CS 681: Computational Number Theory and Algebra Lecture 5 Lecturer: Manindra Agrawal Notes by: Ashwini Aroskar

August 11, 2004.

1 Discrete Fourier Transform

Let $f: [0, n-1] \to F$ be a function. F is a field.

Definition 1.1 The Discrete Fourier Transform of f is defined as

$$DFT_f(j) = \sum_{i=0}^{n-1} f(i)\omega^{ij}; \quad 0 \le j < n$$

where ω is a principal n^{th} root of unity, i.e., $\omega^n = 1$ and $\omega^m \neq 1$ for 0 < m < n

So, $DFT_f: [0, n-1] \to F[\omega]$, in general.

1.1 Evaluating DFT_f

Given $f = (c_0, c_1, ..., c_{n-1})$, compute $(d_0, d_1, ..., d_{n-1})$ with $d_j = DFT_f(j)$

Time complexity of naïve algorithm = $\bigcirc (n^2)$ operations over F.

1.2 Computing Inverse DFT

Theorem 1.1 $\frac{1}{n}DFT[\omega^{-1}]_{DFT[\omega]_f} = f$

Proof: Suppose $DFT[\omega](c_0, c_1, \dots, c_{n-1}) = (d_0, d_1, \dots, d_{n-1})$ Then $d_j = \sum_{i=0}^{n-1} c_i \omega^{ij}$

Let $DFT[\omega^{-1}](d_0, d_1, \dots, d_{n-1}) = (e_0, e_1, \dots, e_{n-1})$

$$e_{j} = \sum_{i=0}^{n-1} d_{i} \omega^{-ij}$$

= $\sum_{i=0}^{n-1} (\sum_{t=0}^{n-1} c_{t} \omega^{ti}) \omega^{-ij}$
= $\sum_{t=0}^{n-1} \sum_{i=0}^{n-1} (\omega^{(t-j)})^{i}$
= nc_{i}

1

$$\sum_{i=0}^{n-1} (\omega^{(t-j)})^i = 0 \quad \forall t \neq j$$
$$= n \quad t = j$$

2 Fast Fourier Transform

Proposed by Gauss in the 1800's, Fast Fourier Transforms employ the Divide-and-Conquer technique.

Assume $n = 2^m$ for some m > 0

$$d_{j} = \sum_{i=0}^{2^{m}-1} c_{i} \omega^{ij}$$

=
$$\sum_{i=0}^{2^{m-1}-1} c_{2i} \omega^{2ij} + c_{2i+1} \omega^{(2i+1)j}$$

=
$$\sum_{i=0}^{2^{m-1}-1} c_{2i} \omega^{2ij} + \omega^{j} \sum_{i=0}^{2^{m-1}-1} c_{2i+1} (\omega^{2})^{ij}$$

Let $f_0 = (c_0, c_2, \dots, c_{n-2})$ and $f_1 = (c_1, c_3, \dots, c_{n-1})$ Let $(e_0, e_1, \dots, e_{\frac{n}{2}-1}) = DFT_{f_0}$ and $(e'_0, e'_1, \dots, e'_{\frac{n}{2}-1}) = DFT_{f_1}$

Then

$$d_j = e_j + \omega^j e'_j \qquad 0 < j < \frac{n}{2}$$
$$= e_{j-\frac{n}{2}} + \omega^j e'_{j-\frac{n}{2}} \quad j \ge \frac{n}{2}$$

Time Complexity of FFT = T(n) $T(n) = 2T(\frac{n}{2}) + \bigcirc (n) = \bigcirc (n \log n)$

Therefore, time complexity of computing DFT or $InverseDFT = \bigcirc (nlogn)$

2.1 Polynomial Multiplication

Given polynomials P(x) and Q(x), both of degree n-1, compute P * Q(x)Obvious time complexity $= \bigcirc (n^2)$

 $\mathbf{2}$

as

Let $DFT_P = (d_0, d_1, \dots, d_{n-1})$ where $d_j = P(\omega^j)$ and $DFT_Q = (e_0, e_1, \dots, e_{n-1})$ where $e_j = Q(\omega^j)$

 $P * Q(\omega^j) = P(\omega^j)Q(\omega^j) = d_j e_j$ $DFT_{P*Q} = (d_0 e_0, d_1 e_1, \dots, d_{n-1} e_{n-1})$ and can be computed using $\bigcirc(n)$ operations if DFT_P and DFT_Q are known.

deg P * Q = 2n - 2Pretend that P and Q are deg l polynomials with $l \ge n - 2$ and $l = 2^k - 1$ for some k. So, use ω , a principal $2^k th$ root of unity. P * Q is also a deg l polynomial.

Time complexity of computing P * Q via DFT= $\bigcirc (l \log l) + \bigcirc (l) + \bigcirc (l \log l)$ = $\bigcirc (nlogn)$ as $l = \bigcirc (n)$

2.2 Integer Multiplication

Given integers a and b, both n bit long, compute a * b. Obvious Time Complexity = $\bigcirc (n^2)$

Let $a = a_0 a_1 \dots a_{n-1}$ and $b = b_0 b_1 \dots b_{n-1}$. $a = \sum_{i=0}^{n-1} a_i 2^i$ and $b = \sum_{i=0}^{n-1} b_i 2^i$

Assume $n = 2^k$. Let $l \mid n$. Let n = l * t. Split a and b into t blocks of l bits each.

Let $a = \hat{a}_0 \hat{a}_1 \dots \hat{a}_{t-1}$ and $b = \hat{b}_0 \hat{b}_1 \dots \hat{b}_{t-1}$.

Then $a = \sum_{i=0}^{t-1} \hat{a}_i 2^{il}$ and $b = \sum_{i=0}^{t-1} \hat{b}_i 2^{il}$.

Let $a(x) = \sum_{i=0}^{t-1} \hat{a}_i x^i$ and $b(x) = \sum_{i=0}^{t-1} \hat{b}_i x^i$.

3