
CS 681: Computational Number Theory and Algebra Lecture 9

Polynomial factorization over Finite Fields

Lecturer: Manindra Agrawal Scribe: Sudeepa Roy

August 19, 2005

1 Introduction

In the last lecture we studied the tool automorphism over finite rings. In this lecture we
will discuss how to use automorphism to factorize a polynomial over finite fields.
Let f(x) be a polynomial of degree d over field Fq.

Definition 1.1 f is square free if g2 does not divide for any g.

2 Factorization algorithms for different types of polynomials

2.1 Case I : f is not square free

In this case g2 | f for some g.
Let df

dx = f ′.
Then g | gcd(f, f ′).
This produces a factor of f .

2.2 Case II : f is square free

Let f = f1f2 · · · fk

where each fi is irreducible and let deg fi = di with

d1 ≤ d2 ≤ · · · ≤ dk

Let R = Fq[X]/(f(X))
= ⊕k

i=1Fq[X]/(fi(X))
[ by Chinese Remaindering, as all the fi s are distinct and irreducible, so are prime to each
other ].

Let
ψ(y) = yq

Observation 2.1 ψ is an automorphism of Fq[X]/(fi(X)) and ψj = id in Fq[X]/(fi(X))
iff j = di.
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2.2.1 Case II.1 : There is an i such that di > d1

Then ψd1 is trivial in Fq[X]/(f1(X)) but not in Fq[X]/(fi(X)).
In other words,

ψd1(X) − X = 0 in Fq[X]/(f1(X)) but not in Fq[X]/(fi(X))
⇒ f1(x) | ψd1(x) − x but not fi(x) | ψd1(x) − x

Algorithm

for i = 1 to d− 1 do
compute gcd(ψi(x) − x, f(x))

Time Complexity

Observation 2.2 gcd(ψi(x) − x, f(x)) = gcd((ψi(x) − x) mod f(x), f(x))

Hence in each step of the algorithm we will perform = gcd(xqi
mod f(x)− x, f(x))

so that the degree of both the terms are bounded above by deg f(x) = d.

To compute xqi
we will follow repeated squaring method, where we will compute

the sequence x, x2, x4, · · · , x2j
[ each modulo f ] unless 2j > qi.

Here no. of squaring required = log qi = i log q ≤ d log q as i ≤ d.

Using FFT, complexity of polynomial multiplication = complexity of polynomial
division = O(d log d) where degree of each polynomial is bounded by d. So at each
step of the above sequence computation, multiplication and taking modulo f needs
O(d log d) operations. As each element of the field Fq is log q bits long, so complexity
of multiplication of coefficients of f using FFT is O(log q log log q log log log q), or
ignoring sublogarithmic factors Õ(log q).

Hence time complexity to compute xqi

= Õ(d log q. d log d. log q)
= Õ(d2 (log q)2 log d)
= Õ(d2 log2 q) [ ignoring log d factor ]

To compute gcd(ψi(x) − x, f(x))
= Õ(d3 log2 q) [ as we may have to iterate at most d times to get the gcd ].

Hence to iterate the procedure d − 1 times, time complexity of the algorithm =
Õ(d4 log2 q).
[Using more intelligent gcd algorithm the time complexity can be reduced by a factor
of d ].
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2.2.2 Case II.2 : d1 = d2 = · · · = dk = d
k

In this case, gcd(ψi(x) − x, f(x)) = 1 for i < d
k

and gcd(ψ
d
k (x) − x, f(x)) = f(x).

Hence we can obtain no. of factors of the polynomial f , if we note down the point
i = t such that the value of the gcd changes from 1, then d

t
= k = no. of factors of f .

The first step will be to reduce the problem to finding roots [ finding roots is equiva-
lent to find the linear factors of f , so it is no harder than factorization problem ].

R = ⊕k
i=1Fq[X]/(fi(X)) [ by Chinese Remaindering, as all the fis are distinct and

irreducible ]
Let S = {e(X) | e(X) ∈ R & ψ(e(X)) = e(X)}
Each e(X) can be viewed as a k-tuple.

Observation 2.3 Each component of e(X) ∈ S represented as a k-tuple ∈ Fq.

Hence,
|S| = qk > q = |Fq| if k > 1.
[We have k tuples and q elements in each tuple, and by Chinese Remaindering The-
orem all are distinct elements of R ]
⇒ There is an e(X) ∈ S − Fq

[ To be continued in the next lecture ].
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