fn(Xn)}n∈N can be written as
R = ηQ +

∑
a αaRa

2 for η = η(n) > 0, αa = αa(n) > 0 and η(n) +
∑

a αa(n) = 1 such
that η(n) ≤ ρ(n) and for every a, there exists a (n, s′)-nonpseudorandom bit-fixing source
Za such that for all large enough n, {Ra}n is ρ(n)-close to {Za}n ⊗ Ud(n).

In the above definition, by {Za}n ⊗ Ud(n), we mean the product of two distributions
{Za}n and Ud(n). From the above definition it is clear that given a seed obtainer and
a seeded pseudorandom extractor for nonpseudorandom bit-fixing sources, we can easily
construct a deterministic pseudorandom extractor. The following theorem provides us
the details of such construction, where the correctness follows from the properties of our
proposed notion of dimension described in Section 3.3.

Theorem 5.4. Suppose F = {Fn : Σn → Σn×Σd(n)}n∈N is a (s, s′, ρ)-seed obtainer, where
ρ(n) ≤ 1

(sn)c for some constant c > 0 and E′ = {E′n : Σn ×Σd(n) → Σm(n)}n∈N is a seeded

pseudorandom extractor for (n, s′)-nonpseudorandom bit-fixing sources, where m(n) =
(sn)Ω(1). Then the function E = {En : Σn → Σm(n)}n∈N defined as En(x) = E′n(Fn(x))
for all x ∈ Σn, is a deterministic pseudorandom extractor for (n, s)-nonpseudorandom
bit-fixing sources.

Proof. By the definition of the seed obtainer, we can write E(X) = ηE′(Q)+
∑

a αaE
′(Ra) =

ηE′(Q) + (1− η)Y , for some ensemble of distributions Y . Now by Lemma 3.3.2, for all a,
E′(Ra) is pseudorandom and as a consequence, by Lemma 3.3.3, Y is pseudorandom as
well. Then using Lemma 3.3.2, we can argue that E(X) is also pseudorandom as η ≤ 1

(sn)c ,
for some constant c > 0.

Now we give an explicit construction of (s, s′, ρ)-seed obtainer, which is crucial in
the later part of this paper. To understand the notion of sampler used in the following
theorem, the readers may refer to the last subsection.

Theorem 5.5. Let Samp = {Sampn : Σt(n) → P ([n])}n∈N where Sampn be a (n, dsne, ds1ne,
ds2ne, δ(n))-sampler and E = {En : Σn → Σm(n)}n∈N with m(n) > t(n) be a deter-
ministic ε-extractor for (n, s1)-nonpseudorandom bit-fixing sources, where ε(n) < 1/nc

for any constant c > 0. Then there is an explicit (s, s′, ρ)-seed obtainer F = {Fn :
Σn → Σn × Σd(n)}n∈N, where d(n) = m(n) − t(n), s′ = s − s2, and ρ(n) = max{ε(n) +
δ(n),

√
ε(n)2t(n)+1}.

The construction of the seed obtainer is the same as that mentioned in [GRS04],
however the proof requires a slightly different argument.

Proof. The construction of F mentioned in the theorem is as follows:

1. Given x ∈ Σn, compute En(x). Denote the first t(n) bits of En(x) by E1
n(x) and the

last (m(n)− t(n)) bits by E2
n(x);

2. Compute Sampn(E1
n(X)) and denote it as T ;

2It means for all n, Rn = η(n)Qn +
∑
a αa(n){Ra}n

37

3. Let x′ = x[n]\T and y = E2
n(x). If |x′| < n, pad it with zeros to get n-bit long string.

Now output x′, y.

Note that the above construction is the same as the construction of seed obtainer given
in [GRS04]. However, the proof is not the same and more specifically the proof of the next
claim differs from that of the similar claim made in [GRS04]. Here, in the proof we use
the properties of pseudorandomness and the fact that the distribution under consideration
has polynomial-size support.

Let X be a (n, s)-nonpseudorandom bit-fixing source and now consider any large
enough n and let I be the set of indices at which the bits are not fixed. For a string
a ∈ Σt(n), Ta denotes Sampn(a) and T ′a denotes [n] \ Sampn(a). Given a string x ∈ Σn,
xa denotes xTa and x′a denotes n-bit string obtained by padding xT ′a with zeros. Let

X ′ = X ′E1
n(Xn) and Y = E2

n(Xn). We say that a string a ∈ Σt(n) correctly splits Xn if

ds1ne ≤ |I ∩ Ta| ≤ ds2ne.

Claim 5.1.2. For every a ∈ Σt(n) which correctly splits Xn, (X ′a, En(Xn)) is ε(n)-close
to (X ′a ⊗ Um(n)), where ε(n) < 1/nc for any constant c > 0.

Proof. Let |Sampn(a)| = l. Given a string σ ∈ Σl and a string σ′ ∈ Σn−l, we define [σ;σ′]
as follows:
Suppose l indices of Ta are i1 < · · · < il and the (n− l) indices of T ′a are i′1 < · · · < i′n−l.
The string [σ;σ′] ∈ Σn is defined as:

[σ;σ′]i =

{
σj i ∈ Ta and ij = i

σ′j i ∈ T ′a and i′j = i

In this notation, we denote Xn = [Xa;X
′
a]. Now consider the distribution (X ′a, En(Xn)) =

(X ′a, En([Xa;X
′
a])). For every b ∈ Σn−l, we consider the event {X ′a = b}. As a correctly

splits Xn, there are at least ds1ne “good” indices in Ta. Now fix some b ∈ Σn−l such that
Xn[X ′a = b] > 0.

Now we claim that for all subsets B ⊆ Σn−l where ∀b∈B, Xn[X ′a = b] > 0, there exists
a b′ ∈ B such that the distribution ([Xa;X

′
a]|X ′a = b′) forms an (n, s1)-nonpseudorandom

bit-fixing source if for some constant c > 0, ε′(n) ≥ 1/nc and∑
b∈B

Xn[X ′a = b] > ε′(n).

For the sake of contradiction, let us assume that the above claim is not true. It means
that there exists a subset J ⊆ Σn−l, where

i. ∀b∈J , Xn[X ′a = b] > 0,

ii.
∑
b∈J

Xn[X ′a = b] > ε′(n) where ε′(n) ≥ 1/nc, for some constant c > 0, and also

iii. for all b ∈ J , the distributions ([Xa;X
′
a]|X ′a = b) are not forming (n, s1)-nonpseudorandom

bit-fixing sources.

Now let us consider only the “good” positions which are dsne many in X and at least
ds1ne many in ([Xa;X

′
a]|X ′a = b). So the above assumption implies that the ensemble of

38

distributions formed by considering those ds1ne bits (this part of the string b is denoted as
bds1ne) in ([Xa;X

′
a]|X ′a = b) is not pseudorandom, i.e., it has its corresponding distinguish-

ing circuits Cb. If this is the case, then the circuit C (by hard-wiring the good random
bits) corresponding to the following algorithm A, will act as a distinguishing circuit for the
pseudorandom distribution P on dsne many bits; which is a contradiction. The algorithm
A is as follows: on input y ∈ {0, 1}ds1ne, if yds1ne = bds1ne for any b ∈ J , then return
Cb(yds1ne); otherwise return 0 or 1 uniformly. And thus clearly,

|P [A[y] = 1]− Uds1ne[A[y] = 1]| > 1/nc.

Circuit C is nothing but the combination of all the circuits Cb, for b ∈ J , each of
which is of polynomial size. Now as ∀b∈J , Xn[X ′a = b] > 0 and by our assumption
that the distribution under consideration has polynomial-size support (see statement of
Theorem 5.2), the support of the subset J is at most polynomial. Hence the circuit C
is of polynomial size. Note that this is the only place where we use the fact that the
distribution under consideration is of polynomial-size support.

So, we can write,

1

2

∑
b,c

|Pr[(X ′a, E(X)) = (b, c)]− Pr(X′a⊗Um(n))[b, c]|

=
1

2

∑
b,c

|Pr[X ′a = b]Pr[En(Xn) = c|X ′a = b]− Pr[X ′a = b]PrUm(n)
[c]| ≤ ε(n)

where ε(n) < 1/nc for any constant c > 0. The first inequality follows from the fact
that we can split the sum in two parts one in which ([Xa;X

′
a]|X ′a = b)’s are not (n, s1)-

nonpseudorandom bit-fixing sources and another in which ([Xa;X
′
a]|X ′a = b)’s are at least

(n, s1)-nonpseudorandom bit-fixing sources.

Next we mention a claim from [GRS04] that makes comment on independence of the
pair (X ′a, E

2
n(Xn)) conditioned on the event E1

n(Xn) = a).

Claim 5.1.3 ([GRS04]). For every fixed a ∈ Σt(n) that correctly splits Xn, the distribution
((X ′a, E

2
n(X)) | E1

n(X) = a) is ε(n)2t+1-close to (X ′a ⊗ Um(n)−t(n)).

Note that as a correctly splits Xn, so X ′a forms a (n, s−s2)-nonpseudorandom bit-fixing
source.

The rest of the proof follows directly from the proof of correctness of the construction
of seed obtainer given in [GRS04] with the following parameters k = dsne, kmin = ds1ne,
kmax = ds2ne.

A seeded pseudorandom extractor

In this subsection, we discuss about how we can extract (sn)Ω(1) many pseudorandom
bits using O(log sn) random bits. In the next subsection, we will use this seeded pseudo-
random extractor and the techniques discussed in the previous subsections, to construct
deterministic extractor. The construction of seeded pseudorandom generator given in the
proof of the following theorem is same as that of the seeded randomness extractor given
in [GRS04]. However, the analysis is quite different and uses some of the properties of
dimension.

39

Theorem 5.6. For an s ∈ (0, 1) and any constant 0 < α < 1, there exist constants
c > 0, 0 < b < 1 such that there is an explicit function E = {En : Σn × Σd(n) →
Σm(n)}n∈N which acts as a seeded pseudorandom extractor for (n, s)-nonpseudorandom
bit-fixing sources with d(n) = α log sn and m(n) = Ω((sn)b).

Proof. Let X be a (n, s)-nonpseudorandom bit-fixing source and for some large enough n,
x be a string sampled by Xn. The description of the extractor En(x, y) is as follows:

1. According to Lemma 5.1.4 provided in Section 5.1.1, using y as seed, we obtain a
partition of [n] into m(n) = Ω((sn)b) many sets T1, T2, · · · , Tm(n) with the parameter
α;

2. For 1 ≤ i ≤ m(n), compute z[i] = ⊕j∈Tix[j];

3. Output z = z[1]z[2] · · · z[m(n)].

Let I ⊆ [n] be the set of indices at which the bits are not fixed and let Zn be the distribution
of the output strings. We need to show that Z = {Zn}n∈N is pseudorandom.

Let An be the event {∀i, |Ti ∩ I| 6= 0} and Acn = {∃i, |Ti ∩ I| = 0} be the complement
event. According to Lemma 5.1.4, Pr[An] ≥ 1−O((sn)−b). Now we can write the output
distribution as

Zn = Pr[An](Zn|An) + Pr[Acn](Zn|Acn)

and hence due to Lemma 3.3.2, Z is pseudorandom.

Deterministic pseudorandom extractor

Now it only remains to combine all the components we discussed so far to build the
final deterministic pseudorandom extractor mentioned in Theorem 5.2. We first extract
O(log sn) amount of almost random bits by Theorem 5.3 and then use the same as seed in
the seeded extractor described in Theorem 5.6. To use the seeded extractor it is required
to modify the source such that it becomes independent of the random bits extracted using
Theorem 5.3. For that purpose, we use the technique developed in Section 5.1.1 and this
concludes the proof of Theorem 5.2.

Proof of Theorem 5.2. Due to Lemma 5.1.3, we have a (n, sn, (sn)e

2 , 3(sn)e, (sn)−Ω(1))-

sampler Sampn : Σt(n) → P ([n]), where t(n) = log sn
32 and e > 1

2 . From Theorem 5.3, we

have a deterministic 1
4√
s′n

-extractor E∗ = {E∗n : Σn → Σm′}n∈N for (n, s′)-nonpseudorandom

bit-fixing sources where for all large enough n, s′n ≥ (sn)e

2 and m′(n) = log s′n
4 . Now we use

Theorem 5.5 to get (s, s′′, ρ)-seed obtainer F = {Fn : Σn → Σn×Σm′(n)−t(n)}n∈N where for
all large enough n, s′′n ≥ 3(sn)e and ρ(n) = 1

(sn)p , for some constant p. According to The-

orem 5.6, we have a seeded pseudorandom extractor E′ = {E′n : Σn × Σd(n) → Σm(n)}n∈N
with d(n) = log sn

32 and m(n) = (sn − s′′n)Ω(1) for (n, s − s′′)-nonpseudorandom bit-fixing

sources. Since m′(n) = log s′n
4 ≥ log sn

16 = t(n) + d(n), we use F and E′ in Theorem 5.4

to construct a deterministic pseudorandom extractor E = {En : Σn → Σm(n)}n∈N. For a
large enough n, m(n) = (sn− s′′n)Ω(1) = (sn)Ω(1) and this completes the proof.

40

Alternative Construction of Deterministic Pseudorandom Extractor for Nonpseu-
dorandom Bit-fixing Sources

Here we provide a simple alternative proof of constructibility of deterministic pseudoran-
dom extractor for nonpseudorandom bit-fixing sources. Let us first state the theorem.

Theorem 5.7. For any s ∈ (0, 1], there is an explicit deterministic pseudorandom extrac-
tor E = {En : Σn → Σm(n)}n∈N for all (n, s)-nonpseudorandom bit-fixing sources, where
m(n) = (sn)Ω(1).

Note that the statement of the above theorem is stronger than that of Theorem 5.2
because now we do not have any restriction on the support size of the distribution whereas
in Theorem 5.2 we need the distribution to have polynomial-size support. Before going
into the proof we reformulate the main result of [GRS04].

Theorem 5.8 ([GRS04]). For any s ∈ (0, 1] and for every constant 0 < δ < 1/2 there
exists an n′ such that for any n ≥ n′, there is an explicit deterministic 1

2nδ
-extractor

E = {En : Σn → Σm(n)}n∈N for all ensemble (n, dsne)-bit-fixing sources, where m(n) =
(sn)Ω(1).

We argue that the extractor E appeared in the statement of the above theorem also
act as a pseudorandom extractor for (n, s)-nonpseudorandom bit-fixing sources.

Proof of Theorem 5.7. Suppose E mentioned in Theorem 5.8 is not a pseudorandom ex-
tractor for (n, s)-nonpseudorandom bit-fixing sources. Thus there exists a polynomial-size
(polynomial in m(n)) circuit C such that for a (n, s)-nonpseudorandom bit-fixing source
X = {Xn}n∈N and for some constant c > 0,

|En(Xn)[C(x) = 1]− Um(n)[C(x) = 1]| > 1

nc
.

Now suppose underlying pseudorandom distribution in X = {Xn}n∈N is Y = {Yn}n∈N.
Then using the extractor function En and the circuit C we can build another polynomial-
size (polynomial in n and thus polynomial in sn as well because s is a constant) circuit
C ′ by specifying the index set I where the pseudorandom distribution Yn lies such that
the following holds,

|Yn[C ′(x) = 1]− Udsne[C ′(x) = 1]| > 1

nc

which contradicts the fact that Y = {Yn}n∈N is pseudorandom. This completes the proof.

5.1.2 Discussion on Pseudorandom Extractor for Nonpseudorandom Sam-
plable Distributions

Another interesting special kind of source is samplable distributions studied by Trevisan
and Vadhan [TV00]. In a natural way, one can extend the definition of samplable dis-
tribution to nonpseudorandom distribution as follows: for any s ∈ (0, 1], an ensemble of
distributions D = {Dn}n∈N is said to be s-nonpseudorandom samplable by circuit of size
S = S(n) > n if for all large enough n, there exists a circuit C of size at most S(n) that
samples from Dn and dim(D) = s. Observe that the negative results for deterministic

41

randomness extractor in case of samplable distributions will also applicable for determin-
istic pseudorandom extractor in case of s-nonpseudorandom samplable distribution. By
Lemma 4.2.1, if H∞(Dn) ≥ n− 1 for all large enough n, then dim(D) ≥ s for any s < 1.
Now by applying the argument in [TV00], we get the following.

Theorem 5.9. Suppose E = {En : Σn → Σ}n∈N is a family of functions computable in
time T (n) such that E is a deterministic pseudorandom extractor for ensemble of distribu-
tions that are s-nonpseudorandom samplable by circuit of size S(n) for any s < 1 . Then
there is a language in DTIME(T (n)) of circuit complexity at least Ω(S(n)).

The existence of deterministic pseudorandom extractors implies separations between
deterministic complexity classes and non-uniform circuit classes that are not yet known.
So one might have to consider some complexity theoretic assumptions like in [TV00] to
construct deterministic pseudorandom extractor. However, we do not think construction
with such strong assumption like in [TV00] will be interesting in this case as it is known
that certain hardness assumption already leads to a construction of optimal pseudorandom
generator (See Section 5.2). Nevertheless, it is natural to ask the question of constructing
explicit extractor using O(log n) amount of extra randomness. We do not know any such
result so far, but in the next section we will see that if some distribution is samplable using
very few (O(log n)) random bits, then it is possible to extract out all the pseudorandom
bits using extra O(log n) random bits.

5.2 Approaching Towards P = BPP

We now show that if there is an exponential time computable algorithm G = {Gn}n∈N
with Gn : ΣO(logn) → Σn where the output distribution has dimension s (s > 0), then this
will imply P=BPP. We refer to this algorithm G as optimal nonpseudorandom generator.
The proof of this is similar to the proof of Theorem 5.10 [NW94]. We start with some
basic definitions.

A pseudorandom generator against a class of circuits is a function which takes a random
seed as input and outputs a sequence of bits which is a pseudorandom distribution.

Definition 5.6 (Pseudorandom Generators). A function G is said to be a l(n)-pseudorandom
generator if

1. G = {Gn}n>0 with Gn : Σl(n) → Σn

2. Gn is computable in 2O(l(n)) time

3. For sufficiently large n, Gn(Ul(n)) is (n2, 1/n)-pseudorandom.

Definition 5.7 (Optimal Pseudorandom Generators). A function G is said to be an
optimal pseudorandom generator if it is an O(log n)-pseudorandom generator.

Nisan and Wigderson [NW94] showed that there is a connection between pseudorandom
generators and hard functions in EXP:

Definition 5.8 (Hard Function). A family of functions f = {fn}n∈N where fn : Σn → Σ
is (S, ε)-hard for any S = S(n) > n and ε = ε(n) > 0, if for all large enough n, for all
circuits C of size at most O(S(n)),

Un[C(x) = fn(x)] ≤ 1

2
+ ε(n).

42

The following theorem shows that under the assumption of existence of hard function
in EXP, optimal pseudorandom generator exists [NW94].

