CS 681: Computational Number Theory and Algebra Lecture 9 Polynomial factorization over Finite Fields Lecturer: Manindra Agrawal Scribe: Sudeepa Roy August 19, 2005

1 Introduction

In the last lecture we studied the tool automorphism over finite rings. In this lecture we will discuss how to use automorphism to factorize a polynomial over finite fields. Let f(x) be a polynomial of degree d over field F_q .

Definition 1.1 f is square free if g^2 does not divide for any g.

2 Factorization algorithms for different types of polynomials

2.1 Case I : *f* is not square free

In this case $g^2 | f$ for some g. Let $\frac{df}{dx} = f'$. Then g | gcd(f, f'). This produces a factor of f.

2.2 Case II : *f* is square free

Let $f = f_1 f_2 \cdots f_k$ where each f_i is irreducible and let deg $f_i = d_i$ with

$$d_1 \le d_2 \le \dots \le d_k$$

Let $R = F_q[X]/(f(X))$ = $\bigoplus_{i=1}^k F_q[X]/(f_i(X))$

[by Chinese Remaindering, as all the f_i s are distinct and irreducible, so are prime to each other].

Let

$$\psi(y) = y^q$$

Observation 2.1 ψ is an automorphism of $F_q[X]/(f_i(X))$ and $\psi^j = id$ in $F_q[X]/(f_i(X))$ iff $j = d_i$.

2.2.1 Case II.1 : There is an i such that $d_i > d_1$

Then ψ^{d_1} is trivial in $F_q[X]/(f_1(X))$ but not in $F_q[X]/(f_i(X))$. In other words, $\psi^{d_1}(X) - X = 0$ in $F_q[X]/(f_1(X))$ but not in $F_q[X]/(f_i(X))$ $\Rightarrow f_1(x) \mid \psi^{d_1}(x) - x$ but **not** $f_i(x) \mid \psi^{d_1}(x) - x$

Algorithm

for i = 1 to d - 1 do compute $gcd(\psi^i(x) - x, f(x))$

Time Complexity

Observation 2.2 $gcd(\psi^i(x) - x, f(x)) = gcd((\psi^i(x) - x) \mod f(x), f(x))$

Hence in each step of the algorithm we will perform $= gcd(x^{q^i} \mod f(x) - x, f(x))$ so that the degree of both the terms are bounded above by deg f(x) = d.

To compute x^{q^i} we will follow repeated squaring method, where we will compute the sequence $x, x^2, x^4, \dots, x^{2^j}$ [each modulo f] unless $2^j > q^i$. Here no. of squaring required = $\log q^i = i \log q \leq d \log q$ as $i \leq d$.

Using FFT, complexity of polynomial multiplication = complexity of polynomial division = $O(d \log d)$ where degree of each polynomial is bounded by d. So at each step of the above sequence computation, multiplication and taking modulo f needs $O(d \log d)$ operations. As each element of the field F_q is $\log q$ bits long, so complexity of multiplication of coefficients of f using FFT is $O(\log q \log \log q \log \log \log q)$, or ignoring sublogarithmic factors $\tilde{O}(\log q)$.

Hence time complexity to compute x^{q^i} = $\tilde{O}(d \log q. d \log d. \log q)$ = $\tilde{O}(d^2 (\log q)^2 \log d)$ = $\tilde{O}(d^2 \log^2 q)$ [ignoring log d factor]

To compute $gcd(\psi^i(x) - x, f(x)) = \tilde{O}(d^3 \log^2 q)$ [as we may have to iterate at most d times to get the gcd].

Hence to iterate the procedure d-1 times, time complexity of the algorithm = $\tilde{O}(d^4 \log^2 q)$.

[Using more intelligent gcd algorithm the time complexity can be reduced by a factor of d].

2.2.2 Case II.2 : $d_1 = d_2 = \cdots = d_k = \frac{d}{k}$

In this case, $gcd(\psi^i(x) - x, f(x)) = 1$ for $i < \frac{d}{k}$ and $gcd(\psi^{\frac{d}{k}}(x) - x, f(x)) = f(x)$. Hence we can obtain no. of factors of the polynomial f, if we note down the point i = t such that the value of the gcd changes from 1, then $\frac{d}{t} = k = no$. of factors of f.

The first step will be to reduce the problem to finding roots [finding roots is equivalent to find the linear factors of f, so it is no harder than factorization problem].

 $R = \bigoplus_{i=1}^{k} F_q[X]/(f_i(X))$ [by Chinese Remaindering, as all the f_i s are distinct and irreducible] Let $S = \{e(X) \mid e(X) \in R \& \psi(e(X)) = e(X)\}$ Each e(X) can be viewed as a k-tuple.

Observation 2.3 Each component of $e(X) \in S$ represented as a k-tuple $\in F_q$.

Hence, $|S| = q^k > q = |F_q|$ if k > 1. [We have k tuples and q elements in each tuple, and by Chinese Remaindering Theorem all are distinct elements of R] \Rightarrow There is an $e(X) \in S - F_q$

[To be continued in the next lecture].