CS 681: Computational Number Theory and Algebra Lecture 9
Polynomial factorization over Finite Fields

Lecturer: Manindra Agrawal Scribe: Sudeepa Roy

August 19, 2005

1 Introduction

In the last lecture we studied the tool automorphism over finite rings. In this lecture we
will discuss how to use automorphism to factorize a polynomial over finite fields.
Let f(z) be a polynomial of degree d over field Fj,.

Definition 1.1 f is square free if g*> does not divide for any g.

2 Factorization algorithms for different types of polynomials

2.1 Casel: f is not square free
In this case g2 | f for some g.
Let & = f'.

Then g | ged(f, f)-

This produces a factor of f.

2.2 Case Il : f is square free

Let f = fifa---fx
where each f; is irreducible and let deg f; = d; with

diy <dy <--- < dyg

Let R = F,[X]/(f(X))

= @ Fy[X]/(fi(X))
[by Chinese Remaindering, as all the f; s are distinct and irreducible, so are prime to each
other |.

Y(y) = y?

Observation 2.1 ¢ is an automorphism of Fy[X]/(f;(X)) and ¢7 = id in F,[X]/(fi(X))
ifi = di.

2.2.1 Case II.1 : There is an i such that d; > d;

Then @ is trivial in F,[X]/(f1(X)) but not in F,[X]/(fi(X)).
In other words,

Y1 (X) — X = 0in F,[X]/(f1(X)) but not in F,[X]/(f;(X))
= fi(z) | YT (z) — @ but not fi(x) | Y (z) — =

Algorithm

fori = 1tod—1do
compute ged(Vi(z) — @, f(x))

Time Complexity
Observation 2.2 ged(V'(z) — z, f(z)) = ged((¥'(z) — z) mod f(z), f(x))

Hence in each step of the algorithm we will perform = ged(z¢ mod f(z)— z, f(z))
so that the degree of both the terms are bounded above by deg f(z) = d.

To compute 27 we will follow repeated squaring method, where we will compute
the sequence x, 22, z%,--- 2%’ [each modulo f] unless 27 > ¢'.

Here no. of squaring required = log¢® = ilogq < dlogqasi < d.

Using FFT, complexity of polynomial multiplication = complexity of polynomial
division = O(dlogd) where degree of each polynomial is bounded by d. So at each
step of the above sequence computation, multiplication and taking modulo f needs
O(dlog d) operations. As each element of the field Fj, is log g bits long, so complexity
of multiplication of coefficients of f using FFT is O(loggq loglogq logloglogq), or
ignoring sublogarithmic factors O(log q).

Hence time complexity to compute 27

= O(dlogq. dlogd. logq)

= O(d? (log ¢)* log d)
= O(d?log® q) | ignoring log d factor]

To compute ged(Y'(z) — z, f(x))
= O(d?log® q) [as we may have to iterate at most d times to get the ged].

Hence to iterate the procedure d — 1 times, time complexity of the algorithm =
O(d*log? q).

[Using more intelligent ged algorithm the time complexity can be reduced by a factor
of d .

2.2.2 Case I1.2 : d1 = d2 == dk =

EalisH

In this case, ged(¢'(z) — z, f(z)) = lfori < ¢ and ged(Vi (z) — z, f(z)) = f().
Hence we can obtain no. of factors of the polynomial f, if we note down the point
1 = t such that the value of the ged changes from 1, then % = k = no. of factors of f.

The first step will be to reduce the problem to finding roots [finding roots is equiva-
lent to find the linear factors of f, so it is no harder than factorization problem |.

R = @®F | F,[X]/(f;(X)) [by Chinese Remaindering, as all the f;s are distinct and
irreducible |

Let S={e(X) | e(X) € R & ¢(e(X)) = e(X)}

Each e(X) can be viewed as a k-tuple.

Observation 2.3 Each component of e(X) € S represented as a k-tuple € Fy.

Hence,

S| = ¢" > ¢ = |F|ifk > 1.

[We have k tuples and ¢ elements in each tuple, and by Chinese Remaindering The-
orem all are distinct elements of R |

= Thereis an e(X) €S — F,

[To be continued in the next lecture |.

