CS746: Endsem Examination

Maximum Marks: 40

Due on Nov 27, 2012

NOTE: Feel free to discuss the questions and answers with each other. However, everyone needs to write the answers separately. Also, please submit answers in a PDF file, preferably not scans of handwritten text!

Question 1 (marks $\mathbf{5}+\mathbf{1 5}$). Let f be analytic inside domain C. Prove that the number of zeros of f inside C equals $\frac{1}{2 \pi} \Delta_{C} \arg (f)$ where $\Delta_{C} \arg (f)$ is the total change in argument of $f(z)$ when moving along C.
Let $N(T)$ be the number of zeros of $\zeta(z)$ in the rectangle $0<\Re(z)<1$ and $0<\Im(z)<T$. Prove that

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+O(\log T)
$$

Hint: Let $f=\xi, C$ be the rectangle with vertices $2,2+i T,-1+i T,-1$ and use above.
Question 2 (marks 10). Let χ be a primitive character modulo q (primitive means $\chi^{k} \neq 1$ for any $k<\phi(q)$; all the results we discussed in class regarding L-functions hold only for primitive characters as non-primitive characters are characters also of some $p<q, p \mid q)$. Assume that $\chi(-1)=1$. Let

$$
\xi(z, \chi)=(q / \pi)^{z / 2} \Gamma(z / 2) L(z, \chi)
$$

Prove that $L(z, \chi)$ has infinitely many zeros in the strip $0 \leq \Re(z) \leq 1$ and

$$
\xi(z, \chi)=e^{A z+B} \prod_{\rho}\left(1-\frac{z}{\rho}\right) \cdot e^{z / \rho}
$$

where ρ ranges over non-trivial zeros of $L(z, \chi)$. You may assume that $\xi(z)=\xi(1-z)$.
Question 3 (marks 10). Define

$$
G_{k}(z)=\sum_{(m, n) \neq(0,0)} \frac{1}{(m z+n)^{k}}
$$

for $k \geq 3$. Prove that

$$
G_{k}(\tau z)=(c z+d)^{k} G_{k}(z)
$$

for $\tau \in S L_{2}(Z), \tau=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