Theorem 5.10 ([NW94]). There exists an optimal pseudorandom generators if and only
if there is a language L in EXP and ∃δ > 0 such that L on inputs of length n is (2δn, 1/2δn)-
hard.

The proof of the above theorem is constructive and thus we can explicitly convert
optimal pseudorandom generators to the hard function and conversely. However this is
still a very strong requirement and later Impagliazzo and Wigderson weakened it.

Theorem 5.11 ([IW96]). Suppose there is a language L in EXP and ∃δ > 0 such that L
on inputs of length n cannot be solved by circuits of size at most 2δn. Then there exists a
language L′ in EXP and ∃δ′ > 0 such that L′ on inputs of length n is (2δ

′n, 1/2δ
′n)-hard

and as a consequence optimal pseudorandom generator exists.

Now let us state and prove the main result of this section.

Theorem 5.12. Consider any s ∈ (0, 1] and c > 0. If there exists an algorithm G =
{Gn}n∈N where Gn : Σc logn → Σn computable in 2O(logn) such that dim({Gn(Uc logn)}) ≥
s, then P=BPP.

Proof. Suppose X := {Gn(Uc logn)}n∈N. If dim(X) = s > 0, then for all large enough n,
there must be a subset of indices S ⊆ {1, 2, · · · , n} such that |S| = log n and for any i ∈ S,
loss incurred by any polynomial-size predictor at i-th bit position is non-zero or in other
words, for any polynomial-size circuit family C = {Cn}n∈N, X[Ci(x1, · · · , xi−1) = xi] < 1.
Actually one can show a much stronger claim that there exists such a subset S such that
|S| = c · n, for some constant c < 1. Otherwise dim(X) = 0. To prove this, suppose
|S| = o(n) and thus there exists a predictor π such that for every w ∈ Σn,

Loss(π,w) =

n∑
i=1

loss(π(w[1 . . . i− 1], w[i])) =
∑
i∈S

loss(π(w[1 . . . i− 1], w[i])).

Now as loss(π(w[1 . . . i − 1], w[i])) ≤ 1, so for all large enough n, for any ε < 1
2 ,

LossRateε(π,Xn) = 0. Hence unpred(X) = 0 and by Corollary 3.2.1, dim(X) = 0 as
well.

Suppose S contains first log nmany such indices. Also assume that S = {i1, i2, · · · , ilogn}
and i1 < i2 < · · · < ilogn. Now we define two languages L0 and L1 as follows: for j = 0, 1,

Lj := {y ∈ Σlogn−1|∃x ∈ Σn in the support of Gn and xS = jy}

where jy denotes the string generated by concatenating j and y. First of all, note that as
i1 ∈ S, none of L0 and L1 is an empty set. Now clearly either L0 or L1 is the language that
satisfies all the conditions of Theorem 5.11 [IW96]. Otherwise, there exists a predictor
circuit of size at most 2δ logn, for some δ > 0, i.e., polynomial in n, by which we can predict
ilogn-th bit position or loss incurred by that predictor at ilogn-th bit position will be zero
implying ilogn 6∈ S which is a contradiction. Thus either L0 or L1 can be used to construct
an optimal pseudorandom generator and that eventually implies P=BPP.

Chapter 6

Conclusion

In this part of this thesis, we study the question of quantifying amount of pseudorandom-
ness present in a distribution. In case of randomness the information theoretic notion of
min-entropy is widely used. The computational analogue of information theoretic notion
of entropy, namely pseudoentropy is used in case of pseudorandomness. However, there are
several different types of pseudoentropy, e.g., HILL-type pseudo entropy, Yao-type pseudo
entropy, metric type pseudo entropy, next-bit pseudoentropy [HILL99, Yao82, HRV10,
VZ12]. It is not at all clear whichever is the most appropriate. In this thesis, we propose
an alternate notion by adapting the theory of dimension defined via betting functions
s-gales [Lut03b] (Chapter 3). We compare our notion of dimension with different types of
pseudoentropy (Chapter 4). We show a close relationship between dimension and next-
bit pseudoentropy. However, we think that a much stronger relation can be established.
In particular, Theorem 4.5 can be improved and the constant additive gap between two
notions can be resolved.

After the complete characterization of distributions in terms of amount of pseudoran-
domness present in them, the next natural question that we address in this thesis is to
extract out those pseudorandom part (Chapter 5). We show that deterministically we
can not do that and also show Ω(log n) lower bound on the number of extra pure random
bits required. Unfortunately, we do not get significant success on constructing one such
pseudorandom extractor. For the distributions with high HILL-type pseudoentropy it was
previously known that any randomness extractor suffices to do this job [BSW03], but the
class of distributions with high dimension is a strict superset of the class of distributions
having high HILL-type pseudoentropy. So it is interesting to construct pseudorandom
extractor for this much larger class of distributions. This is the main open problem that
we pose as Question 5.2 in Chapter 5.

Before closing this part, we want to remind the reader about another thing that all
the notions of pseudoentropy came while giving construction of pseudorandom generator
from any one-way function. Till now the most efficient construction used the notion of
next-bit pseudoentropy [VZ12]. We show that our notion of dimension is actually very
closely related to next-bit pseudoentropy. So it is interesting to come up with a direct
construction of pseudorandom generator from any one-way function using our notion of
dimension and it is quite possible that our notion will lead to a much more efficient
construction.

43

Part II

Time-space Trade-off in Small
Space Computation

45

Chapter 7

Introduction

One of the central open question in the domain of space bounded computation is whether
non-deterministic log-space class (NL) and deterministic log-space class (L) are equal or
not. Another important but much easier question is whether NL is inside SC (simultaneous
poly-logarithmic space and polynomial time) or not. On the other hand, it is already
known that randomized log-space class (RL), which is a sub-class of NL is in SC [Nis95].
In this thesis we make a little step towards resolving this latter question.

7.1 The Reachability Problem

The graph reachability problem is defined as follows: Given a graph G and two vertices
s and t in it, the problem is to decide whether there is a path from s to t in G. This
problem is central to the field of complexity theory, particularly to the domain of space
bounded computation. The graph reachability problem for different classes of graphs
capture different complexity classes. For directed graphs this problem is complete for the
complexity class NL and a celebrated result by Reingold showed that for undirected graphs
the reachability problem is actually L-complete [Rei08]. Certain promise version of reach-
ability problem for directed graphs is also known to be complete for the complexity class
RL [RTV06]. Wigderson gave a fairly comprehensive survey that discusses the complexity
of reachability in various computational models [Wig92].

Naturally for a long time the reachability problem has been the prime focus to the
researchers of complexity theory. Clearly designing an algorithm that solves directed
reachability problem and runs simultaneously in polynomial time and poly-logarithmic
space will completely resolve the question “NL ⊆ SC?” mentioned earlier. The most
elementary graph traversal algorithms such as DFS (depth first search) and BFS (breadth
first search) solve this problem in linear time, but need linear space. On the other hand, we
have a O(log2 n) space algorithm due to Savitch [Sav70], however it requires O(nlogn) time.
The main question is whether we can design an algorithm that is as efficient as (a little
blow is also allowed) BFS/DFS in terms of time and as efficient as Savitch’s algorithm
in terms of space requirement. In his survey Wigderson asked whether it is possible
to design a polynomial time algorithm that uses only O(nε) space, for some constant
ε < 1 [Wig92]. This question is also still open. In 1992, Barnes, Buss, Ruzzo and Schieber
made some progress on this problem and gave an algorithm for directed reachability that
requires polynomial time and O(n/2c

√
logn) space, for some constant c [BBRS92]. Till

47

48

today this is the best known simultaneous time-space upper bound known for general
directed reachability problem. Henceforth we refer to this bound as the BBRS bound.
Improving the BBRS bound remains a significant open question regarding the complexity
of the graph reachability problem.

In last five years there has been some progress on improving the BBRS bound for
certain special subclasses of directed graphs. Planar graphs are a natural topological
restriction of general graphs consisting of graphs that can be embedded on the surface of a
plane such that no two edges cross. Grid graphs are a subclass of planar graphs, where the
vertices are placed at the lattice points of a two dimensional grid and edges occur between
a vertex and its immediate adjacent horizontal or vertical neighbor. Asano and Doerr
provided a polynomial time algorithm to compute the shortest path between two given
vertices (hence can decide reachability) in grid graphs which uses only O(n1/2+ε) space,
for any constant ε > 0 [AD11]. Later Imai et al. achieved a similar bound for reachability
problem in planar graphs [INP+13] by giving a space efficient construction of separator for
planar graphs. Note that although it is known that reachability problem in grid graphs is
log-space reducible to planar reachability, since this class (polynomial time and O(n1/2+ε)
space) is not closed under log-space reductions, planar reachability does not follow from
grid graph reachability. In [SV12], it was shown that the reachability problem for directed
acyclic graphs with O(n1−ε) sources nodes and embedded on surfaces of O(n1−ε) genus
can be solved in polynomial time and O(n1−ε) space. Recently Asano et al. gave a Õ(

√
n)

space and polynomial time algorithm for reachability in planar graphs, thus improving
upon the previous space bound [AKNW14]. We refer the reader to a survey article by
Vinodchandran [Vin14] for more details on known results. In [CPT+14] a Õ(n2/3g1/3)
space and polynomial time bound was shown in case of graphs embedded on orientable
surface of genus g.

In another line of work, Kannan et al. gave a O(nε) space and polynomial time al-
gorithm for deciding reachability in unique path graphs [KKR08]. Unique path graphs
are a generalization of strongly unambiguous graphs and reachability problem in strongly
unambiguous graphs is known to be in SC [BJLR91, Coo79]. Reachability in strongly
unambiguous graphs can also be decided by a O(log2 n/ log log n) space algorithm, how-
ever this algorithm requires super polynomial time [AL98]. Interested readers may refer
to a survey by Allender [All07] to further understand the results on the complexity of
reachability problem in UL and on certain special subclasses of directed graphs.

There is some evidence that it might be hard to improve BBRS bound for general
directed graphs by known techniques. The reason is that there are matching lower bounds
known for deciding reachability in general directed graphs on certain restricted model
of computation, namely NNJAG model [CR80, Poo93, EPA99] and all the algorithms
known so far for the general reachability problem can be implemented in NNJAG without
significant blow up in time and space.

7.1.1 Our Contribution on the Reachability Problem

Our first contribution of the Part II of this thesis is providing a new algorithm for solving
reachability problem in case of H-minor-free graphs, where H is an arbitrary but a fixed
graph. Our result improves upon the BBRS bound with an assumption that that along
with the input graph we are also given the tree decomposition of the H-minor-free graph.
Below is the formal statement of our result.

49

Theorem 7.1 (Theorem 9.1). Given a graph H, there is an algorithm that, given any
H-minor-free graph G together with

1. a tree decomposition (T,X) of G, and

2. for every Xi ∈ X, the combinatorial embedding of the subgraph G0 of G[Xi],

and two vertices s and t in G, decides whether there is a directed path from s to t in G.
The algorithm runs in polynomial-time and uses Õ(n2/3) space, where n is the number of
vertices of the graph.

Details of the notations used in the statement of the above theorem can be found
in Section 9.1.1 of Chapter 9 where we provide the proof of the above stated result.
This key ingredient of the proof of the above theorem is designing a Õ(n2/3)-space and
polynomial-time algorithm for constructing a 2/3-separator of size O(n2/3) for the given
graph. Once such a separator is obtained, we use ideas from [INP+13] to design the
reachability algorithm. To construct such a separator for H-minor-free graphs, we use the
tree decomposition of the given graph by [RS03] and find a “separating node” in that tree.
Then we construct a bounded-genus graph from the graph induced by the separating node.
Finally by using the planarizing set construction used to establish time-space bound for
reachability problem for high-genus graphs [CPT+14], we design an algorithm to construct
a planarizing set of size O(n2/3) of the underlying undirected graph in polynomial-time
and Õ(n2/3) space.

For K3,3-free and K5-free graphs we give a better upper bound than the one given in
Theorem 9.1. Kuratowski’s theorem states that planar graphs are exactly those graphs
that do not contain K3,3 and K5 as minors. Hence it is a natural question whether results
on planar graphs can be extended to graphs that do not contain either a K3,3 minor (known
as K3,3-free graphs) or a K5 minor (known as K5-free graphs). Certain complexity upper
bounds that hold for planar graphs have been shown to hold for K3,3-free and K5-free
graphs [BTV09, TW09, DLN+09, DNTW09]. On the other hand, there are problems for
which upper bounds that hold for planar graphs are not known to extend to such minor-
free graphs (such as computing a perfect matching in bipartite graphs [MN95, TV12]).
We show that the time-space bound known for planar graphs can also be obtained for
both these classes of graphs. Here it is important to note that even though directed
reachability in K3,3-free and K5-free graphs reduces to directed planar reachability[TW09],
the reduction blows up the size of the graph by a polynomial factor and hence we cannot
use this approach for our purposes.

Theorem 7.2 (Theorem 9.2). For any constant 0 < ε < 1/2, there is a polynomial time
and O(n1/2+ε) space algorithm that given a directed K3,3-free or K5-free graph G on n
vertices, decides whether there is a directed path from s to t in G.

Although in case of H-minor-free graphs we need additional inputs like the tree de-
composition and the embeddings of the bounded genus parts, in the above theorem we do
not have any such requirements. The proof idea of the above stated theorem is similar to
that of Theorem 7.1. However we use the known algorithm to compute a planar separator
instead of a bounded genus separator. This gives better space bound compared to the
case of H-minor-free graphs.

Next we show a polynomial time and O(nε) space, for any constant ε > 0 bound for
deciding reachability in directed layered planar graphs. A layered planar graph is a planar

50

graph where the vertex set is partitioned into layers and every edge occurs between two
consecutive layers only. Our result significantly improves upon the previous space bound
due to [INP+13] and [AKNW14] for layered planar graphs.

Theorem 7.3 (Theorem 10.1). For every ε > 0, there is a polynomial time and O(nε)
space algorithm that decides reachability in directed layered planar graphs.

Reachability in layered grid graphs (denoted as LGGR) is in UL which is a subclass
of NL [ABC+09]. Subsequently this result was extended to the class of all planar graphs
[BTV09]. Allender et al also gave some hardness results for the reachability problem in
certain subclasses of layered grid graphs. Specifically they showed that, 1LGGR is hard
for NC1 and 11LGGR is hard for TC0 [ABC+09]. Both these problems are however known
to be contained in L though.

Firstly we argue that its enough to consider layered grid graphs (a subclass of general
grid graphs). We divide a given layered grid graph into a courser grid structure along k
horizontal and k vertical lines. We then design a modified DFS strategy that makes queries
to the smaller graphs defined by these gridlines (we assume a solution in the smaller graphs
by recursion) and visits every reachable vertex from a given start vertex. The modified
DFS stores the highest visited vertex in each vertical line and the left most visited vertex
in each horizontal line. We use this information to avoid visiting a vertex multiple number
of times in our algorithm. We choose the number of horizontal and vertical lines to divide
the graph appropriately to ensure that the algorithm runs in the required time and space
bound. We refer the reader to Chapter 10 for the detailed proof.

7.2 Some Other Graph Theoretic Problems

In a given weighted directed graph computing shortest path between a pair of vertices is
a fundamental problem in computer science. There are several popular and efficient algo-
rithms that are known for this problem such as Dijkstra’s algorithm [Dij59] and Bellman-
Ford algorithm [Bel58, For56] (henceforth we refer it as the procedure Bellman-Ford).
Both of these are polynomial time algorithms, but require linear amount of space. Among
them Bellman-Ford algorithm is more versatile since it is also able to handle graphs with
negative edge weights (but no negative weight cycles). There is also a more recent algo-
rithm by Klein, Mozes and Weimann [KMW09] which runs in polynomial time (with better
parameters) but still requires linear space. However this algorithm considers shortest path
problem only for directed planar graphs.

The natural question is whether we can extend the results known for reachability
problem to the shortest path problem. As mentioned in the earlier part of this chapter
that for grid graphs, we already have a O(n

1
2

+ε) space and polynomial time algorithm
for the shortest path problem due to [AD11]. In their paper, Asano and Doerr posed the
question whether their result can be extended to planar graphs in general. In this thesis, we
give a positive answer to their question and exhibit the first sub-linear space, polynomial
time algorithm for the shortest path problem in planar graphs. Note that the shortest path
problem for both undirected and directed graph is NL-complete [Gol08]. Before proceeding
further we want to mention that in an independent work Asano et al. pointed out that
their approach for solving reachability can also be extended to shortest path problem while
achieving similar bound upto some polynomial blow up in time [AKNW14].

51

One interesting generalization of the reachability problem is the RedBluePath problem.
Given a graph where all the edges are colored either red or blue and two vertices the
problem is to decide the existence of a path between those vertices such that it alternates
between red and blue colored edges. The RedBluePath problem is NL-complete even when
restricted to planar directed acyclic graphs or in short planar DAGs [Kul11]. A natural
relaxation of the above problem is EvenPath problem defined in Section 11.2. In general
EvenPath problem is NP-complete [LP84], but for planar graphs it is known to be in
P [Ned99]. In this thesis, we also give the first sublinear space and polynomial time
algorithm for the RedBluePath and the EvenPath problem in case of planar DAGs.

Another central problem in the field of algorithms and complexity theory is the problem
of finding the perfect matching, denoted as PerfectMatching. The best known upper bound
for the PerfectMatching problem is non-uniform SPL [ARZ98] and the best hardness known
is NL-hardness [CSV84]. However, for planar graphs the PerfectMatching problem is known
to be L-hard [DKLM10]. It is also known that the PerfectMatching problem is in the
complexity class RNC [KUW85, MVV87] and very recently it has been shown to be in
quasi-NC in case of bipartite graphs [FGT16]. If we consider only the planar bipartite
graphs, then the PerfectMatching problem is known to be even inside UL [DGKT12]. We
know a polynomial time solution for the PerfectMatching problem in bipartite graphs
using Ford-Fulkerson algorithm for network flow [KT05], but that takes the space linear
in number of edges present in the graph. Unfortunately, no strictly sublinear (O(n1−ε),
for some ε > 0) space and polynomial time algorithm is known for the PerfectMatching
problem even in case of planar bipartite graphs. Same is true for the problem of finding
Hall-obstacle (denoted as HallObs (Decision + Construction) for planar bipartite graphs.
In general, for any bipartite graph with two partitions of vertices A and B, Hall-obstacle
is a subset of vertices of A whose neighboring set in B is of strictly smaller size. It is
known from [DGKT12], that HallObs (Decision) is in co-UL and HallObs (Construction)
is in NL, when the graph under consideration is planar bipartite.

