
CS 681: Computational Number Theory and Algebra Lecture 5
Lecturer: Manindra Agrawal Notes by: Ashwini Aroskar

August 11, 2004.

1 Discrete Fourier Transform

Let f : [0, n − 1] → F be a function. F is a field.

Definition 1.1 The Discrete Fourier Transform of f is defined as

DFTf (j) =
n−1∑

i=0

f(i)ωij ; 0 ≤ j < n

where ω is a principal nth root of unity, i.e., ωn = 1 and ωm �= 1 for 0 < m < n

So, DFTf : [0, n − 1] → F [ω], in general.

1.1 Evaluating DFTf

Given f = (c0, c1, . . . , cn−1), compute (d0, d1, . . . , dn−1) with dj = DFTf (j)

Time complexity of näıve algorithm = ©(n2) operations over F .

1.2 Computing Inverse DFT

Theorem 1.1 1
nDFT [ω−1]DFT [ω]f = f

Proof: Suppose DFT [ω](c0, c1, . . . , cn−1) = (d0, d1, . . . , dn−1)
Then dj =

∑n−1
i=0 ciω

ij

Let DFT [ω−1](d0, d1, . . . , dn−1) = (e0, e1, . . . , en−1)

ej =
n−1∑

i=0

diω
−ij

=
n−1∑

i=0

(
n−1∑

t=0

ctω
ti)ω−ij

=
n−1∑

t=0

n−1∑

i=0

(ω(t−j))i

= ncj

1



as
n−1∑

i=0

(ω(t−j))i = 0 ∀t �= j

= n t = j

2 Fast Fourier Transform

Proposed by Gauss in the 1800’s, Fast Fourier Transforms employ the Divide-and-Conquer
technique.
Assume n = 2m for some m > 0

dj =
2m−1∑

i=0

ciω
ij

=
2m−1−1∑

i=0

c2iω
2ij + c2i+1ω

(2i+1)j

=
2m−1−1∑

i=0

c2iω
2ij + ωj

2m−1−1∑

i=0

c2i+1(ω2)ij

Let f0 = (c0, c2, . . . , cn−2) and f1 = (c1, c3, . . . , cn−1)
Let (e0, e1, . . . , en

2
−1) = DFTf0 and (e′0, e′1, . . . , e′n

2
−1) = DFTf1

Then

dj = ej + ωje′j 0 < j <
n

2
= ej−n

2
+ ωje′j−n

2
j ≥ n

2

Time Complexity of FFT = T (n)
T (n) = 2T (n

2 ) + ©(n) = ©(n log n)

Therefore, time complexity of computing DFT or InverseDFT = ©(nlogn)

2.1 Polynomial Multiplication

Given polynomials P (x) and Q(x), both of degree n − 1, compute P ∗ Q(x)
Obvious time complexity = ©(n2)

2



Let DFTP = (d0, d1, . . . , dn−1) where dj = P (ωj)
and DFTQ = (e0, e1, . . . , en−1) where ej = Q(ωj)

P ∗ Q(ωj) = P (ωj)Q(ωj) = djej

DFTP∗Q = (d0e0, d1e1, . . . , dn−1en−1) and can be computed using ©(n) operations if DFTP

and DFTQ are known.

deg P ∗ Q = 2n − 2
Pretend that P and Q are deg l polynomials with l ≥ n − 2 and l = 2k − 1 for some k. So,
use ω, a principal 2kth root of unity.
P ∗ Q is also a deg l polynomial.

Time complexity of computing P ∗ Q via DFT
= ©(l log l) + ©(l) + ©(l log l)
= ©(nlogn) as l = ©(n)

2.2 Integer Multiplication

Given integers a and b, both n bit long, compute a ∗ b.
Obvious Time Complexity = ©(n2)

Let a = a0a1 . . . an−1 and b = b0b1 . . . bn−1.
a =

∑n−1
i=0 ai2i and b =

∑n−1
i=0 bi2i

Assume n = 2k. Let l | n. Let n = l ∗ t.
Split a and b into t blocks of l bits each.

Let a = â0â1 . . . ât−1 and b = b̂0b̂1 . . . b̂t−1.

Then a =
∑t−1

i=0 âi2il and b =
∑t−1

i=0 b̂i2il.

Let a(x) =
∑t−1

i=0 âix
i and b(x) =

∑t−1
i=0 b̂ix

i.

3


