
CS681: Computational Number Theory and Algebra (Fall 2009)

Lecture 1 & 2: Integer and Modular Arithmetic
July 30, 2009

Lecturer: Manindra Agrawal Scribe: Purushottam Kar

1 Integer Arithmetic
Efficient recipes for performing integer arithmetic are indispensable as they are widely used in
several algorithms in diverse areas such as cryptology, computer graphics and other engineering
areas. Hence our first object of study would be the most basic integer operations - namely addition,
subtraction, multiplication and division. We will start off with algorithms that are typically referred
to as “high-school” or “peasant” algorithms and move on to more efficient ones wherever scope
for improvement is found.

1.1 Integer Addition and Subtraction
Given two n-bit numbers a and b, the high-school algorithms take O (n) time to perform addition
and subtraction. Now this is optimal upto constant factors since the input size itself is Ω(n). Hence
these do not pose a challenge to us. Of course for someone designing a processor, these constant
factors may decide whether the chip becomes a market leader or not but we shall consider the issue
of integer addition and subtraction closed from now on having obtained optimal algorithms for the
same (many thanks to our respective high school Math teachers for this) .

1.2 Integer Multiplication
Unfortunately we have less to thank our high school teachers on this matter since the high school
algorithm takes O (n2) time to multiply two n-bit numbers. This is too slow for most scientific
calculations. A slight improvement comes due to an observation of Gauss on multiplication of
complex numbers.

Gauss observed that the product (a+bi)(c+di) can be calculated using just three multiplications
and five additions instead of four multiplications and four additions. Let k1 = ac, k2 = bd, k3 =
(a+ b)(c+ d). Then (a+ bi)(c+ di) = (k1 − k2) + (k3 − k1 − k2)i. This was the trick employed
by Karatsuba and Ofman in [KO62] to arrive at anO

(
nlog2 3

)
algorithm for integer multiplication.

What is done in this algorithm is to express each n-bit number using two n
2
-bit numbers. Thus

a = a12
n
2 + a0 and b = b12

n
2 + b0. Hence we can use the above trick to multiply these two

numbers using three n
2
-bit multiplications and some constant number of O (n) operations which

include adding the intermediate results, left shifts etc. So the time complexity of this algorithm is
M(n) = 3M

(
n
2

)
+O (n) which gives M(n) = O

(
nlog2 3

)
.

1



This method of breaking up numbers can be generalized to break numbers into more parts and
save on some multiplications using similar tricks. This led to a family of multiplication algorithms
known as Toom-Cook methods [Too63, Coo66] which give an asymptotic time complexity of
O
(
n

log(2k−1)
log(k)

)
for any k > 1 and hence can give a complexity of O (n1+ε) for any ε > 0.

This was improved by Schönage and Strassen using Spectral techniques (more specifically
Fourier Analysis) to O (n log n log log n) in [SS71]. After this came a long period of waiting
before Fürer and De-Kurur-Saha-Saptharishi in a series of closely spaced papers [F0̈7, DKSS08]
improved the time complexity to O

(
n log n 2log∗ n

)
where log∗ denotes the iterated log function.

Of course one does not typically use the “fastest” method on all instances. As it turns out the
algorithms by Fürer and De et al outperform the Schönage-Strassen algorithm in practice only on
astronomically large numbers due to the large constants involved. Thus for really huge numbers,
one uses the algorithms due to Fürer and De et al at the top level but as the recursive calls are
made to smaller numbers, one switches to the Schönage-Strassen algorithm only to switch to the
Karatsuba algorithm for still smaller numbers and finally to the high school algorithm for the
bottom level recursive calls.

1.3 Integer Division
As it turns out, if asymptotic complexity is all that we are interested in then integer division has the
same time complexity as integer multiplication. In fact the operations of multiplication, squaring,
division, inversion and square-rooting all have the same time complexity. However in this lecture
our aim is only to show that division is no more difficult than multiplication. For this we require
the Newton-Raphson method for inversion.

This method is used in general to find roots of a real valued function f by starting with a well-
informed guess x0 for the root and improving it iteratively using the update rule xi+1 = xi− f(xi)

f ′(xi)
.

The method typically has a quadratic convergence but is also known to go astray at times. But
in our case we will show that it approaches its goal in a steadfast manner. We shall of course
use a slightly modified version of the algorithm keeping in mind not to keep very high precision
numbers. Note that all logarithms are taken to base 2 unless otherwise mentioned.

Let us take the two n-bit integers to be divided as a and b where b < a. We want to find
integers d and r such that a = bd + r and r < b. We will always work only with positive integers
for simplicity. For now let us assume that b has been scaled down to the range

(
1
2
, 1
)

by dividing
by an appropriate power or 2. For this assume b > 2. The case b = 2 is clearly very simple to
handle. From now on, till otherwise mentioned, we shall call this scaled down n-bit number as b.
Our goal here is to find a good approximation of 1

b
. Note that 1

b
∈ (1, 2).

Let us choose x0 = 1 as our first approximation. Clearly x0 <
1
b

and 1 − bx0 <
1
2
. Truncate

1 − bx0 to the first bit after the decimal point and call this quantity y0. Clearly y0 <
1
2

as well.
Define yi = y2

i−1 and xi+1 = xi(1 + yi) for all i > 0. Consider the following results :

Lemma 1.1. For any i > 0, we have the following to be true

1. yi < 1

22i

2



2. 1− bxi < 1

22i

3. yi is at most 2i bits long

4. xi is at most 2i bits long

Proof. We present the respective proofs below. All proofs are by induction on i.