The problem ExactPM (Decision) (first posed in [PY82]) denotes the problem of de-
ciding the presence of a perfect matching in a given graph G with edges colored with
red or blue and containing exactly k red colored edges for an integer k. This problem is
not even known to be in P. Now we consider a natural relaxation of the above problem
just by concentrating on the perfect matching containing even number of red edges and
denote this problem as EvenPM. EvenPM problem is in P for bipartite graphs and in NL
for planar bipartite graphs [DGKT12]. Till now, we do not know about any sublinear
space and polynomial time algorithm for the EvenPM problem when concentrating only
on planar bipartite graphs.

7.2.1 Our Contribution

In this thesis, we prove the following results.

Theorem 7.4 (Theorem 11.1). For directed planar graphs (containing no negative weight
cycle and weights are bounded by polynomial in n) and for any constant 0 < ε < 1

2 , there is

an algorithm that solves the ShortestPath problem in polynomial time and O(n
1
2

+ε) space,
where n is the number of vertices of the given graph.

We use the space efficient construction of separator for planar graphs [INP+13], and
this is one of the main building blocks for the results stated in this section. Let the

52

separator be S. Now calculate the shortest distance of every v ∈ S from the vertex s.
The shortest path from s to t must pass through the vertices in the separator and thus
knowing the shortest path from s to each of such vertices is enough to find the shortest
path from s to t. The shortest path from s to any v ∈ S can be found by applying the
same shortest path algorithm recursively to each of the connected component of the graph
induced by the set of vertices V \ S. As a base case we use Bellman-Ford algorithm to
find the shortest path. The recursive invocation of the above technique will lead to the
time-space bound mentioned in the above theorem.

Another main contribution is to give an algorithm for the RedBluePath problem in
planar DAGs. The main idea behind our algorithm is to use a modified version of DFS
algorithm along with the planar separator.

Theorem 7.5 (Theorem 11.2). For any constant 0 < ε < 1
2 , there is a polynomial time

algorithm that solves the RedBluePath problem for planar DAGs using O(n
1
2

+ε) space.

Note that this is the first simultaneous O(n1−ε), for any ε > 0 space and polynomial
time bound known for any NL-complete problems. However as the corresponding com-
plexity class is not closed under log-space reduction we do not get any containment result
for the class NL.

Now using the reduction given in [Kul11] and the algorithm stated in the Theorem 7.5,
we get an algorithm to solve the directed reachability problem for a fairly large class of
graphs described in Section 11.2, that takes polynomial time and O(n

1
2

+ε) space. Thus
we can able to beat the BBRS bound for such class of graphs.

We also establish a relation between the EvenPath problem in a planar DAG and the
problem of finding odd length cycle in a directed planar graph and thus we argue that
both of these problems have the same simultaneous time-space complexity. We use two
colors red and blue to color the vertices of the given graph and then use the color assigned
to the vertices of the separator to detect the odd length cycle. The conflicting assignment
of color to the same vertex in the separator will lead to the presence of an odd length
cycle. Here also we use the recursive approach to color the vertices and as a base case we
use the well known BFS algorithm to solve the problem of detecting odd length cycle in
each small component. Thus we get the following theorem regarding solving the EvenPath
problem.

Theorem 7.6 (Theorem 11.3). For any constant 0 < ε < 1
2 , there is a polynomial time

algorithm that solves the EvenPath problem in planar DAGs using O(n
1
2

+ε) space.

Our another contribution is to give a time-space efficient algorithm for perfect matching
problem in case of planar bipartite graphs.

Theorem 7.7 (Theorem 11.4). In planar bipartite graphs, for any constant 0 < ε < 1
2 ,

1. PerfectMatching (Decision + Construction) can be solved in polynomial time and

O(n
1
2

+ε) space; and

2. HallObs (Decision + Construction) can be solved in polynomial time and O(n
1
2

+ε)
space.

53

We build on the Miller and Naor’s algorithm [MN95] for perfect matching in planar

bipartite graphs. We show that this algorithm takes polynomial time and O(n
1
2

+ε) space
as the only hard part of this algorithm is to find the shortest distance. We also argue that
problem of finding Hall obstacle is directly associated with the problem of finding negative
weight cycle and thus get the same simultaneous time-space bound for this problem as of
the problem of detecting negative weight cycle.

Next we show that the complexity of even perfect matching in planar bipartite graphs
is same as that of the perfect matching problem in planar bipartite graphs and deciding
the presence of odd length cycle in directed planar graphs. Thus we get the following
theorem for the EvenPM problem.

Theorem 7.8 (Theorem 11.5). For any constant 0 < ε < 1
2 , there exists an algorithm that

solves the EvenPM problem for planar bipartite graphs in polynomial time and O(n
1
2

+ε)
space.

7.3 Organization of Part II of the Thesis

The rest of the Part II of this thesis is organized as follows. In Chapter 8, we give some
basic definitions and notations and also state certain earlier results that we use in this
thesis. In Chapter 9, we present the algorithm for reachability in H-minor-free graphs
and as a corollary we show Theorem 7.2. In Chapter 10, we give a proof of Theorem 7.3
related to deciding reachability in layered planar graphs. Finally in Chapter 11 we talk
about simultaneous time-space bound of several important graph theoretic problems other
than reachability for some specific graph classes. In particular, in Section 11.1 we give an
algorithm for shortest path problem in directed planar graphs. In Section 11.2, we give
a simultaneous time-space bound for deciding the presence of Red-Blue Path in a planar
DAG. We also establish a relation between the problem of deciding the presence of an odd
length cycle in directed planar graphs with the problem of deciding the presence of even
path between two given vertices in planar DAGs and thus give the same simultaneous
time-space bound for both of these problems. And finally in Section 11.3, we discuss the
simultaneous time-space bound of some matching problems in planar bipartite graphs.

Chapter 8

Preliminaries

In this chapter, we give the basic definitions and known theorems used in this thesis. We
first define some notations which will be used later in the subsequent chapters of this
thesis.

8.1 Notations

In this thesis, we follow the standard model of computation to discuss the complexity
measures of the stated algorithms. In particular, we consider the computational model in
which an input appears on a read-only tape and the output is produced on a write-only
tape and we only consider the internal read-write tape in the measure of space complexity.
For the basic definitions of the complexity classes used in this thesis, we refer the reader
to any standard book on complexity theory (e.g., [AB09]).

Throughout this thesis, by log we mean logarithm to the base 2. We denote the set
{1, 2, · · · , n} by [n]. In this thesis, by Õ(s(n)) we mean O(s(n)(log n)O(1)). A graph
G = (V,E) consists of a set of vertices V and a set of edges E where each edge can be
represented as an ordered pair (u, v) in case of directed graph and as an unordered pair
{u, v} in case of undirected graph, such that u, v ∈ V . A directed acyclic graph is a directed
graph containing no directed cycle. Unless it is specified, in this thesis G will denote the
directed graph, where |V | = n. Given a graph G, let V (G) and E(G) denote the set of
vertices and the set of edges of G respectively. For a set of vertices X, let G[X] denote
the subgraph of G induced by X. Given a directed graph G, we denote the underlying
undirected graph by Ĝ. For the basic definitions and terms of graph theory used in this
thesis, interested readers may refer to any standard book on graph theory (e.g., [Die12]).

8.2 Graph Embedding and Planarity

Now we define necessary notions on graphs embedded on surfaces. We refer the reader
to the excellent book by Mohar and Thomassen [MT01] for a comprehensive treatment of
this topic. In this thesis we only consider closed orientable surfaces. These surfaces are
obtained by adding “handles” to a sphere.

Let G = (V,E) be a graph and for each v ∈ V , let πv be a cyclic permutation of edges
incident on v. Let Π = {πv | v ∈ V }. We say that Π is a combinatorial embedding of
G. Given a combinatorial embedding we can define a Π-facial walk. Let e = 〈v1v2〉 be

55

56

an edge. Consider the closed1 walk f = v1e1v2e2v3 · · · vkekv1 where πvi+1(ei) = ei+1, and
πv1(ek) = e1. We call f a face of the graph G.

Given a Π-embedding of a graph G, the Π-genus of G is the unique g such that
|V | − |E|+ |F | = 2− 2g, where F is the set of all faces of G. This is popularly known as
the Euler-Poincaré formula.

It is known that given any graph with Π-genus g, it can be embedded on a closed
orientable surface of genus g such that every face is homeomorphic to an open disc. Let Π
be a combinatorial embedding of a graph G and H be a subgraph of G. The embedding
Π naturally induces an embedding Π′ on G \H. By abuse of notation, we still refer to the
induced embedding as Π-embedding.

Planar graphs are the graphs that can be embedded on a surface of genus 0 (e.g.,
plane).

Definition 8.1 (Planar Graphs). A planar graph is a graph that can be drawn on a plane
without any edge crossing.

Wagner gave an alternate definition of planar graphs in terms of graphs with excluded
minors [Wag37]. A graph H is said to be a minor of another graph G if one can obtain
H from G by deleting some vertices and edges, and contracting some of the edges of G.
G is called H-minor-free if H is not a minor of the graph G.

Theorem 8.1 ([Wag37]). A graph is planar if and only if it is both K3,3-free and K5-free.

K3,3 is the complete bipartite graph where both the partitions of vertices are of size
3 and K5 is the complete graph containing 5 vertices (Figure 8.1). These two graphs are
examples of non-planar graphs and thus if are minor of some graph then that graph cannot
be drawn on a plane without any edge crossing. Wagner’s main contribution was to show
the converse. A natural extension of planar graphs are the graphs that contain either one
of K3,3 or K5, but not the both as minor. Such a graph would be a K3,3-free graph or
K5-free graph.

(a) K3,3 (b) K5

Figure 8.1: The graphs K3,3 and K5

1A priori it is not obvious that that this leads to a closed walk. However, it can shown that this walk
comes back to v1. See [MT01] Chapter 3.2 for a proof.

57

8.3 Separator and Directed Planar Reachability

The notions of a planarizing set and a separator defined below are crucial in this thesis.
A set S of vertices of a graph G is called a planarizing set if G \ S is a planar graph. An
(α, β)-separator of an undirected graph G = (V,E) having n vertices, is a subset S of V
such that |S| ≤ O(α) and every connected component in V \ S has at most βn vertices.

Next we state two theorems about planar graphs that are used in this thesis. In [INP+13]
the authors construct a (n1/2, 8/9)-separator for a given undirected planar graph. By run-
ning their algorithm repeatedly (a constant number of times), we can obtain a (n1/2, 1/3)
separator for a given undirected planar graph.

Theorem 8.2 ([INP+13]). Given an undirected planar graph G there is an algorithm that
computes a (n1/2, 1/3)-separator of G in polynomial time and Õ(n1/2) space.

We refer to the algorithm of this theorem as PlanarSeparator algorithm. By invoking

this algorithm recursively, one can get an (n
1
2

+ε, n−ε)-separator for any 0 < ε < 1/2, in

polynomial time and Õ(n
1
2

+ε) space. We refer the algorithm for getting such (n
1
2

+ε, n−ε)-
separator as PlanarSeparatorFamily algorithm. In [INP+13], this algorithm is used to
obtain a time-space efficient algorithm for reachability on directed planar graphs.

Theorem 8.3 ([INP+13]). For any constant 0 < ε < 1/2, there is an algorithm that,
given a directed planar graph G and two vertices s and t, decides whether there is a path
from s to t in G. This algorithm runs in time nO(1/ε) and uses O(n1/2+ε) space, where n
is the number of vertices of G.

We refer the algorithm mentioned in the statement of the above theorem as PlanarReach
algorithm.

8.4 A Reachability Algorithm for High-genus Graphs

In [CPT+14] we provide a space efficient algorithm to construct a planarizing set for an
undirected graph embedded on an orientable surface. We restate the result here because
we need it in establishing the main result of Chapter 9.

Theorem 8.4 ([CPT+14]). There is an algorithm that given a combinatorial embedding of
an undirected graph G embedded on an orientable surface of genus g, outputs a planarizing
set of G of size O(n2/3g1/3). This algorithm runs in polynomial time and uses space
Õ(n2/3g1/3), where n denotes the number of vertices of G.

Now using the above construction of planarizing set we can solve the reachability
problem for directed graphs embedded on an orientable surface. We restate the result
below, however we do not use this result in this thesis.

Theorem 8.5 ([CPT+14]). There is an algorithm that, given a directed graph G embedded
on an orientable surface of genus g with the combinatorial embedding and two vertices s
and t, decides whether there is a path from s to t in G. This algorithm runs in polynomial-
time and uses Õ(n2/3g1/3) space, where n is the number of vertices of the graph.

Chapter 9

New Time-Space Upperbounds for
Directed Reachability in
H-minor-free Graphs

In this chapter, we describe a new reachability algorithm for H-minor-free graphs, where H
is an arbitrary but fixed graph. Our algorithm improves upon the BBRS bound under some
assumptions on input. Let us recall the formal statement of the result, i.e., Theorem 7.1.

Theorem 9.1. Given a graph H, there is an algorithm that, given any H-minor-free
graph G together with

1. a tree decomposition (T,X) of G, and

2. for every Xi ∈ X, the combinatorial embedding of the subgraph G0 of G[Xi],

and two vertices s and t in G, decides whether there is a directed path from s to t in G.
The algorithm runs in polynomial-time and uses Õ(n2/3) space, where n is the number of
vertices of the graph.

The reader may refer to Section 9.1.1 to understand the notation that we use in The-
orem 9.1.

In case of K3,3-free and K5-free graphs, we give a much better upper bound than that
given for general H-minor-free graphs. Note that K3,3-free and K5-free graphs are strict
superset of planar graphs as due to Kuratowski’s theorem, planar graphs are exactly those
graphs which contain neither K3,3 nor K5 as minors. Hence it is a quite natural to ask the
question whether the bounds known for planar graphs can also be achieved for such larger
class of graphs. We provide a positive answer to this question in the following theorem
which is a restatement of Theorem 7.2.

Theorem 9.2. For any constant 0 < ε < 1/2, there is a polynomial time and O(n1/2+ε)
space algorithm that given a directed K3,3-free or K5-free graph G on n vertices, decides
whether there is a directed path from s to t in G.

Although for Theorem 9.1 we require additional inputs (such as the tree decomposition
and the embeddings of the bounded genus parts), in Theorem 9.2 we do not have any such
requirements.

59

60

9.1 A Reachability Algorithm for H-minor-free Graphs

In this section, we prove Theorem 9.1 by first giving an algorithm to construct a separator
of the input graph. Towards this we define the notion of a tree decomposition of a graph
which is crucial to the construction.

9.1.1 Graph Minor Decomposition Theorem

Let us recall that a graph H is said to be a minor of a graph G if H can be obtained from
a subgraph of G by contracting some edges. A graph G is said to be H-minor-free if G
does not contain H as a minor, for some graph H.

Definition 9.1. A tree decomposition of a graph G = (V,E) is a tuple (T,X) where
T = (VT , ET) is a tree and X = {Xi | i ∈ VT } such that,

1. ∪iXi = V ,

2. for every edge (u, v) in G, there exists i, such that u and v belong to Xi, and

3. for every v ∈ V , the set of nodes {i ∈ VT | v ∈ Xi} forms a connected subtree of T .

We will refer to the Xi’s as bags of vertices. Note that each bag corresponds to a node
(we call vertices of T as nodes) in the tree T . The width of a tree decomposition (T,X),
is the maximum over the size of Xi’s minus 1. The treewidth of a graph is the minimum
width over all possible tree decompositions of G. A tree decomposition is said to be a
path decomposition if T = (VT , ET) is a path and pathwidth of a graph is the minimum
width over all possible path decompositions of G.

For a fixed graph H, Robertson and Seymour gave a tree decomposition for every
H-minor-free graph [RS03]. Before we see this tree decomposition theorem we need to
give a few definitions. First we define h-almost embeddable graphs. Before going into
the actual definition, let us give some informal description. One can think “almost em-
beddable” graphs as bounded-genus graphs which have a small number of “local areas of
non-planarity”, called vortices, and a few vertices, called apices, having any number of
incident edges that are not properly embedded. Formally, a graph G is called h-almost
embeddable if there exists a set of vertices Y (called the apices) of size at most h such that,

i. G \ Y can be written as G0 ∪G1 ∪ . . . ∪Gh,

ii. G0 has an embedding on a surface (say S) of genus at most h,

iii. for i = 1, · · · , h, Gi’s are pairwise disjoint (we shall refer to them as vortices),

iv. there exist faces F1, · · · , Fh of G0 and pairwise disjoint disks1 D1, · · · , Dh on S such
that for all i ∈ {1, . . . , h}, Di ⊆ Fi and Ui := V (G0) ∩ V (Gi) = V (G0) ∩Di, and

v. for each graph Gi, there is a path decomposition (Pu)u∈Ui of width at most h such
that u ∈ Pu, for all u ∈ Ui. The sets of vertices in Pu are ordered according to the
ordering of the corresponding u’s as vertices along the boundary of face Fi in G0.

1Disk is a two dimensional manifold with boundary and its boundary is a circle. Disks in surface S are
also defined in the natural way.

61

Let G and H be two graphs each containing cliques of equal sizes. The clique-sum of G
and H is formed by identifying pairs of vertices in these two cliques to form a single shared
clique, and then possibly deleting some of the clique edges (may be none). A k-clique-sum
is a clique-sum in which both cliques have at most k vertices. The k-clique-sum of G and
H is denoted as G⊕kH. The set of shared vertices in this operation is called the join set.

We are now ready to state the decomposition theorem for H-minor-free graphs.

Theorem 9.3 ([RS03]). For every graph H, depending only on |V (H)|, there exists an
integer h ≥ 0 such that every H-minor-free graph can be represented as at most h-clique-
sum of “h-almost embeddable” graphs in some surface on which H cannot be embedded.

Henceforth, we will assume that the tree decomposition of the original graph and the
combinatorial embedding of all subgraphs (the G0’s in each h-almost embeddable graph)
that are embedded on the surface are provided as part of the input. We will refer to
this as tree decomposition with combinatorial embedding of H-minor-free graphs. Note
that Robertson and Seymour’s proof gave us an O(n3) time algorithm for finding such
decomposition which was later simplified in [KW11], but no log-space algorithm is known
for this purpose. However, for some special subclasses like K3,3-free or K5-free graphs such
log-space algorithm is known and we will discuss that in the latter part of this chapter.
If one can come up with a log-space or even Õ(n2/3)-space algorithm for finding above
mentioned tree decomposition for H-minor-free graphs then we will no longer need the
extra assumption on the input for our algorithm to work.

9.1.2 Constructing Separator for H-minor-free Graphs

We will show that given a decomposition of a H-minor-free graph stated in the last sub-
section, how to construct a separator. We start with the following lemma.

Lemma 9.1.1. There exists a log-space algorithm, that given a tree decomposition (T,X)
of an undirected graph G on n vertices, outputs a node i ∈ T such that every connected
component in G[V \Xi] has at most n/2 vertices.

Proof. Pick a node i ∈ T . We shall refer to i as the current node. If every connected
component in G[V \Xi] has at most n/2 vertices then output i and stop. Otherwise, let
C be the connected component in G[V \ Xi] such that |C| > n/2. Let j be the unique
neighbor of i in T such that Xj∩C 6= ∅. The reason why j is unique is because, if there are
more than one neighbors of i (say j1 and j2) in T , such that Xj1 ∩C 6= ∅ and Xj2 ∩C 6= ∅,
then j1 and j2 are connected by a path in T \ {i}, since C is a subgraph of G[V \ Xi].
Now this path together with the edges (i, j1) and (i, j2) forms a cycle in T , which is a
contradiction.

Now the sum of the number of vertices of all other connected components of G[V \Xi]
other than C, together with Xi is less than n/2. Therefore, for the node j ∈ T , the largest
connected component in G[V \Xj] has strictly lesser number of vertices than C. Now we
set j as the current node and repeat the above process. The process terminates since |C|
that we obtain in each step, strictly decreases.

We now give a separator construction for all H-minor-free graphs which is the main
contribution of this section.

62

Theorem 9.4. Given an undirected H-minor-free graph G and its tree decomposition with
combinatorial embedding, there exists an Õ(n2/3) space, polynomial time algorithm that
computes a (n2/3, 2/3)-separator of G.

Proof. Given an input graph G and its tree decomposition, compute the vertex i using
Lemma 9.1.1. The separator for G that we would construct would be a subset of Xi.

Now if |Xi| ≤ O(n2/3), then it follows from Lemma 9.1.1 that Xi is a (n2/3, 1/2)-
separator of G. Otherwise, consider the node i and its corresponding h-almost embeddable
graph K = G[Xi]. Now consider the representation of K using apices and vortices. Let
Y be the set of apices and K \ Y can be written as K0 ∪ K1 ∪ · · · ∪ Kh where each of
Ki has a path decomposition (Pu)u∈Ui of width less than h. Now build a new graph K ′

from K0 using the following steps: for i = 1, · · · , h, add a cycle of length |Pu| attached
to the vertex u ∈ Ui inside the face Fi and then connect those cycles such that they
form a path like structure similar to the corresponding path decomposition. The new
graph K ′ is a graph embedded on a constant genus and so from Theorem 8.4, we can get
a (n2/3, 2/3)-separator S (which is union of planarizing set of K ′, say Z and output of
PlanarSeparator on the graph K ′ \ Z) using Õ(n2/3) space and polynomial time. If S
contains some vertices from a newly added cycle, then we add all the vertices present in
the corresponding “bag” of vertices of the respective path decomposition. We also add all
the apices of K0 and we get a new set S′. As the size of S is O(n2/3), so the size of S′ will
be at most O(hn2/3) = O(n2/3).

Claim 9.1.1. S′ is a (n2/3, 2/3)-separator of K.

Proof. Observe that by construction, K ′ is a graph embedded on a bounded genus surface.
Moreover there is a canonical injective map (say σ) from vertices in K to vertices in K ′.
To see this, note that K ′ = K0∪ newly added cycles and by construction, for every vertex
in the bag Xi there is a vertex in the newly added cycle in K ′.

Since S is a (n2/3, 2/3)-separator of K ′, S′ is also a (n2/3, 2/3)-separator of K. Let C
be a connected component in K \S′. Then the vertices corresponding to C in K ′ (via the
map σ) also forms a connected component. Since every connected component in K ′ \ S
has size at most 2|K ′|/3, so S′ is a (n2/3, 2/3)-separator of K.

By running the above construction repeatedly (a constant number of times), we can get
a (n2/3, 1/6)-separator S. As according to Lemma 9.1.1, G[V \Xi] contains at most n/2
vertices, so the set S also acts as a (n2/3, 2/3)-separator for the whole graph G. It is clear
from the construction of S that this algorithm will take Õ(n2/3) space and polynomial
time.

We also consider the special case when H is either the K3,3 or the K5.

Theorem 9.5 ([Wag37, TW09]). Let (T,X) be a tree decomposition of a K3,3-free or
K5-free graph G. Then

1. for every Xi ∈ X, G[Xi] is either a planar graph or the K5 (if G is K3,3-free) or V8

(if G is K5-free) (see Figure 9.1), and

2. G is the 3-clique-sum of G[Xi] and G[Xj] for every adjacent vertices i, j in T .

Moreover given a K3,3-free or K5-free graph G, such a tree decomposition can be computed
in log-space.

63

(a) K5 (b) V8

Figure 9.1: The graphs K5 and V8 (also known as Wagner’s graph)

Thierauf and Wagner have shown how to compute the tree decomposition of a K3,3-free
or K5-free graph given in Theorem 9.5 in log-space [TW09] and thus we get the following
corollary for these special class of H-minor-free graphs.

Corollary 9.1.1. Given an undirected K3,3-free or K5-free graph G, there exists an
Õ(n1/2) space, polynomial time algorithm that computes a (n1/2, 2/3)-separator of G.

Proof. Given an input graph G, first compute a decomposition tree T and compute the
vertex i by running the algorithm from Lemma 9.1.1. The separator for G that we would
construct would be a subset of Xi. Let i have m neighbors in T , say i1, . . . , im. Now for
every j, G[Xi] is joined with G[Xij] using the clique-sum operation of at most 3 vertices.
Let C = {C1, C2, . . . , Cm} where Cj is a set of at most 3 vertices in Xi, such that G[Xi] is
joined with G[Xij] via Cj .

Now if |Xi| ≤ n1/2, then it follows from Lemma 9.1.1 that Xi is a (n1/2, 1/2)-separator
of G. Otherwise, we know from Theorem 9.5 that G[Xi] is a planar graph. Now let S be
a (n1/2, 1/3)-separator of G[Xi] as obtained by PlanarSeparator. By running the above
construction repeatedly (a constant number of times), we can get a (n1/2, 1/6)-separator
S.

Now define
P = {j ∈ [m] | Cj ∩ S 6= ∅}.

Clearly, |P| ≤ |S|.
Let

S′ = S ∪ (∪j∈PCj) ,

that is, S′ is the separator S together with those sets Cj ’s such that each of them shares
at least one vertex with S. Since each Cj has size at most 3, |S′| ≤ 3 · |S|.

As according to Lemma 9.1.1, G[V \Xi] contains at most n/2 vertices, so the set S′ also
acts as a (n1/2, 2/3)-separator for the whole graph G. Once we have a tree decomposition,
it is easy to see that the set S′ can be computed by a log-space algorithm with a constant
number of oracle query to PlanarSeparator and hence we get the desired time and space
bound.

Proof of Theorem 9.1. Observe that the planar reachability algorithm of Theorem 8.3 es-
sentially uses the properties that

i. a subgraph of a planar graph is also planar, and

64

ii. there exists an algorithm that computes a (n1/2, 2/3)-separator of a planar graph in
polynomial time and Õ(n1/2) space.

Note that by the definition itself, all the subgraphs of a H-minor-free graph is also H-
minor-free and given a tree decomposition, from Theorem 9.4 we get an algorithm that
computes a (n2/3, 2/3)-separator of a H-minor-free graph in polynomial time and Õ(n2/3)
space. Now using the algorithm stated in Theorem 8.3, we get our desired result.

Proof of Theorem 9.2. By Corollary 9.1.1, given a K3,3-free or K5-free graph G, we can
compute in Õ(n1/2) space and polynomial time, a (n1/2, 2/3)-separator of G. Once a sepa-
rator is computed we can use a recursive method identical to the proof of Theorem 8.3 from
[INP+13] to design an O(n1/2+ε)-space and polynomial time algorithm for the reachability
problem.

Chapter 10

An O(nε) Space and Polynomial
Time Algorithm for Reachability
in Directed Layered Planar
Graphs

In this chapter, we show that reachability in directed layered planar graphs can be decided
in polynomial time and O(nε) space for any constant ε > 0. A layered planar graph is
a planar graph where the vertex set is partitioned into layers (say L0 to Lm) and every
edge occurs between layers Li and Li+1 only. Our result significantly improves upon the
previous space bound due to [INP+13] and [AKNW14] for layered planar graphs.

Theorem 10.1. For every ε > 0, there is a polynomial time and O(nε) space algorithm
that decides reachability in directed layered planar graphs.

Above theorem is the restatement of Theorem 7.3 mentioned in the introductory chap-
ter of this part of the thesis. As a consequence of our result, it is easy to achieve the
same time-space upper-bound for the reachability problem in upward planar graphs. We
say that a graph is upward planar if it admits an upward planar drawing, i.e., a planar
drawing where the curve representing each edge should have the property that every hori-
zontal line intersects it in at most one point or in other words, every edge is monotonically
non-decreasing in the y-direction on the plane. In the domain of graph drawing, it is an
important topic to study the upward planar drawing of planar DAGs [BT87, BLR90]. It
is NP-complete to determine whether a planar DAG with multiple sources and sinks has
an upward planar drawing [GT95]. However, given an upward planar drawing of a planar
DAG, the reachability problem can easily be reduced to reachability in a layered planar
graph using only logarithmic amount of space and thus admits the same time-space upper
bound as of layered planar graphs.

10.1 Class nSC and its Properties

TISP(t(n), s(n)) denotes the class of languages decided by a deterministic Turing machine
that runs in time O(t(n)) and uses O(s(n)) space. Then, SC = TISP(nO(1), (log n)O(1)).

65

66

Expanding the class SC, we define the complexity class nSC (short for near-SC) in the
following definition.

Definition 10.1 (Complexity Class near-SC or nSC). For a fixed ε > 0, we define nSCε :=
TISP(nO(1), nε). The complexity class nSC is defined as

nSC :=
⋂
ε>0

nSCε.

We next show that nSC is closed under log-space reductions. This is an important
property of the class nSC and will be used to prove Theorem 10.1. Although the proof is
quite standard, but for the sake of completeness we provide it here.

Theorem 10.2. If A ≤l B and B ∈ nSC, then A ∈ nSC.

Proof. Let us consider that a log-space computable function f be the reduction from A to
B. It is clear that for any x ∈ A such that |x| = n, |f(x)| ≤ nc, for some constant c > 0.
We can think that after applying the reduction, f(x) appears in a separate write-once
output tape and then we can solve f(x), which is an instance of the language B and now
the input length is at most nc. Now take any ε > 0 and consider ε′ = ε

c > 0. B ∈ nSC
implies that B ∈ nSCε′ and as a consequence, A ∈ nSCε. This completes the proof.

Now we will see if instead of deterministic Turing machine, we consider deterministic
auxiliary pushdown machine, then what will be power of the corresponding complexity
class. However, note that the result that we are going to discuss now is not required to
prove our main theorem, i.e., Theorem 10.1 and thus is of independent interest. First we
define the complexity class P− nSC (short for Pushdown near-SC) as follows.

Definition 10.2 (Complexity Class Pushdown near-SC or P− nSC). For a fixed ε > 0, we
define P− nSCε to be the class of languages decided by a deterministic auxiliary pushdown
machine that runs in time nO(1) and uses O(nε) space. The complexity class P− nSC is
defined as

P− nSC :=
⋂
ε>0

P− nSCε.

Next, we show that in the scenario we are concerned about, a deterministic auxiliary
pushdown machine does not provide any extra power over a deterministic Turing machine.

Theorem 10.3. P− nSC=nSC.

The above theorem comes as a corollary of an old result by Cook [Coo79] and here we
first restate that result.

Theorem 10.4 ([Coo79]). If a language is decided by a deterministic auxiliary pushdown
machine that runs in time t(n) and uses s(n) ≥ log n space, then that language is in
TISP ((t(n))6, (s(n) + log t(n)) log t(n)).

Now it is easy to see that Theorem 10.3 follows from the above theorem.

Proof of Theorem 10.3. From the definition of deterministic auxiliary pushdown machine,
it is trivial to see that for any ε > 0, nSCε ⊆ P− nSCε and thus nSC ⊆ P− nSC.

Now for the converse direction, let us consider a language L ∈ P− nSC which implies
L ∈ P− nSCε, for any ε > 0. Now by Theorem 10.4, L ∈ nSC2ε. As a consequence,
L ∈ nSC and this completes the proof.

67

10.2 Reachability in Layered Planar Graphs

In this section we prove Theorem 10.1. Let us start with the definitions of layered planar
graph and layered grid graph.

Definition 10.3 (Layered Planar Graph). A planar graph G = (V,E) is referred to
as layered planar if it is possible to represent V as a union of disjoint partitions, V =
V1 ∪ V2 ∪ · · · ∪ Vk, for some k > 0, and for any two consecutive partitions Vi and Vi+1,
there is a planar embedding of edges from the vertices of Vi to that of Vi+1 and there is no
edge between two vertices of non-consecutive partitions.

Now let us define the notion of layered grid graph and also note that grid graphs are
by definition planar.

Definition 10.4 (Layered Grid Graph). A directed graph G is said to be a n × n grid
graph if it can be drawn on a square grid of size n × n and two vertices are neighbors if
their L1-distance is one. In a grid graph a edge can have four possible directions, i.e.,
north, south, east and west, but if we are allowed to have only two directions north and
east, then we call it a layered grid graph.

We use the following result of Allender et al. [ABC+09] to simplify our proof.

Proposition 10.2.1 ([ABC+09]). Reachability problem in directed layered planar graphs
is log-space reducible to the reachability problem in layered grid graphs.

We show that the reachability problem in layered grid graphs (denoted as LGGR) is in
nSC (Theorem 10.5). Then by applying Proposition 10.2.1 and Theorem 10.2 we have the
proof of Theorem 10.1. So the main task remains is to show that LGGR is in nSC.

Theorem 10.5. LGGR ∈ nSC.

To establish Theorem 10.5 we define an auxiliary graph in Section 10.2.1 and give the
required algorithm in Section 10.2.2.

10.2.1 The Auxiliary Graph H

LetG be a n×n layered grid graph. We denote the vertices inG as (i, j), where 0 ≤ i, j ≤ n.
Without loss of generality, we can assume that s = (0, 0) and t = (n, n); otherwise instead
of G, we consider the subgraph of G such that s be the leftmost and bottommost vertex
and t be the rightmost and topmost vertex of that subgraph and follow the same algorithm.
Let k be a parameter that determines the number of pieces in which we divide G. We
will fix the value of k later to optimize the time and space bounds. Assume without loss
of generality that k divides n. Given G we construct an auxiliary graph H as described
below.

Divide G into k2 many blocks (will be defined shortly) of size n/k×n/k. More formally,
the vertex set of H is

V (H) := {(i, j) | i or j is a non-negative multiple of n/k.}

Note that V (H) ⊆ V (G). We consider k2 many blocks G1, G2, · · · , Gk2 , where a vertex
(i, j) ∈ V (Gl) if and only if i′ nk ≤ i ≤ (i′ + 1)nk and j′ nk ≤ j ≤ (j′ + 1)nk , for some integer

68

Lh(2)

Lh(3)

Lv(2) Lv(3)

G1 G2 G3

G4 G5 G6

G7 G8 G9

s

t

Lh(2)

Lh(3)

Lv(2) Lv(3)

Lv(2, 2)

Lh(2, 2)

s

t

D1

(a) (b)

Figure 10.1: (a) An example of layered grid graph G and its decomposition into blocks (b) Corre-
sponding auxiliary graph H

i′ ≥ 0 and j′ ≥ 0 and the vertices for which any of the four inequalities becomes equality,
will be referred as boundary vertices. Moreover, we have l = i′ · k + j′ + 1. E(Gl) is the
set of edges in G induced by the vertex set V (Gl).

For every i ∈ [k+1], let Lh(i) and Lv(i) denote the set of vertices, Lh(i) := {(i′, j′)|j′ =
(i − 1)nk } and Lv(i) := {(i′, j′)|i′ = (i − 1)nk }. When it is clear from the context, we will
also use Lh(i) and Lv(i) to refer to the corresponding gridline in H. Observe that H has
k + 1 vertical gridlines and k + 1 horizontal gridlines.

For every pair of vertices u, v ∈ V (Gl)∩V (H) for some l, add the edge (u, v) to E(H)
if and only if there is a path from u to v in Gl, unless u, v ∈ Lv(i) or u, v ∈ Lh(i) for
some i. Also for every pair of vertices u, v ∈ V (Gl) for some l, such that u = (i1, j1) and
v = (i2, j2), where i1 = i2 = i′ nk for some i′ and j1 = j′ nk , j2 = (j′ + 1)nk for some j′, or
j1 = j2 = j′ nk for some j′ and i1 = i′ nk , i2 = (i′ + 1)nk for some i′, we add an edge between
u and v in the set E(H) if and only if there is a path from u to v in Gl and we call such
vertices as corner vertices.

Before proceeding further, let us introduce a few more notations that will be used later.
For j ∈ [k], let Lh(i, j) denote the set of vertices in Lh(i) in between Lv(j) and Lv(j + 1).
Similarly we also define Lv(i, j) (see Figure 10.1). For two vertices x, y ∈ Lv(i), we say
x ≺ y if x is below y in Lv(i). For two vertices x, y ∈ Lh(i), we say x ≺ y if x is right
of y in Lh(i). Note that we consider these two type of orderings to ensure that for any
x, y ∈ V (H) reachable from s in H, if x ≺ y, then x will be traversed by our algorithm
before y.

Lemma 10.2.1. There is a path from s to t in G if and only if there is path from s to t
in the auxiliary graph H.

Proof. As every edge (a, b) in H corresponds to a path from a to b in G, so if-part is trivial
to see. Now for the only-if-part, consider a path P from s to t in G. P can be decomposed
as P1P2 · · ·Pr, such that Pi is a path from xi to xi+1, where xi is the first vertex on P that

69

belongs to V (Gl) and xi+1 be the last vertex on P that also belongs to V (Gl), for some l
and in a layered grid graph, for such xi and xi+1, we have only following two possibilities:

i. xi and xi+1 belong to different horizontal or vertical gridlines, or

ii. xi and xi+1 are two corner vertices.

Now by the construction H, for every i, there must be an edge (xi, xi+1) in H for both
the above cases and hence there is a path from s to t in H as well.

Now we consider the case when two vertices x, y ∈ V (H) belong to the same vertical
or horizontal gridlines.

Claim 10.2.1. Let x and y be two vertices contained in either Lv(i) or Lh(i) for some i.
Then deciding reachability between x and y in G can be done in log space.

Proof. Let us consider that x, y ∈ Lv(i), for some i. As the graph G under consideration is
a layered grid graph, if there is a path between x and y, then it must pass through all the
vertices in Lv(i) that lies in between x and y. Hence just by exploring the path starting
from x through Lv(i), we can check the reachability and it is easy to see that this can be
done in log space, because the only thing we need to remember is the current vertex in
the path. Same argument will also work when x, y ∈ Lh(i), for some i and this completes
the proof.

Now we argue on the upper bound of the length of any path in the auxiliary graph H.
The idea is to partition the set V (H) into 2k + 1 partitions in such a way that any two
consecutive vertices on a path in H lie on two different partitions.

Lemma 10.2.2. Any path between s and t in H is of length 2k.