1. For i = 0 we have already shown the result. Suppose the result also holds upto some i, then
we have yi+1 = y2

i <
1

22i+1 .

2. For i = 0 we have already shown the result. Suppose the result also holds upto some i,
then we have 1 − bxi+1 = 1 − bxi(1 + yi) = 1 − bxi − bxiyi <

1

22i +
(

1

22i − 1
)
yi <

1

22i +
(

1

22i − 1
)

1

22i = 1

22i+1 .

3. For i = 0 this is true because of choice of y0. Suppose the result also holds upto some i,
then we have yi+1 = y2

i and hence the number of bits in yi+1 can be atmost twice that of yi.
Hence the result holds.

4. For i = 0 this is true by choice of x0. Suppose the result also holds upto some i, then we
have xi+1 = xi(1 + yi). Since yi < 1 and both xi and yi are at most 2i bits long, the result
holds.

At this point we fix the issue of scaling b to within the range
(

1
2
, 1
)
. Let m > 0 such that

b̃ = b
2m ∈

[
1
2
, 1
)
. Then it is clear that if x is such that 1 − b̃x < ε then if x̃ = x

2m then 1 − bx̃ < ε
as well. Now we state a final lemma before moving on to prove our desired result.

Lemma 1.2. Fix i = log n+ 1. Then if a = bd+ r then ‖ax̃i − d| ≤ 1.

Proof. Clearly ‖ax̃i−d‖ = ‖d(bx̃i−1)+rx̃i‖ < d

22i + r
b
≤ d

22i +1− 1
b
≤ 1 since r < b, log b ≤ n

and log d ≤ n.

The preceding lemmata give us an O (M(n)) algorithm for integer division where M(n) is
the asymptotic complexity for integer multiplication. This can be shown as follows : at the i-th
iteration, all we do is multiply and add 2i-bit numbers (this includes the squaring step). This takes
M (O (2i)) +O (2i) time which is O (M (2i)) since M (O (n)) = O (M(n)) and M(n) = Ω(n).
Another outcome of M(n) = Ω(n) is that M(a) +M(b) ≤M(a+ b) for all a, b ≥ 1.

In the beginning we calculate 1− bx0 which takes O (M(n)) time. The calculations at the end
to find d from xlogn+1 also takes O (M(n)) time. Due to some uncertainty in the value of d, we
may have to try out a constant number of values in the vicinity of the d obtained. All this will take
time O (M(n)). Hence integer division is no more difficult than integer multiplication.

3



Note: There are some minute details of the algorithm that need to be taken care of. It can be seen
that the algorithm will fail if y0 = 0. However this is actually a good thing for us because it tells us
that our very first approximation is as good as something we hoped to get several iterations down
the line. Thus if 1

2l−1 ≥ 1 − bx0 >
1
2l , then we can retain 2dlog le bits of 1 − bx0 and call this the

dlog le-th iteration and proceed.

2 Modular Arithmetic
In this section we will deal with how to do the four basic integer operations on n-bit numbers a
and b modulo another n-bit number m. It should be clear that modular addition, subtraction and
multiplication can be done in O (M(n)) time. As far as division is concerned we first have to
define what does it mean for a

b
to be zmodm.

Definition 2.1. For any three integers a, b and c, a
b

modm is said to be defined if there exists an
integer z such that bz ≡ amodm. In such a situation we say a

b
≡ zmodm.

Lemma 2.2. a
b

modm for integers a and b such that (a, b) = 1 is defined iff (m, b) = 1.

Proof. (⇒) Suppose a
b

modm is defined and a
b

= rm + z where z ∈ Z and r ∈ Q such that
br ∈ Z. Hence a = brm + bz. Now suppose (m, b) > 1. This implies from the above equation
that (a, b) > 1 as well which is contradictory to our assumption. Hence (m, b) = 1.
(⇐) Suppose (m, b) = 1, hence there exist p, q ∈ Z such that pm+ qb = 1. Hence apm+aqb = a
which implies b(aq) ≡ amodm. Hence a

b
modm is defined.

Using the above lemma we can easily find a
b

modm in O (n2) time. First using the extended
Euclid’s algorithm determine if (m, b) = 1. If this is indeed the case then the algorithm will
also output the pair (p, q) and clearly q ≡ 1

b
modm. Hence aq ≡ 1

b
modm. Since the Euclid’s

algorithm works in quadratic time and M(n) = o(n2) hence the algorithm takes only O (n2) time.

References
[Coo66] Stephen A. Cook. On the Minimum Computation Time of Functions. PhD thesis,

Department of Mathematics, Harvard University, 1966.

[DKSS08] Anindya De, Piyush Kurur, Chandan Saha, and Ramprasad Saptharishi. Fast Integer
Multiplication Using Modular Arithmetic. In Fortieth Annual ACM Symposium on
Theory of Computing, 2008.

[F0̈7] Martin Fürer. Faster Integer Multiplication. In Thirty Ninth Annual ACM Symposium
on Theory of Computing, 2007.

[KO62] A. Karatsuba and Yu. Ofman. Multiplication of Many-Digital Numbers by Automatic
Computers. Proceedings of the USSR Academy of Sciences, 145:293–294, 1962.

4



[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing,
7:281–292, 1971.

[Too63] Andrei Toom. The Complexity of a Scheme of Functional Elements Realizing the
Multiplication of Integers. Soviet Mathematics - Doklady, 3:714–716, 1963.

5


	Integer Arithmetic
	Integer Addition and Subtraction
	Integer Multiplication
	Integer Division

	Modular Arithmetic