Proof. Let us first define the sets D0, D1, · · · , D2k (e.g., shaded region in Figure 10.1(b)
denotes D1), where

Dl := {(i, j)|(i′ − 1)
n

k
≤ i < i′

n

k
, (j′ − 1)

n

k
≤ j < j′

n

k
and i′ + j′ = l + 1}.

Now consider D′l := Dl∩V (H) for 0 ≤ l ≤ 2k. Clearly, D′0, D
′
1, · · · , D′2k induce a partition

on V (H). Now let us take any path s = x1x2 · · ·xr = t, from s to t in H, denoted as P .
Observe that by the construction of H, for any two consecutive vertices xi and xi+1 for
some i, if xi ∈ D′l for some l, then xi+1 ∈ D′l+1 and s ∈ D′0, t ∈ D′2k. As a consequence,
r = 2k + 1 and hence length of the path P is 2k.

10.2.2 Description of the Algorithm

We next give a modified version of DFS that starting at a given vertex, visits the set of
vertices reachable from that vertex in the graph H. At every vertex, the traversal visits
the set of outgoing edges from that vertex in counter-clockwise order.

In our algorithm we maintain two arrays of size k + 1 each, say Av and Ah, one for
vertical and the other for horizontal gridlines respectively. For every i ∈ [k + 1], Av(i) is
the topmost visited vertex in Lv(i) and analogously Ah(i) is the leftmost visited vertex in
Lh(i). This choice is guided by the choice of traversal of our algorithm. More precisely,
we cycle through the outgoing edges of a vertex in counter-clockwise order.

70

x

y

x′

y′

Gl

Figure 10.2: Crossing between two paths inside a block Gl

We perform a standard DFS-like procedure, using the tape space to simulate a stack,
say S. S keeps track of the path taken to the current vertex from the starting vertex.
By Lemma 10.2.2, the maximum length of a path in H is at most 2k. Whenever we visit
a vertex in a vertical gridline (say Lv(i)), we check whether the vertex is lower than the
i-th entry of Av. If so, we return to the parent vertex and continue with its next child.
Otherwise, we update the i-th entry of Av to be the current vertex and proceed forward.
Similarly when visit a horizontal gridline (say Lh(i)), we check whether the current vertex
is to the right of the i-th entry of Ah. If so, we return to the parent vertex and continue
with its next child. Otherwise, we update the i-th entry of Ah to be the current vertex
and proceed. The reason for doing this is to avoid revisiting the subtree rooted at the
node of an already visited vertex. The algorithm is formally defined in Algorithm 1.

Lemma 10.2.3. Let Gl be some block and let x and y be two vertices on the boundary of
Gl such that there is a path from x to y in G. Let x′ and y′ be two other boundary vertices
in Gl such that (i) there is a path from x′ to y′ in G and (ii) x′ lies on one segment of the
boundary of Gl between vertices x and y and y′ lies on the other segment of the boundary.
Then there is a path in G from x to y′ and from x′ to y. Hence, if (x, y) and (x′, y′) are
present in E(H) then so are (x, y′) and (x′, y).

Proof. Since G is a layered grid graph hence the paths x to y and x′ to y′ must lie inside Gl.
Also because of planarity, the paths must intersect at some vertex in Gl (See Figure 10.2).
Now using this point of intersection, we can easily show the existence of paths from x to
y′ and from x′ to y.

Lemma 10.2.4 will prove the correctness of Algorithm 1.

Lemma 10.2.4. Let u and v be two vertices in H. Then starting at u Algorithm 1 visits
v if and only if v is reachable from u in H.

Proof. It is easy to see that every vertex visited by the algorithm is reachable from u since
the algorithm proceeds along the edges of H.

By induction on the shortest path length to a vertex, we will show that if a vertex is
reachable from u then the algorithm visits that vertex. Let Bd(u) be the set of vertices
reachable from u that are at a distance d from u. Assume that the algorithm visits
every vertex in Bd−1(u). Let x be a vertex in Bd(u). Without loss of generality assume
that x is in Lv(i, j) for some i and j. A similar argument can be given if x belongs
to a horizontal gridline. Further, let x lie on the right boundary of a block Gl. Let

71

Input : The auxiliary graph H, two vertices s, t ∈ V (H)
Output : YES if there is a path from s to t; otherwise NO

1 Initialize two arrays Av and Ah and a stack S;
2 Initialize three variables curr, prev and next to NULL;
3 Push s onto S;
4 while S is not empty do
5 curr ← top element of S;
6 next← neighbor of curr next to prev in counter-clockwise order;
7 while next 6= NULL do

/* cycles through neighbors of curr */

8 if next = t then
9 return YES;

10 end
11 if next ∈ Lv(i) for some i and Av[i] ≺ next then
12 Av[i]← next;
13 break;

14 end
15 if next ∈ Lh(i) for some i and Ah[i] ≺ next then
16 Ah[i]← next;
17 break;

18 end
19 prev ← next;
20 next← neighbor of curr next to prev in counter-clockwise order;

/* NULL if no more neighbors are present */

21 end
22 if next = NULL then
23 remove curr from S;
24 prev ← curr;

25 else
26 add next to S;
27 prev ← NULL;

28 end

29 end
30 return NO;

Algorithm 1: AlgoLGGR: Algorithm for Reachability in the Auxiliary Graph H

72

Lh(j)

Lh(j + 1)

Lv(i− 1) Lv(i)

x

z

w w′

w′′

Gl

Figure 10.3: Crossing between two paths

Wx = {w ∈ Bd−1(u)|(w, x) ∈ E(H)}. Note that by the definition of H, all vertices in Wx

lie on the bottom boundary or on the left boundary of Gl.

Suppose the algorithm does not visit x. Since x is reachable from u via a path of length
d, therefore Wx is non empty. Let w be the first vertex added to Wx by the algorithm.
Then w is either in Lh(j), or in Lv(i−1). Without loss of generality assume w is in Lh(j).
Let z be the value in Av(i) at this stage of the algorithm (that is when w is the current
vertex). Since x is not visited hence x ≺ z. Also this implies that z was visited by the
algorithm at an earlier stage of the algorithm. Let w′ be the ancestor of z in the DFS
tree such that w′ is in Lh(j). There must exist such a vertex because z is above the j-th
horizontal gridline, that is Lh(j).

Suppose if w′ lies to the left of w then by the description of the algorithm, w is visited
before w′. Hence x is visited before z. On the other hand, suppose if w′ lies to the right
of w. Clearly w′ cannot lie to the right of vertical gridline Lv(i) since z is reachable from
w′ and z is in Lv(i). Let w′′ be the vertex in Lh(j + 1) such that w′′ lies in the tree path
between w′ and z (See Figure 10.3). Observe that all four vertices lie on the boundary of
Gl. Now by applying Lemma 10.2.3 to the four vertices w, x, w′ and w′′ we conclude that
there exists a path from w′ to x as well. Since x ≺ z, x must have been visited before z
from the vertex w′. In both cases, we see that z cannot be Av(i) when w is the current
vertex. Since z was an arbitrary vertex such that x ≺ z, the lemma follows.

The following lemma will help us to achieve a polynomial bound on the running time
of Algorithm 1.

Lemma 10.2.5. Every vertex in the graph H is added to the set S at most once in
Algorithm 1.

Proof. Observe that a vertex u in Lv(i) is added to S only if Av(i) ≺ u, and once u is
added, Av(i) is set to u. Also during subsequent stages of the algorithm, if Av(i) is set to
v, then u ≺ v. Hence u ≺ Av(i). Therefore, u cannot be added to S again.

We give a similar argument if u is in Lh(i). Suppose if u is in Lv(i) for some i and
Lh(j) for some j, then we add u only once to S. This check is done in Line 16 of Algorithm
1. However we update both Av(i) and Ah(j).

Algorithm 1 does not explicitly compute and store the graph H. Whenever it is queried
for an edge (x, y) in H, it recursively runs a reachability query in the corresponding sub
grid graph of G such that x is in the bottom left corner and y is in the top right corner

73

of that sub grid graph and produces an answer. The base case is when a query is made
to a grid graph of size k× k. For the base case, we run a standard DFS procedure on the
k × k size graph.

In every iteration of the outer while loop (Lines 4 – 29) of Algorithm 1, either an
element is added or an element is removed from S. Hence by Lemma 10.2.5 the loop
iterates at most 4nk times. The inner while loop (Lines 7 – 21), cycles through all the
neighbors of a vertex and hence iterates for at most 2n/k times. Each iteration of the
inner while loop makes a constant number of calls to check the presence of an edge in
a n/k × n/k sized grid. Let T (n) and S(n) be the time and space required to decide
reachability in a layered grid graph of size n× n respectively. Then,

T (n) =

{
8n2(T (n/k) +O(1)) if n > k

O(k2) otherwise.

Hence, T (n) = O
(
n

3 logn
log k

)
.

Since we do not store any query made to the smaller grids, therefore the space required
to check the presence of an edge in H can be reused. Av and Ah are arrays of size k + 1
each. By Lemma 10.2.2, the number of elements in S at any stage of the algorithm is
bounded by 2k. Therefore,

S(n) =

{
S(n/k) +O(k log n) if n > k

O(k2) otherwise.

Hence, S(n) = O
(

k
log k log2 n+ k2

)
.

Now given any constant ε > 0, if we set k = nε/2, then we get T (n) = O(n6/ε) and
S(n) = O(nε). This proves Theorem 10.5.

Chapter 11

Simultaneous Time-Space Upper
Bounds for Certain Problems in
Planar Graphs

In this chapter, we study simultaneous time-space bound of several graph theoretic prob-
lems that are important from the perspective of complexity theory. The problems include
shortest path in directed planar graphs, red-blue path problem in planar DAGs, perfect
matching in planar bipartite graphs and some other closely related problems. Let us first
recall the main results from Chapter 1 that we are going to prove in this chapter. Follow-
ing is the result on shortest path problem on directed planar graphs and is restatement of
Theorem 7.4.

Theorem 11.1. For directed planar graphs (containing no negative weight cycle and
weights are bounded by polynomial in n) and for any constant 0 < ε < 1

2 , there is an

algorithm that solves the ShortestPath problem in polynomial time and O(n
1
2

+ε) space,
where n is the number of vertices of the given graph.

Next we discuss a result on designing an algorithm for the RedBluePath problem in
planar DAGs. Note that this is restatement of Theorem 7.5.

Theorem 11.2. For any constant 0 < ε < 1
2 , there is a polynomial time algorithm that

solves the RedBluePath problem for planar DAGs using O(n
1
2

+ε) space.

Now using the reduction given in [Kul11] and the algorithm stated in the above theo-
rem, we get an algorithm to solve the directed reachability problem for a fairly large class
of graphs described in Section 11.2, that takes polynomial time and O(n

1
2

+ε) space. Thus
we are able to beat the bound given by Barnes, Buss, Ruzzo and Schieber [BBRS92] for
such class of graphs.

In this chapter, we also consider EvenPath problem and get the following theorem
(restatement of Theorem 7.6) regarding solving EvenPath problem.

Theorem 11.3. For any constant 0 < ε < 1
2 , there is a polynomial time algorithm that

solves the EvenPath problem in planar DAGs using O(n
1
2

+ε) space.

75

76

Our another contribution is to give an time-space efficient algorithm for perfect match-
ing problem in case of planar bipartite graphs. The following result was stated in chapter 1
as Theorem 7.7.

Theorem 11.4. In planar bipartite graphs, for any constant 0 < ε < 1
2 ,

1. PerfectMatching (Decision + Construction) can be solved in polynomial time and

O(n
1
2

+ε) space; and

2. HallObs (Decision + Construction) can be solved in polynomial time and O(n
1
2

+ε)
space.

The main building block of the proof of the above theorem is the Miller and Naor’s
algorithm [MN95] for perfect matching in planar bipartite graph.

Next we show that the complexity of even perfect matching in planar bipartite graph is
same as the perfect matching problem in planar bipartite graph and deciding the presence
of odd length cycle in directed planar graph. Thus we get the following theorem for
EvenPM problem.

Theorem 11.5. For any constant 0 < ε < 1
2 , there exists an algorithm that solves the

EvenPM problem for planar bipartite graphs in polynomial time and O(n
1
2

+ε) space.

We want to remind the reader that the above theorem is a restatement of Theorem 7.8.

11.1 Shortest Path Problem in Directed Planar Graphs

Let ShortestPath be the problem of computing the shortest distance and the corresponding
path between a pair vertices in a graph. For a given graph G = (V,E) with a weight
function w : E → R (negative weights are also allowed), and two vertices s and t, let
distwG(s, t) denote the shortest distance and pathwG(s, t) denote the shortest path from s
to t. We will consider the weight assigned to an edge is bounded by some polynomial in
n, where n is the number of vertices in G. Note that single-source shortest path problem
and all-pair shortest path problem can be solved by executing the algorithm used for
the ShortestPath problem polynomially many times. Now we consider the ShortestPath
problem when the given graph G is directed planar.

Proof of Theorem 11.1. Let G = (V,E) be the given directed planar graph, where |V | = n.

Consider any constant 0 < ε < 1/2. Let S be a (n
1
2

+ε, n−ε)-separator computed by
the procedure PlanarSeparatorFamily on the underlying undirected graph of G and
S = S ∪ {s, t}. Let us define an array Cs of size |S|, where Cs[i] will store the distance
of i-th vertex, denoted by vi, of the set S from the vertex s. Initially Cs[s] = 0, and
for all vi ∈ S such that vi 6= s, Cs[i] = ∞. For calculating the shortest distance, we use
Bellman-Ford algorithm if the graph is small; otherwise, we calculate the shortest distance
of the vertices in S from s through each connected component of G[V \ S] and then use
those distances to calculate the shortest distance from s to t in the overall graph. We do
this recursively to achieve the desired time and space bound. To find the shortest distance
between s and t in the given graph G, we run the procedure PlanarDist (Algorithm 2)
with the input (G, s, t, n, S, Cs), where n is the number of vertices of G.

77

Input : G′ = (V ′, E′), s′, t′, n, T,A
Output : distwG′(s

′, t′)
/* Let r′ = n′(−ε), |V ′| = n′. */

1 if n′ ≤ n
1
2 then

2 Run Bellman-Ford(G′, s′, t′) using the values stored in A and return
distwG′(s

′, t′);

3 else
4 Run PlanarSeparatorFamily on the underlying undirected graph of G′ to

compute a (n′(
1
2

+ε), r′)-separator and let us denote this separator by S′;

5 Set S′ := S′ ∪ {s′, t′};
6 Define an array Cs′ of size |S′|. Cs′ [i] will store distwG′(s

′, vi), where vi is the i-th
vertex of the set S′ and set ∀vi∈T , Cs′ [i] = A[i],∀vi 6∈T , Cs′ [i] =∞

7 for round = 1 to |S′| do
8 for every x ∈ V ′ do
9 for every v ∈ S′ do

/* Let Vx be the set of vertices of the undirected

version of G[V ′ \ S′]’s connected component containing

the vertex x. */

10 Run PlanarDist(G[Vx ∪ S′], s′, v, n, S′, Cs′);
11 Update Cs′ ;

12 end

13 end

14 end

15 end

Algorithm 2: Algorithm PlanarDist: Shortest Distance in Directed Planar Graphs

78

We use the procedure PlanarDist (Algorithm 2) as a subroutine to report the shortest
path. The algorithm is stated as PlanarShortPath (Algorithm 3) and to report the
shortest path between s and t in G, we run this algorithm with the input (G, s, t, n, S, Cs).

Input : G′ = (V ′, E′), s′, t′, n, T,A
Output : pathwG′(s

′, t′) in reverse order

1 Run PlanarDist(G′, s′, t′, n, T,A);

/* Let S′ be the corresponding separator obtained by running the

procedure PlanarSeparatorFamily and S′ = S′ ∪ {s′, t′}. Cs′ be the

corresponding array storing the shortest distances of vertices in

the separator from s′ and N(t′) be the set of neighbor vertices of

the vertex t′. */

2 Define an array Ct′ of size |S′|. Initialize Ct′ [t
′] = 0 and ∀vi 6=s′ , Cs[i] =∞.

3 for every x ∈ N(t′) do

4 for every v ∈ S′ do
/* Let Grev be the graph with the same set of vertices as G but

the direction of the edges are reversed. */

5 Run PlanarDist(Grev[Vx ∪ S′], t′, v, n, S′, Ct′);
6 end

7 end

/* Let v′ ∈ S′ such that distwGrev [Vx′∪S′]
(t′, v′) + distwG′(s

′, v′) = distwG′(s
′, t′).

*/

8 if |Vx′ ∪ S′| ≤ n
1
2 then

9 Run Bellman-Ford(Grev[Vx′ ∪ S′], t′, v′) and report pathwGrev [Vx′∪S′]
(t′, v′);

10 else
11 Run PlanarShortPath(Grev[Vx′ ∪ S′], t′, v′, n, S′, Ct′);
12 end
13 Reinitialize A and Run PlanarShortPath(G′, s′, v′, n, T,A);

Algorithm 3: Algorithm PlanarShortPath: Report Shortest Path in Directed Pla-
nar Graphs

In Algorithm 2, within the loop (Lines 8 – 13), we evaluate the shortest distance of all
the vertices vi ∈ S from s through each connected component of G[V \ S]. By update Cs
(Line 11), we mean that update the entry in Cs[i] for some i, if the currently calculated
distance of vi from s is smaller than the previously stored one. We run the loop (Lines
8 – 13) total |S| number of times and the reason for that is mentioned while proving the
correctness of the algorithm.

Let S(n) and T (n) denote the space and time complexity functions for computing
shortest distance in a graphs containing n vertices. Since (1 − ε)k ≤ 1

2 for k = O(1
ε), the

depth of the recursion is O(1
ε). Also, |Vx ∪ S′| ≤ 2n′(1−ε). This gives us the following

recurrence relation:

S(n′) =

{
Õ(n′(

1
2

+ε)) + S(2n′(1−ε)) if n′ > n
1
2

Õ(n
1
2) otherwise

79

Thus, S(n) = O(1
ε)Õ(n

1
2

+ε) = Õ(n
1
2

+ε).
For time analysis, we get the following recurrence relation:

T (n′) =

{
q(n)(p1(n′)T (2n′(1−ε)) + p2(n′)) if n′ > n

1
2

q(n)Õ(n
1
2) otherwise

where q(n), p1(n) and p2(n) are some polynomials in n. As the recursion depth is bounded
by O(1

ε) (a constant) and the subroutine PlanarDist (Algorithm 2) is called polynomial
many times, we have T (n) = p(n) for some polynomial p(n). Using a similar analysis, it

can easily be seen that the algorithm for reporting the shortest path also uses Õ(n
1
2

+ε)
space and polynomial time.

Proof of correctness: Next we show the correctness of the above algorithms using
induction. Let G′ = (V ′, E′), s′, t′, n, S, Cs be an instance of the procedure PlanarDist.

When n′ ≤ n
1
2 , the correct answer is given since it is just the execution of the Bellman-Ford

algorithm. Now consider the shortest path P from s to t, which can be decomposed as

s = v0
P1−→ v1

P2−→ v2 · · · vk
Pk−→ vk+1 = t, where each Pi, for 1 ≤ i ≤ k, is the shortest

path between vi−1 and vi through a O(n′(1−ε)) sized connected region. By induction on

n, we can say that s = v0
P1−→ v1

P2−→ v2 · · · vi−1
Pi−→ vi is the shortest path from s to vi.

As the size of the separator under consideration is Õ(n
1
2

+ε) and each path going from
one O(n′(1−ε)) sized region to other must pass through a vertex in the separator S, so
k ≤ |S|. Thus the execution of loop [Lines 8 – 13] in Algorithm 2 total |S| number of
times suffices to output the shortest distance between s and t. The above argument can
easily be proved by inducting on path length and is same as the proof of correctness of
standard Bellman-Ford algorithm [KT05].

Using a similar argument, it is easy to see that the procedure PlanarShortPath (Al-
gorithm 3) will correctly output the shortest path from s to t in the reverse order.

11.1.1 Detecting Negative Weight Cycle in Directed Planar Graphs

If we determine the shortest path from s to all other vertices then negative cycle must lie
in any one of these paths and shortest distance of that path is negative infinity. Using this
fact we can also detect negative weight cycle in a given graph. Now if there exists a negative
weight cycle in the given graph, then either that will be completely inside O(n(1−ε)) sized
region or it must pass through at least two vertices of the separator family. To detect
the negative weight cycle we use a slightly modification of the procedure PlanarDist

(Algorithm 2). In the modified version we run the procedure PlanarDist (Algorithm 2)
slightly more than |S| times and if in the last run any v, the value of Cs[v] changes then we
can infer that there is a negative weight cycle and which lies in the path of s to v. We can
report the negative weight cycle just using the procedure PlanarShortPath (Algorithm 3).
Thus the detecting and reporting negative weight cycle problem also have the same space
and time complexity (up to polynomial blow up) as that of shortest path problem.

Corollary 11.1.1. For directed planar graphs, for any constant 0 < ε < 1/2, there is an
algorithm that solves the problem of detecting negative weight cycle in polynomial time and
uses O(n

1
2

+ε) space, where n is the number of vertices of the given graph G.

80

11.2 Red-Blue Path Problem

11.2.1 Deciding Red-Blue Path in Planar DAGs

Given a directed graph G with each edge colored either red or blue and two vertices s
and t, a red-blue path denotes a path that alternates between red and blue edges and the
RedBluePath problem decides whether there exists a directed red-blue path from s to t
such that the first edge is red and the last edge is blue. The RedBluePath problem is a
generalization of the reachability problem in graphs, however this problem is NL-complete
even when restricted to planar DAGs [Kul11]. This makes it an interesting problem in
the area of space bounded complexity as to the best of our knowledge, this is the only
“reachability-like” problem in planar graphs that is hard for NL. Before going into the
proof of Theorem 11.2, let us recall one notation that given a directed graph G, we denote
the underlying undirected graph by Ĝ. We use this notation frequently in this section.

Proof of Theorem 11.2. Consider a planar DAG G. Let S be a (n
1
2

+ε, n−ε)-separator
computed by PlanarSeparatorFamily on Ĝ and let S = S ∪ {s, t}. For the sake of
convenience, we associate two numerical values to the edge colors – 0 to red and 1 to blue.
We run the subroutine RedBluePathDetect (Algorithm 6) with the input (G, s, t, n, 0, 1)
and if the returned value is true, then we say that there is a directed red-blue path from
s to t such that the first edge is red and last one is blue; otherwise we say that there is
no such path. In Algorithm 5, we use the notation (u, v) ∈(init,temp) E′ to decide whether
there is a red-blue path from u to v that starts with an edge of color value init and ends
with an edge of color value temp.

Input : G′ = (V ′, E′), s′, t′, init, final
Output : True if there is a red-blue path from s′ and t′ starts with init and ends

with final
/* Use two sets- Ni, for i = 0, 1, to store all the vertices that have

been explored with the color value i */

1 if s′ 6∈ Ninit then
2 Add s′ in Ninit;
3 for each edge (s′, v) ∈ E′ of color value init do
4 if v = t′ and init = final then
5 Return true;
6 end
7 Run ColoredDFS(G′, v, t′, init+ 1(mod 2), final);

8 end

9 end

Algorithm 4: Algorithm ColoredDFS: One of the Building Blocks of
RedBluePathDetect

In Algorithm 4, we use general DFS type search to check the presence of a red-blue
path between any two given vertices s′ and t′. The only difference with DFS search is that
here we explore edges such that color of the edges alternates between red and blue. If we
start from a vertex s′, then the for loop (Lines 3 – 8) explore the path starting from s′

such that first edge of the path is of specified color. In the main algorithm (Algorithm 6),

81

Input : G′ = (V
′
, E′), G′, s′, t′, init, final

Output : True if there is a red-blue path from s′ and t′ starts with init and ends
with final

/* Use two sets- Ri, for i = 0, 1, to store all the vertices that have

been explored with the color value i */

1 if s′ 6∈ Rinit then
2 Add s′ in Rinit;

3 for each (s′, v) ∈(init,temp) E′ for each temp ∈ {0, 1} do
4 if v = t′ and temp = final then
5 Return true;
6 end

7 Run ModifiedColoredDFS(G
′
, G′, v, t′, temp+ 1 (mod 2), final);

8 end

9 end

/* ‘‘(u, v) ∈(init,temp) E′?’’ query will be solved using the following

procedure */

10 for every a ∈ V do
/* V be the set of vertices of G′ */

/* Va = the set of vertices of Ĥ’s connected component containing

a, where H = G[V \ V ′] */

11 if RedBluePathDetect(G[Va ∪ V
′
], u, v, n, init, temp) is true then

12 Return true for the query;
13 end

14 end
15 Return false for the query;

/* End of the query procedure */

Algorithm 5: Algorithm ModifiedColoredDFS: One of the Building Blocks of
RedBluePathDetect

Input : G′, s′, t′, n, init, final
Output : True if there is a red-blue path from s′ and t′ starts with init and ends

with final
1 if n′ ≤ n

1
2 then

2 Run ColoredDFS(G′, s′, t′, init, final);
3 else

/* let r′ = n′(−ε) */

4 Run PlanarSeparatorFamily on Ĝ′ to compute a (n′(
1
2

+ε), r′)-separator and let

us denote this separator by S′;

5 Run ModifiedColoredDFS(G′ = (S′ ∪ {s′, t′}, E′), G′, s′, t′, init, final);
6 end

Algorithm 6: Algorithm RedBluePathDetect: Algorithm for Red-Blue Path in
planar DAG

82

we use the procedure ColoredDFS (Algorithm 4) as a base case, i.e., when the input graph
is small in size (is of size n1/2). Otherwise, we first compute S and then run Algorithm 5
on the auxiliary graph G = (S,E). Algorithm 6 does not explicitly store the graph G.
Whenever it is queried with a pair of vertices to check the presence of an edge within the
graph G, it recursively runs Algorithm 6 on all the connected components of G[V \ S]
separately (Lines 10 – 15 of Algorithm 5) and produces an answer. Finally, we perform
same DFS like search as in Algorithm 4 on G (Lines 1 – 9 of Algorithm 5).

In the base case, we use Algorithm 4 which takes linear space and polynomial time.
Thus due to the restriction of the size of the graph in the base case, we have Õ(n1/2)
space and polynomial time complexity. The sets N0 and N1 of the procedure ColoredDFS

(Algorithm 4) only store all the vertices of the input graph and we run the procedure
ColoredDFS (Algorithm 4) on a graph with n1/2 vertices and it visits all the edges of the
input graph at most once which results in the polynomial time requirement.

Let S(n) and T (n) denote its space and time complexity functions for input graphs
containing n vertices. Since (1− ε)k ≤ 1

2 for k = O(1
ε), the depth of the recursion is O(1

ε).

Also, |Va ∪ S′| ≤ 2n′(1−ε). This gives us the following recurrence relation:

S(n′) =

{
Õ(n′(

1
2

+ε)) + S(2n′(1−ε)) if n′ > n
1
2

Õ(n
1
2) otherwise

Thus, S(n) = O(1
ε)Õ(n

1
2

+ε) = Õ(n
1
2

+ε).
For time analysis, we get the following recurrence relation:

T (n′) =

{
q(n)(p1(n′)T (2n′(1−ε)) + p2(n′)) if n′ > n

1
2

q(n)Õ(n
1
2) otherwise

where q(n), p1(n) and p2(n) are some polynomials in n. As the recursion depth is bounded

by O(1
ε) (a constant), we have T (n) = p(n)O(1

ε
) for some polynomial p(n).

Proof of correctness: We now give a brief idea about the correctness of this algo-
rithm. In the base case, we use technique similar to DFS just by alternatively exploring
red and blue edges and thus this process gives us a path where two consecutive edges are
of different colors. Otherwise, we also do a DFS like search by alternatively viewing red
and blue edges and we do this search on the graph H = (S′ ∪ {s, t}, E′). By this process,
we decide on presence of a path in H from s to t such that two consecutive edges are of dif-
ferent colors in G and the edge coming out from s is red and the edge going in at t is blue.
This is enough as each path P in G must be broken down into the parts P1, P2, · · · , Pk
and each Pi must be a sequence of edges that starts and ends at some vertices of S′∪{s, t}
and also alternates in color. We find each such Pi, just by considering each connected
component of G(V ′ \ S′) and repeating the same steps recursively.

Due to [Kul11], we know that the reachability problem in directed graphs reduces to
RedBluePath in planar DAGs. For the class of graphs in which this reduction results the
sub-quadratic increase in the number of vertices, we have an algorithm for reachability
problem that takes sublinear space and polynomial time. As a special case of this we can
state the following theorem.

83

a

a

b b

a

bc

d

v

x

c

b

a
y

d

Red Edge:

Blue Edge:

v

Figure 11.1: Red-Blue Edge Gadget

Theorem 11.6. Given a directed acyclic graph G = (V,E), where |E| = Õ(n), with a
drawing in a plane such that the number of edge crossings is Õ(n) and two vertices s and
t, then for any constant 0 < ε < 1

2 , there is an algorithm that decides whether there is a

path from s to t or not. This algorithm runs in polynomial time and uses O(n
1
2

+ε) space,
where n is the number of vertices of G.

Proof. We consider a reduction similar to the reduction from directed reachability problem
to RedBluePath problem in planar DAG given in [Kul11]. We do the following:

i. insert new vertices in between edges of G so that in the resulting graph each edge
takes part in only one crossing, and

ii. replace each crossing of the resulting graph with a planarizing gadget as in Figure
11.1 and also replace each edge without any crossing with two edges as shown in
Figure 11.1.

Denote the resulting graph as Gplanar and the corresponding vertices of s and t as s′ and
t′. It is easy to see that there is a bijection between s− t paths in G and s′ − t′ red-blue
paths in Gplanar that starting with a red edge and ending with a blue edge.

If the drawing of the given graph G contains k edge crossings, then step (i) will intro-
duce at most 2k many new vertices and say after this step the number of edges becomes
m. Then step (ii) will introduce at most (2m + 3k) many vertices. It is clear from the
reduction itself that m = Õ(n) and thus the graph Gplanar contains Õ(n) many vertices.
Now by applying the procedure RedBluePathDetect (Algorithm 6) on Gplanar, we get the
desired result.

A large class of graphs will satisfy the conditions specified in Theorem 11.6. We now
explicitly give an example of one such class of graphs. Before that, we give some definitions.
Crossing number of a graph G, denoted as cr(G), is the lowest number of edge crossings
(or the crossing point of two edges) of a drawing of the graph G in a plane. A graph is
said to be k-planar if it can be drawn on the plane in such a way that each edge has at
most k crossing point (where it crosses a single edge). It is known from [PT97] that a
k-planar graph with n vertices has at most O(n

√
k) many edges. Note that a k-planar

graph has crossing number at most mk, where m is the number of edges. Now we can
state the following corollary.

Corollary 11.2.1. Given a directed acyclic graph, which is k-planar, where k = O(logc n),
for some constant c, with a drawing in a plane having minimum number of edge crossings

84

and two vertices s and t, then for any constant 0 < ε < 1
2 , there is an algorithm that

decides whether there is a path from s to t or not. This algorithm runs in polynomial time
and uses O(n

1
2

+ε) space, where n is the number of vertices of the given graph.

11.2.2 Deciding Even Path in Planar DAGs

Given directed graph G and two vertices s and t, EvenPath is the problem of deciding the
presence of a (simple) directed path from s to t, that contains even number of edges. We
can view this problem as a relaxation of RedBluePath problem, because a path starting
with red edge and ending with blue edge is always of even length. In this section, we
establish a relation between EvenPath problem in planar DAG with detecting a odd length
cycle in a directed planar graph with weight one (can also be viewed as an unweighted
graph).

Lemma 11.2.1. For directed planar graphs, for any constant 0 < ε < 1
2 , there is an

algorithm that solves the problem of deciding the presence of odd length cycle in polynomial
time and O(n

1
2

+ε) space, where n is the number of vertices of the given graph.

The above lemma is true due to the fact that we can do BFS efficiently for undirected
planar graph and it is enough to detect odd length cycle in each of the strong components of
the undirected version of the given directed planar graph. For undirected graph, presence
of odd length cycle can be detected using BFS algorithm and then put red and blue colors
on the vertices such that vertices in the consecutive levels get the opposite colors. After
coloring of vertices if there exists a monochromatic edge (edge where both vertices get the
same color), then we can conclude that there is an odd length cycle in the graph otherwise
there is no odd length cycle. But this is not the case for general directed graphs because
if we use the same approach we might end up with finding a set of edges which form an
cycle only if we ignore directions. However, the following proposition will help us to detect
odd length cycle in directed graph.

In the following proposition, we use u→ v to denote a directed edge (u, v) and x
P−→ y

to denote a directed path P from a vertex x to y.

Proposition 11.2.1. A strongly connected directed graph contains an odd length cycle if
and only if the underlying undirected graph contains an odd length cycle.

Proof. The forward direction follows trivially. Now to prove the converse direction, we will
use the induction arguments on the length of the odd cycle in the undirected version of
the graph. The base case is when the undirected version of the graph contains a 3-length
cycle. If the undirected edges present in the undirected cycle also form directed cycle
when we consider the corresponding edges in the directed graph, then there is nothing to
prove. But if this is not the case, then the Figure 11.2 will depict the possible scenarios.
As the graph is strongly connected, so there must be a path P from t to s and if this path

does not pass through the vertex x, then any one of the following two cycles s → t
P−→ s

or s→ x→ t
P−→ s must be of odd length. Now suppose P contains the vertex x and thus

P = P1P2, where P1 is the path from t to x and P2 is the path from x to s. It is easy to

see that all the three cycles s → t
P−→ s, x → t

P1−→ x and s → x
P2−→ s cannot be of even

length.

85

s

t t

s

P

x
x

P1

P2

Figure 11.2: For undirected cycle of length 3

u u
s tt

P
P

P

Case 1 Case 2

C’ C’

s

Figure 11.3: For undirected cycle of length (k + 2)

Now by induction hypothesis, assume that if the undirected version has a cycle of
k-length (k odd), then there exists an odd length cycle in the original directed graph.

Now let us prove this induction hypothesis for any undirected cycle of length (k + 2).
Consider the corresponding edges in the directed graph and without loss of generality
assume that this is not a directed cycle. As (k + 2) is odd, so there must be one position
at which two consecutive edges are in the same direction. Now contract these two edges
in both directed and undirected version of the graph and consider the resulting k-length
cycle in the undirected graph. So according to the induction hypothesis, there must be
one odd length cycle C in the resulting directed graph. Now if C does not contain the
vertex u (where we contract the two edges), then expanding the contracted edges will not
destroy that cycle and we get our desired odd length cycle in the directed version of the
graph. But if this is not the case, then consider C after expanding those two contracted
edges(t → u → s), say the resulting portion is C ′. If C ′ is a cycle, then there is nothing
more to do. But if not, then consider the path P from s to t (there must be such path as
the graph is strongly connected). Now there will be two possible cases: either P contains
u or not. It is easy to see that for both the possible cases (case 1 and case 2 of Figure
11.3 and in that figure every crossing of two paths denotes a vertex), all cycles generated
by C ′ and P cannot be of even length. In case 1, if all the cycles generated by the paths

s
P−→ u and t

C′−→ s and all the cycles generated by the paths u
P−→ t and t

C′−→ s are of even

length, then as t
C′−→ s is of odd length, so the path s

P−→ u
P−→ t must be of odd length.

And then one of the following two cycles s
P−→ u → s and u

P−→ t → u is of odd length.

Similarly in case 2, if all the cycles generated by s
P−→ t and t

C′−→ s are of odd length, then

the path s
P−→ t is of odd length and so the cycle s

P−→ t→ u→ s is of odd length.

Proof of Proposition 11.2.1. In a directed planar graph, any cycle cannot be part of two
different strong component, so checking presence of odd cycle is same as checking presence
of odd cycle in each of its strong components. Constructing strong components of a

86

directed planar graph can be done by polynomial many times execution of PlanarReach
algorithm (See Theorem 8.3), because a strong component will contain vertices x, y if
and only if PlanarReach(G, x, y, n) and PlanarReach(G, y, x, n) both return “yes”. And

thus strong component construction step will take Õ(n
1
2

+ε) space and polynomial time.
After constructing strong components, it is enough to check presence of odd cycle in the
underlying undirected graph (according to Proposition 11.2.1). So now on, without loss
of generality, we can assume that the given graph G is strongly connected. Now execute
UPlanarOddCycle(Ĝ, s, n) (Algorithm 7) after setting the color of s (any arbitrary vertex)
to red. Here we adopt the well known technique used to find the presence of odd length
cycle in a graph using BFS together with coloring of vertices. In Algorithm 7, instead of
storing color values for all the vertices, we only stores color values for the vertices present
in the separator (Line 11) and we do the coloring recursively by considering the smaller
connected components (Line 10). The algorithm is formally defined in Algorithm 7.

Input : G′ = (V ′, E′), s′, n, where G′ is an undirected graph
Output : “Yes” if there is an odd length cycle

1 if n′ ≤ n
1
2 then

2 Run BFS(G′ , s′) and color the vertices with red and blue such that vertices in
the alternate layer get the different color starting with a vertex that is already
colored;

3 if there is a conflict between stored color of a vertex and the new color of that
vertex or there is an edge between same colored vertices then

4 return “yes”;
5 end

6 else

/* let r′ = n′(−ε) */

7 Run PlanarSeparatorFamily on Ĝ′ to compute a (n′(
1
2

+ε), r′)-separator and let

us denote this separator by S′;

8 Set S′ := S′ ∪ {s′};
9 for every x ∈ V ′ do

/* Vx = the set of vertices of Ĥ’s connected component

containing x, where H = G[V ′ \ S′] */

10 Run UPlanarOddCycle(G[Vx ∪ S′], s′, n);
11 Store color of the vertices of S′ in an array of size |S′|;
12 end

13 end

Algorithm 7: Algorithm OddCycleUndirectedPlanar: Checking Presence of Odd
Cycle in an Undirected Planar Graph

By doing the similar type of analysis as that of RedBluePathDetect (Algorithm 6), it

can be shown that the procedure UPlanarOddCycle (Algorithm 7) takes O(n
1
2

+ε) space
and polynomial time when input graph has n vertices. So over all, space complexity of
detecting odd length cycle in directed planar graph is O(n

1
2

+ε) and time complexity is
polynomial in n.

Now we argue on the correctness of the procedure UPlanarOddCycle (Algorithm 7).

87

This algorithm will return “yes” in two cases. First case is when there is an odd length
cycle completely inside a small region (n′ ≤ n

1
2) and so there is nothing to prove for this

case as it is an well known application of BFS algorithm [KT05]. Now in the second case,
a vertex v in the separator family will get two conflicting colors means that there exists
at least one vertex u in the separator family such that there are two vertex disjoint odd
as well as even length path from u to v and as a result, both of these paths together will
form an odd length cycle.

Now we are ready to prove the main theorem of this subsection.

of Theorem 11.3. Given a planar DAG G and two vertices s and t, first report a path from
s to t, say P , which can easily be done by polynomially many invocation of the algorithm
PlanarReach of Theorem 8.3 and thus requires polynomial time and O(n

1
2

+ε) space. If
the path P is not of even length, then construct a directed graph G′ which has the same
vertices and edges as G except the edges in path P , instead we do the following: if there
is an edge (u, v) in P , then we add an edge (v, u) in G′. Now we can observe that the new
graph G′ is a directed planar graph.

Claim 11.2.1. G has an even length path if and only if G′ has an odd length cycle.

Proof. Suppose G′ has an odd length cycle, then that cycle must contains the reverse
edges of P in G as the graph G under consideration is a planar DAG and thus does not
contain any directed cycle. Denote the reverse of the path P by Prev. Now let us assume
that the odd cycle C ′ contains a portion of Prev (See Figure 11.4). Assume that the cycle
C ′ enters into Prev at x (can be t) and leaves Prev at y (can be s). Then in the original

graph G, the path s
P−→ y

C′−→ x
P−→ t is of even length. Now for the converse, let us

s

y

x

t

C’

s

y

x

t

P

In graph G’ In graph G

Figure 11.4: When G′ contains an odd length cycle

assume that there exists an even length path P1 from s to t in G. Both the paths P and
P1 may or may not share some edges and without loss of generality we can assume that
they share some edges (See Figure 11.5). Now if we consider all the cycles formed by Prev
and portions of P1 in G′, then it is easy to see that all the cycles cannot be of even length
until length of P and P1 both are of same parity (either both odd or both even), but this
is not the case.

Now we can check the presence of an odd length cycle in the graph G′ in polynomial
time and O(n

1
2

+ε) space (by Lemma 11.2.1).

88

s

t

a

b

c

d

e

f

P P1

s

t

f

e

d

c

b

a

In graph G In graph G’

Figure 11.5: When G contains an even length s− t path

11.3 Perfect Matching in Planar Bipartite Graphs

11.3.1 Finding a Perfect Matching

In a graph G, a matching is a set of vertex disjoint edges and the end-points of these edges
are said to be matched. A perfect matching is a matching where every vertex of the graph
is matched. In this section, we consider the following two matching problems.

1. PerfectMatching (Decision): given a graph G, decide whether G contains a perfect
matching, and

2. PerfectMatching (Construction): given a graph G, construct a perfect matching (if
exists).

We first discuss the Miller and Naor’s algorithms (Algorithm 8 and 9) for solving the
decision version of the perfect matching problem in planar bipartite (undirected) graphs
and also for constructing a perfect matching (Algorithm 10) [MN95]. Our main observation
is that all of the above three algorithms can be implemented in polynomial time and using
O(n

1
2

+ε) space.

Before discussing the algorithms, we first define a few terminologies which will be used
later.

Definition 11.1 (Capacity-Demand Graph). A capacity-demand graph of an undirected
graph G = (V,E) is defined as a triple (G′ = (V ′, E′), c, d), where

E′ = {(u, v) | {u, v} ∈ E}

and every edge (u, v) ∈ E′ is assigned a real valued capacity c(u, v), and every vertex
v ∈ V ′ is assigned a real valued demand d(v).

Note that a capacity-demand graph of an undirected graph is a directed graph.

Definition 11.2 (Pseudo-flow in a capacity-demand graph). A pseudo-flow in a capacity-
demand graph (G = (V,E), c, d) is defined as a function f : E → R such that the following
holds:

89

i. for every edge (u, v) ∈ E, f(u, v) = −f(v, u), and

ii. for every vertex v ∈ V ,
∑

w∈V :(v,w)∈E
f(v, w) = d(v).

Definition 11.3 (Flow in a capacity-demand graph). A flow in a capacity-demand graph
(G = (V,E), c, d) is defined as a function f : E → R such that:

i. f is a pseudo-flow in (G, c, d), and

ii. for every (u, v) ∈ E, f(u, v) ≤ c(u, v).

A zero-demand graph (G, c) is a capacity-demand graph where d(v) = 0, for all the
vertices v ∈ V .

The dual graph of a planar graph G = (V,E) is a graph that has a vertex corresponding
to each face of G and an edge corresponding to each edge of e ∈ E. The edge corresponding
to e ∈ E in the dual graph connects the vertices corresponding to the two faces of G which
have e as common on their boundaries.

Definition 11.4 (Directed Dual). Suppose the dual of a undirected planar graph G =
(V,E) with respect to a fixed embedding is denoted by Gd = (V d, Ed). Then the directed
dual of G is a directed graph denoted by G∗ = (V ∗, E∗) such that

E∗ = {(u, v) | {u, v} ∈ Ed}.

We are now ready to mention the main lemma from [MN95].

Lemma 11.3.1 ([MN95]). Suppose (G, c) is a zero-demand graph. There exists a flow in
(G, c) if and only if the directed dual G∗ contains no negative weight cycle with respect to
weights c.

Input : A capacity-demand graph (G, c, d)
Promise:

∑
v d(v) = 0

Output : A pseudo-flow in (G, c, d)

1 Construct a spanning tree T in G;
2 For every edge {u, v} 6∈ T , set f ′(u, v) = 0;
3 For each edge {u, v} ∈ T , deleting the edge {u, v} separates the tree T into two

sub-trees, denoted as Tu (sub-tree containing u) and Tv (sub-tree containing v).
Set f ′(u, v) =

∑
w∈Tu

d(w);

Algorithm 8: MN-Pseudo-Flow [MN95]

Proof of Part 1 of Theorem 11.4. We can construct pseudo-flow in a capacity-demand
graph having total demand zero, in log-space using the procedure MN-Pseudo-Flow (Al-
gorithm 8) [DGKT12]. Now using the procedure MN-Decision (Algorithm 9), we reduce
PerfectMatching (Decision) problem in planar bipartite (undirected) graph G to the prob-
lem of detecting negative weight cycle in the directed planar graph G∗, which can be solved
in polynomial time and O(n

1
2

+ε) space (by Corollary 11.1.1).

90

Input : A planar bipartite (undirected) graph G = (A ∪B,E)
Output : “Yes” if G has a perfect matching; “No” otherwise

1 Construct a capacity-demand graph (G, c, d) as follows: set d(u) = 1, ∀u∈A and
d(v) = −1, ∀v∈B. Also set c(u, v) = 1 and c(v, u) = 0, ∀u∈A,v∈B;

2 Construct a pseudo-flow f ′ in (G, c, d);
3 Construct a zero-demand graph (G, c− f ′);
4 Output Yes if the directed dual G∗ has no negative weight cycle with respect to

weights (c− f ′); Output No otherwise;

Algorithm 9: MN-Decision [MN95]

Input : A planar bipartite (undirected) graph G = (A ∪B,E)
Promise: the directed dual G∗ = (V ∗, E∗) has no negative weight cycle with

respect to weights (c− f ′)
Output : A perfect matching in G

1 Fix a vertex s∗ ∈ V ∗;
2 Set f ′′(u∗, v∗) := distwG∗(s

∗, v∗)− distwG∗(s∗, u∗), ∀u∗∈V ∗ ;
3 Set f = f ′′ + f ′;
4 For u ∈ A, v ∈ B output “u is matched with v” if and only if f(u, v) = 1;

Algorithm 10: MN-Construction [MN95]

Now observe in the Algorithm 10 that the construction of perfect matching in G
boils down to the problem of finding the shortest distance distwG∗(u

∗, v∗) between a pair

of vertices u∗, v∗ ∈ V ∗ and we can do this in polynomial time and O(n
1
2

+ε) space (by
Theorem 11.1). Note that the space bound follows from the fact that the size of V ∗ is
same as the number of faces in G, which is linear in number of vertices of G as G is
planar.

11.3.2 Constructing a Hall Obstacle

According to the Hall’s Theorem [LP86], a bipartite (undirected) graph G = (A ∪ B,E)
has a perfect matching if and only if |A| = |B| and for every S ⊆ A, |N(S)| ≥ |S|, where
N(S) := {v ∈ B|∃u ∈ A : (u, v) ∈ E}. A hall-obstacle in a bipartite graph G = (A∪B,E)
is a set S ⊆ A such that |N(S)| < |S|. We consider the following problems.

1. HallObs (Decision): given a bipartite (undirected) graph G, decide whether it con-
tains a Hall-obstacle, and

2. HallObs (Construction): given a bipartite (undirected) graph G, construct a Hall-
obstacle (if exists).

In this subsection, we mention the correspondence between the problem of constructing
Hall-obstacle in a planar bipartite graph and the the problem of finding negative weight
cycle in a planar graph. To do this we first restate some useful facts from [DGKT12].

Let G = (A ∪ B,E) be a planar bipartite (undirected) graph. Now consider the
capacity-demand graph (G, c, d) and a pseudo-flow f ′ in it as defined in the procedure
MN-Decision (Algorithm 9). Let C∗ be a negative weight cycle in the directed dual

91

G∗ with respect to weight c − f ′. Let (V1 = A1 ∪ B1, V2 = A2 ∪ B2) be the cut in G
corresponding to C∗, where V1 corresponds to the set of faces of G∗ that are in the interior
of C∗ i.e., the vertices of G that are on one side of the cut corresponding to C∗ and V2

corresponds to the set of faces of G∗ that are in the exterior of C∗ i.e., the vertices of G
that are on the other side of the cut corresponding to C∗. Since f ′ satisfies the property
that for every edge (u, v) ∈ E, f ′(u, v) = −f ′(v, u), f ′(C∗) decomposes into the sum of
f ′s of the faces (in G∗) that are in the interior of C∗. Thus we have,

f ′(C∗) = |A1| − |B1| (11.1)

Lemma 11.3.2 ([DGKT12]). Consider any edge (a, b) ∈ (V1, V2) where a ∈ A1, b ∈ B2

and c(a, b) = 1. Then moving b from B2 to B1 does not increase the weight of the cut and
the corresponding cycle in the dual with respect to the weights c− f ′.

Corollary 11.3.1 ([DGKT12]). G∗ has a negative weight cycle with respect to the weights
c − f ′ if and only if it has a negative weight cycle with respect to the weights −f ′, and
hence if and only if there exists a negative weight cycle with respect to the weights cn4−f ′.

Proof of Part 2 of Theorem 11.4. By Corollary 11.1.1, we can find negative weight cycle
in G∗ with respect to the weights cn4 − f ′ in polynomial time and O(n

1
2

+ε) space. Since
N(A1) ⊆ B1 and |A1| > |B1| (see Equation 11.1), so the set A1 forms a Hall-obstacle for
G and this completes the proof.

11.3.3 Deciding Even Perfect Matching

EvenPM denotes the following problem: given a graph G with each edge colored with
either red or blue, decide whether there exists a perfect matching containing even number
of red edges. Now consider the EvenPM problem in planar bipartite (undirected) graphs.

Proof of Theorem 11.5. Given a planar bipartite (undirected) graph G = (V,E), first

construct a perfect matching M in it, which can be done in polynomial time and O(n
1
2

+ε)
space (by Part 1 of Theorem 11.4). If M contains even number of red edges, then there is
nothing to do. Otherwise, construct a weighted directed graph H with weight function w,
as follows: H contains an edge (u, v) if and only if there exists x ∈ V such that {u, x} ∈M
but {x, v} 6∈M . If the matching edge {u, x} and the non-matching edge {x, v} are of the
same color, then set w(u, v) = 0; otherwise set w(u, v) = 1.

Claim 11.3.1. There exists a perfect matching in G consisting of even number of red
edges if and only if H contains an odd-weight cycle.

Proof. Suppose H contains an odd-weight cycle. Now consider the corresponding portion
of the graph in G, which is an even length cycle C consisting of alternating matched edge
and non-matched edges. Now consider a new matching where every non-matched edge in
C becomes matched and vice versa. The new matching is perfect because it does not affect
the other part of matching in M and also matches every vertex in C. This new perfect
matching contains even number of red edges as there are odd number of pair {u, x}, {x, v}
such that {u, x} ∈M but {x, v} 6∈M and they are of different colors.

For the converse direction, let us assume that M ′ is a perfect matching in G consisting
of even number of red edges. If M ∩M ′ 6= φ, then discard those common edges and now

92

consider the sub-graph of G, say G′, which contains an edge e if either e ∈ M or e ∈ M ′
but e 6∈ (M ∩M ′). Now vertices in each of the connected component of G′ are of degree
2 and thus each connected component is just a cycle. As M contains odd number of red
edges and M ′ contains even number of red edges, so at least one of the cycles in G′ contains
odd number of red edges. Now if we consider the corresponding cycle in H (every cycle
in G′ corresponds to one cycle in H), then it must be of odd weight.

Now observe that the process of construction of H is nothing but contraction of
matched edges present in M on G and as G is a planar graph so the directed graph
H is also planar. To check the presence of an odd-weight cycle in H, we construct another
directed graph H ′ from H using the following process: replace every edge (x, y) having
weight 0 by two edges (x, vxy) and (vxy, y) each with weight 1. It is easy to see that as H
is a directed planar graph, so is the graph H ′.

Claim 11.3.2. H contains an odd-weight cycle if and only if H ′ contains an odd-weight
cycle.

Proof. If a cycle in H uses an edge (x, y) of weight 0, then there will be a corresponding
cycle which will contain the portion x −→ vxy −→ y and as both the edges (x, vxy) and
(vxy, y) have weight 1, so the parity of the resulting cycle will not change. So, if H contains
an odd-weight cycle then H ′ also contains an odd-weight cycle.

Similar type of argument can be used to prove the converse direction as replacing the
edges (x, vxy) and (vxy, y) in H ′ by the single edge (x, y) of weight 0 will result in a cycle
of same parity in the graph H.

Observe that the new graph H ′ contains O(n) vertices as the original graph G is planar.
As H ′ contains each edge of weight 1, so we can view this graph as an unweighted directed
graph and then we can check the presence of odd length cycle in polynomial time and
O(n

1
2

+ε) space (by Theorem 11.2.1) and this completes the proof.

Chapter 12

Conclusion

In this part of this thesis, we make an incremental progress towards resolving the question
“NL ⊆ SC?”. For that purpose we consider directed reachability problem which is known
to be NL-complete and show time-space upper bound for certain special graph classes.
We show polynomial time and Õ(n2/3) space bound for H-minor-free graphs. The main
ingredient of the proof is to efficiently construct a separator for this class of graphs. In
general, if we have a space efficient construction of separator for any subclass of directed
graphs then we can get similar time-space bound for that subclass [INP+13]. However, it
is not clear for which subclasses a separator exists. Certainly the subclasses for which we
know that a separator exists, it is interesting to come up with a space efficient construction
of such a separator for those subclasses. For example, we know the existence of similar
kind of separators for various subclasses of chordal graphs [MW86] including interval and
proper interval graphs [Pan15].

In Chapter 10 we provide a polynomial time algorithm that solves reachability problem
for layered planar graphs using only O(nε) space for any ε > 0. The immediate step after
this is to extend the same time-space bound to the class of planar graphs and for that
purpose it is sufficient to consider grid graphs instead of planar graphs because grid graph
reachability is log-space reducible to planar reachability [ABC+09]. The main hindrance
in this direction is to get some clever “marking scheme” for the vertices that are already
traversed while doing DFS. The question is whether we can come up with such a marking
scheme or not.

Another question that we want to mention is whether we can use the similar approach
as used in deciding reachability in layered planar graphs to establish the same time-space
bound for the RedBluePath problem in the planar DAGs. Clearly this will put NL inside
nSC and thus might be difficult. So as a first step one can consider layered planar DAGs
instead of just planar DAGs and try to establish the same result. It is not at all clear how
to extend techniques used in Chapter 10 in the RedBluePath problem for layered planar
DAGs.

93

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[ABC+09] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta,
and Sambuddha Roy. Planar and Grid Graph Reachability Problems. Theory
of Computing Systems, 45(4):675–723, 2009.

[ACDN15] Manindra Agrawal, Diptarka Chakraborty, Debarati Das, and Satyadev Nan-
dakumar. Dimension, Pseudorandomness and Extraction of Pseudorandom-
ness. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2015), volume 45 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 221–235, Dagstuhl, Germany, 2015. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[AD11] Tetsuo Asano and Benjamin Doerr. Memory-Constrained Algorithms for
Shortest Path Problem. In CCCG, 2011.

[AHLM07] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective
strong dimension, algorithmic information, and computational complexity.
SIAM Journal on Computing, 37:671–705, 2007.

[AKNW14] Tetsuo Asano, David G. Kirkpatrick, Kotaro Nakagawa, and Osamu Watan-
abe. Õ(

√
n)-Space and Polynomial-Time Algorithm for Planar Directed Graph

Reachability. In Mathematical Foundations of Computer Science 2014 - 39th
International Symposium, MFCS 2014, Budapest, Hungary, August 25-29,
2014. Proceedings, Part II, pages 45–56, 2014.

[AL98] Eric Allender and Klaus-Jörn Lange. RUSPACE(log n) ⊆ DSPACE (log2 n
/ log log n). Theory Comput. Syst., 31(5):539–550, 1998.

[AL06] K. B. Athreya and S. N. Lahiri. Measure Theory and Probability Theory.
Springer Verlag, 2006.

[All07] E. Allender. Reachability problems: An update. Computation and Logic in
the Real World, pages 25–27, 2007.

[ARZ98] Eric Allender, Klaus Reinhardt, and Shiyu Zhon. Isolation, Matching, and
Counting: Uniform and Nonuniform Upper Bounds. Journal of Computer
and System Sciences, 59:181, 1998.

95

96

[BBRS92] Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A
sublinear space, polynomial time algorithm for directed s-t connectivity. In
Structure in Complexity Theory Conference, 1992., Proceedings of the Seventh
Annual, pages 27–33, 1992.

[Bel58] Richard Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.

[Bil95] Patrick Billingsley. Probability and Measure. Wiley-Interscience, 3 edition,
April 1995.

[BJLR91] Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange, and Peter Rossmanith.
Unambiguity and fewness for logarithmic space. In L. Budach, editor, Fun-
damentals of Computation Theory, volume 529 of Lecture Notes in Computer
Science, pages 168–179. Springer Berlin Heidelberg, 1991.

[BLR90] Giuseppe Di Battista, Wei-Ping Liu, and Ivan Rival. Bipartite Graphs, Up-
ward Drawings, and Planarity. Inf. Process. Lett., 36(6):317–322, 1990.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, November
1984.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues
of entropy. In Sanjeev Arora, Klaus Jansen, Jos D. P. Rolim, and Amit Sa-
hai, editors, RANDOM-APPROX, volume 2764 of Lecture Notes in Computer
Science, pages 200–215. Springer, 2003.

[BT87] Giuseppe Di Battista and Roberto Tamassia. Upward Drawings of Acyclic
Digraphs. In Graph-Theoretic Concepts in Computer Science, International
Workshop, WG ’87, Kloster Banz/Staffelstein, Germany, June 29 - July 1,
1987, Proceedings, pages 121–133, 1987.

[BTV09] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed Planar
Reachability Is in Unambiguous Log-Space. ACM Transactions on Computa-
tion Theory, 1(1):1–17, 2009.

[CGH+85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Freidmann, Steven Rudich,
and Roman Smolensky. The bit extraction problem or t-resilient functions,
1985.

[Coo79] S.A. Cook. Deterministic CFL’s are accepted simultaneously in polynomial
time and log squared space. In Proceedings of the eleventh annual ACM Sym-
posium on Theory of Computing, pages 338–345. ACM, 1979.

[Cov74] T. Cover. Universal gambling schemes and the complexity measures of Kol-
mogorov and Chaitin. Technical Report 12, Stanford University Department
of Statistics, October 1974.

[CPT+14] Diptarka Chakraborty, Aduri Pavan, Raghunath Tewari, N. V. Vinodchan-
dran, and Lin F. Yang. New time-space upperbounds for directed reach-
ability in high-genus and H-minor-free graphs. In 34th International Con-

97

ference on Foundation of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2014, December 15-17, 2014, New Delhi, India, pages 585–595,
2014.

[CR80] Stephen A. Cook and Charles Rackoff. Space Lower Bounds for Maze Thread-
ability on Restricted Machines. SIAM J. Comput., 9(3):636–652, 1980.

[CSV84] Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant Depth
Reducibility. SIAM J. Comput., 13(2):423–439, 1984.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wi-
ley Series in Telecommunications and Signal Processing). Wiley-Interscience,
2006.

[CT15a] Diptarka Chakraborty and Raghunath Tewari. An O(nε) space and polyno-
mial time algorithm for reachability in directed layered planar graphs. In
Algorithms and Computation - 26th International Symposium, ISAAC 2015,
Nagoya, Japan, December 9-11, 2015, Proceedings, pages 614–624, 2015.

[CT15b] Diptarka Chakraborty and Raghunath Tewari. Simultaneous time-space up-
per bounds for certain problems in planar graphs. CoRR, abs/1502.02135,
2015.

[CT15c] Diptarka Chakraborty and Raghunath Tewari. Simultaneous time-space up-
per bounds for red-blue path problem in planar DAGs. In WALCOM: Al-
gorithms and Computation - 9th International Workshop, WALCOM 2015,
Dhaka, Bangladesh, February 26-28, 2015. Proceedings, pages 258–269, 2015.

[Das14] Debarati Das. Characterization of non-pseudorandomness. Master’s thesis,
Indian Institute of Technology Kanpur, 2014.

[DGKT12] S. Datta, A. Gopalan, R. Kulkarni, and R. Tewari. Improved bounds for
Bipartite Matching on surfaces. In Prooceedings of 29th Symposium on The-
oretical Aspects of Computer Science (STACS), 2012.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[DKLM10] Samir Datta, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan. Pla-
narity, Determinants, Permanents, and (Unique) Matchings. ACM Trans.
Comput. Theory, 1(3):10:1–10:20, March 2010.

[DLN+09] Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and
Fabian Wagner. Planar Graph Isomorphism is in Log-Space. In Annual IEEE
Conference on Computational Complexity, pages 203–214, 2009.

[DNTW09] Samir Datta, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner.
Graph Isomorphism for K3,3-free and K5-free graphs is in Log-space. In
FSTTCS, pages 145–156, 2009.

98

[EPA99] Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. Tight Lower
Bounds for st-Connectivity on the NNJAG Model. SIAM J. Comput., 28(6),
1999.

[FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect
matching is in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 754–763, 2016.

[For56] Lester R. Ford Jr. Network Flow Theory. Santa Monica, California: RAND
Corporation, pages P–923, 1956.

[G06] Sunil Kumar G. Characterization of randomness using betting games. Mas-
ter’s thesis, Indian Institute of Technology Kanpur, 2006.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Tech-
niques. Cambridge University Press, 2001.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cam-
bridge University Press, 2008.

[GRS04] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for
bit-fixing sources by obtaining an independent seed. In 45th Symposium on
Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome,
Italy, Proceedings, pages 394–403, 2004.

[GT95] Ashim Garg and Roberto Tamassia. Upward planarity testing. Order,
12(2):109–133, 1995.

[HILL99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom gen-
erator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[Hita] J. M. Hitchcock. Effective Fractal Dimension Bibliography,
http://www.cs.uwyo.edu/ ∼jhitchco/bib/dim.shtml (current April, 2011).

[Hitb] J. M. Hitchcock. Resource Bounded Measure - Bibliography,
http://www.cs.uwyo.edu/ ∼jhitchco/bib/rbm.shtml (current April, 2011).

[Hit03] J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability.
Theoretical Computer Science, 304(1–3):431–441, 2003.

[Hit04] John M. Hitchcock. Fractal dimension and logarithmic loss unpredictability,
2004.

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computa-
tional entropy, or toward separating pseudoentropy from compressibility. In
Advances in Cryptology - EUROCRYPT 2007, 26th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Barcelona, Spain, May 20-24, 2007, Proceedings, pages 169–186, 2007.

http://www.cs.uwyo.edu/~jhitchco/bib/dim.shtml
http://www.cs.uwyo.edu/~jhitchco/bib/rmb.shtml

99

[HRV10] Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Efficiency improvements
in constructing pseudorandom generators from one-way functions. In Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 437–446, 2010.

[INP+13] T. Imai, K. Nakagawa, A. Pavan, N.V. Vinodchandran, and O. Watanabe. An
O(n1/2+ε)-Space and Polynomial-Time Algorithm for Directed Planar Reacha-
bility. In Computational Complexity (CCC), 2013 IEEE Conference on, pages
277–286, 2013.

[IW96] Russell Impagliazzo and Avi Wigderson. P=BPP unless E has sub-exponential
circuits: Derandomizing the xor lemma (preliminary version). In In Proceed-
ings of the 29th STOC, pages 220–229. ACM Press, 1996.

[KKR08] Sampath Kannan, Sanjeev Khanna, and Sudeepa Roy. STCON in Di-
rected Unique-Path Graphs. In Ramesh Hariharan, Madhavan Mukund,
and V Vinay, editors, IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, volume 2 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 256–267, Dagstuhl,
Germany, 2008. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[KMW09] Philip N. Klein, Shay Mozes, and Oren Weimann. Shortest paths in directed
planar graphs with negative lengths: a linear-space O(n log2 n)-time algo-
rithm. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 236–245, 2009.

[KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[Kul11] Raghav Kulkarni. On the Power of Isolation in Planar Graphs. TOCT, 3(1):2,
2011.

[KUW85] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a Perfect
Matching is in Random NC. In Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island,
USA, pages 22–32, 1985.

[KW11] Ken-ichi Kawarabayashi and Paul Wollan. A simpler algorithm and shorter
proof for the graph minor decomposition. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8
June 2011, pages 451–458, 2011.

[KZ03] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing
sources and exposure-resilient cryptography. In In Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, pages 92–
101, 2003.

[LP84] Andrea S. LaPaugh and Christos H. Papadimitriou. The even-path problem
for graphs and digraphs. Networks, 14(4):507–513, 1984.

[LP86] L. Lovasz and M.D. Plummer. Matching Theory. 1986.

100

[LRVW03] Chi-Jen Lu, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Extrac-
tors: optimal up to constant factors. In Lawrence L. Larmore and Michel X.
Goemans, editors, STOC, pages 602–611. ACM, 2003.

[Lut03a] J. H. Lutz. The dimensions of individual strings and sequences. Information
and Computation, 187:49–79, 2003. Preliminary version appeared as [?].

[Lut03b] Jack H. Lutz. Dimension in complexity classes. SIAM J. Comput., 32(5):1236–
1259, 2003.

[Lut11] Jack H. Lutz. A divergence formula for randomness and dimension. Theor.
Comput. Sci., 412(1-2):166–177, 2011.

[MN95] Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources
and sinks. SIAM Journal on Computing, 24:1002–1017, 1995.

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. 2001. Johns
Hopkins Stud. Math. Sci, 2001.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching Is as
Easy as Matrix Inversion. In Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, 1987, New York, New York, USA, pages 345–354,
1987.

[MW86] Clyde L Monma and Victor K Wei. Intersection graphs of paths in a tree.
Journal of Combinatorial Theory, Series B, 41(2):141 – 181, 1986.

[Ned99] Zhivko P. Nedev. Finding an Even Simple Path in a Directed Planar Graph.
SIAM J. Comput., 29:685–695, October 1999.

[Nis95] Noam Nisan. RL ⊆ SC. In In Proceedings of the Twenty Fourth Annual ACM
Symposium on Theory of Computing, pages 619–623, 1995.

[NT99] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and
new constructions. J. Comput. Syst. Sci., 58(1):148–173, 1999.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994.

[NZ93] Noam Nisan and David Zuckerman. More deterministic simulation in logspace.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, May 16-18, 1993, San Diego, CA, USA, pages 235–244, 1993.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal
of Computer and System Sciences, 52:43–52, 1996.

[Pan15] Bhawani Sankar Panda. Separator theorems for interval graphs and proper
interval graphs. In Algorithms and Discrete Applied Mathematics - First In-
ternational Conference, CALDAM 2015, Kanpur, India, February 8-10, 2015.
Proceedings, pages 101–110, 2015.

[Poo93] Chung Keung Poon. Space Bounds for Graph Connectivity Problems on
Node-named JAGs and Node-ordered JAGs. In FOCS, pages 218–227, 1993.

101

[PT97] János Pach and Géza Tóth. Graphs Drawn with Few Crossings per Edge.
Combinatorica, 17(3):427–439, 1997.

[PY82] Christos H. Papadimitriou and Mihalis Yannakakis. The Complexity of Re-
stricted Spanning Tree Problems. J. ACM, 29(2):285–309, April 1982.

[Rag11] Nikhil Raghu. Quantifying pseudorandomness of distributions using betting
games. Technical report, Indian Institute of Technology Kanpur, 2011.

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM,
55(4), 2008.

[RS03] Neil Robertson and P. D. Seymour. Graph Minors. XVI. Excluding a Non-
planar Graph. J. Comb. Theory Ser. B, 89(1):43–76, September 2003.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, ex-
tractors, and depth-two superconcentrators. SIAM Journal on Discrete Math-
ematics, 13:2000, 2000.

[RTV06] Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks on
regular digraphs and the RL vs. L problem. In In Proceedings of the 38th
Annual ACM Symposium on Theory of Computing (STOC 06), pages 457–
466, 2006.

[Sav70] Walter J. Savitch. Relationships Between Nondeterministic and Deterministic
Tape Complexities. J. Comput. Syst. Sci., 4:177–192, 1970.

[Sch71] C.P. Schnorr. A unified approach to the definition of random sequences.
Mathematical systems theory, 5(3):246–258, 1971.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin of the EATCS, 77:67–95, 2002.

[SV12] Derrick Stolee and N. V. Vinodchandran. Space-Efficient Algorithms for
Reachability in Surface-Embedded Graphs. In IEEE Conference on Com-
putational Complexity, pages 326–333, 2012.

[TV00] Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable
distributions. In FOCS, pages 32–42. IEEE Computer Society, 2000.

[TV12] Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation
in planar graphs. Inf. Comput., 215:1–7, 2012.

[TW09] Thomas Thierauf and Fabian Wagner. Reachability in K3,3-free Graphs and
K5-free Graphs is in Unambiguous Log-Space. In 17th International Confer-
ence on Foundations of Computation Theory (FCT), Lecture Notes in Com-
puter Science 5699, pages 323–334. Springer-Verlag, 2009.

[Vin14] N. V. Vinodchandran. Space Complexity of the Directed Reachability Prob-
lem over Surface-Embedded Graphs. Technical Report TR14-008, I, 2014.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 1999.

102

[VZ12] Salil P. Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and sim-
plifying pseudorandom generator constructions. In Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 817–836, 2012.

[Wag37] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische
Annalen, 114(1):570–590, 1937.

[Wig92] Avi Wigderson. The complexity of graph connectivity. Mathematical Foun-
dations of Computer Science 1992, pages 112–132, 1992.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In Proceedings
of the 23rd Annual Symposium on Foundations of Computer Science, SFCS
’82, pages 80–91, Washington, DC, USA, 1982. IEEE Computer Society.

Index

h-almost embeddable, 60

apices, 60

Bellman-Ford algorithm, 50, 76
bipartite graphs, 88
bit-fixing source, 5, 33
boundary, 68, 70
BPP, 5, 41
breadth first search, 47, 84

capacity-demand graph, 88
circuit, 7
clique-sum, 61
computational indistinguishability, 3, 7
conditional pseudoentropy, 24, 26
cumulative loss, 13

depth first search, 47, 70
depth first search tree, 72
dimension, 4, 12, 14, 16, 20, 25, 27, 28
directed acyclic graph, 55, 82
directed dual, 89

edge, 55
embedding, 55
even path problem, 51, 84
even perfect matching problem, 51, 91
EXP, 41

face, 56, 60
flow, 89

genus, 56
graph, 55
grid graph, 48, 67, 93
gridline, 68

H-minor-free graphs, 56
Hall’s obstacle, 90
hard function, 41

Hausdroff dimension, 4

K5, 56, 62
K3,3, 56, 62
K3,3-free graphs, 56, 63
K5-free graphs, 56, 63
KL divergence, 10
KL-hardness, 26, 29
KL-predictor, 26
Kuratowski’s theorem, 49

L, 47
layered grid graph, 50, 67
layered planar graph, 67
log-space reduction, 66
loss function, 13
loss rate, 13

martingale, 8, 17
min-entropy, 10, 23
minor, 56

near-SC, 66, 93
next-bit pseudoentropy, 24, 43
NL, 47, 93
NL-complete, 80
NNJAG model, 48
node, 60
non-uniform, 4, 9

one-way function, 43
orientable surface, 55

P, 5, 41
path decomposition, 60
pathwidth, 60
perfect matching, 88
perfect matching problem, 51, 88
planar graphs, 48, 56, 76, 88, 93
planarizing set, 57, 62
predictor, 8

103

104

pseudo Shannon entropy, 24
pseudo-flow, 88
pseudoentropy, 3, 23, 43
pseudorandom extractor, 31, 36, 43
pseudorandom generator, 41, 43
pseudorandom walk, 33
pseudorandomness, 7, 8, 18
pushdown machine, 66
pushdown near-SC, 66

quasi-NC, 51

randomness extractor, 4, 31
reachability problem, 47, 64, 67, 93
red-blue path, 80
red-blue path problem, 51, 80
red-blue problem, 93
RL, 47
RNC, 51

s-gale, 8
s-pseudorandom, 12
samplable distributions, 40
sampling, 35
SC, 47, 66, 93
separator, 57, 62, 76, 80
Shannon entropy, 10
shortest path problem, 50, 76
strong dimension, 13, 16, 20
strong unpredictability, 15

TISP, 65
tree decomposition, 60, 62
treewidth, 60

UL, 50
unpredictability, 3, 7, 14, 27, 28
upward planar graphs, 65

vertex, 55
vortices, 60

walk, 56
weak dimension, 12
weak unpredictability, 14

zero-demand graph, 89

	List of Publications
	List of Figures
	I Pseudorandomness & Derandomization
	Introduction
	Organization of Part I of the Thesis

	Preliminaries
	Notations
	Pseudorandomness
	Gales and Predictors
	Equivalence between s-Gale and Predictor
	Basics of Information Theory

	Dimension and Pseudorandomness
	Quantification of Pseudorandomness
	Defining Dimension

	Unpredictability and Dimension
	Properties of Dimension

	Pseudoentropy and Dimension
	Different Notions of Pseudoentropy
	High HILL-type pseudo min-entropy implies high dimension
	Equivalence between dimension and next-bit pseudo Shannon entropy

	Pseudorandom Extractor and Derandomization
	Pseudorandom Extractors and Lower Bound
	Deterministic Pseudorandom Extractor for Nonpseudorandom Bit-fixing Sources
	Discussion on Pseudorandom Extractor for Nonpseudorandom Samplable Distributions

	Approaching Towards ¶ = BPP

	Conclusion

	II Time-space Trade-off in Small Space Computation
	Introduction
	The Reachability Problem
	Our Contribution on the Reachability Problem

	Some Other Graph Theoretic Problems
	Our Contribution

	Organization of Part II of the Thesis

	Preliminaries
	Notations
	Graph Embedding and Planarity
	Separator and Directed Planar Reachability
	A Reachability Algorithm for High-genus Graphs

	New Time-Space Upperbounds for Directed Reachability in H-minor-free Graphs
	A Reachability Algorithm for H-minor-free Graphs
	Graph Minor Decomposition Theorem
	Constructing Separator for H-minor-free Graphs

	An O(n) Space and Polynomial Time Algorithm for Reachability in Directed Layered Planar Graphs
	Class nSC and its Properties
	Reachability in Layered Planar Graphs
	The Auxiliary Graph H
	Description of the Algorithm

	Simultaneous Time-Space Upper Bounds for Certain Problems in Planar Graphs
	Shortest Path Problem in Directed Planar Graphs
	Detecting Negative Weight Cycle in Directed Planar Graphs

	Red-Blue Path Problem
	Deciding Red-Blue Path in Planar DAGs
	Deciding Even Path in Planar DAGs

	Perfect Matching in Planar Bipartite Graphs
	Finding a Perfect Matching
	Constructing a Hall Obstacle
	Deciding Even Perfect Matching

	Conclusion
	Bibliography
	Index

