CS 681: Computational Number Theory and Algebra Lecture 29 Lecturer: Manindra Agrawal Notes by: Ashwini Aroskar

October 28, 2005.

Idea: Given $v_1, v_2, ..., v_n$, compute $v_1^*, v_2^*, ..., v_n^*$ and sort $v_1, v_2, ..., v_n$ in increasing order of $|v_n^*|$

The reordered sequence $v'_1, v'_2, ..., v'_n$ is a reduced basis, but as we cannot claim $v'_1 = v'^*_1$, the proof of the earlier lemma about a reduced basis does not go through. Hence, we cannot get the shortest vector in this manner.

First Algorithm proposed

Input: $v_1, v_2, ..., v_n$

Step 1: Compute $u_1, u_2, ..., u_n$ from $v_1, v_2, ..., v_n$ using 'approximate orthogonalization' process **Step 2**: Check if $u_1, u_2, ..., u_n$ is a reduced basis If not suppose the first violation occurs at index *i*.

Step 3: Swap u_i and u_{i+1} , rename the sequence $v_1, v_2, ..., v_n$ and go to Step 1

This algorithm stops only if we have a reduced basis.

Analysis of the above algorithm

$$u_i^* = u_i - \sum_{j < i} \lceil \mu_{ij} \rfloor u_j$$

Denote the sequence as $\hat{u}_1, \hat{u}_2, \dots \hat{u}_n$ after the swap. But we want $\hat{u}_j^* = u_j^*$ for all j < i and j > iTherefore we modify the above algorithm.

Modified Algorithm

Input: $v_1, v_2, ..., v_n$

Step 0: Let $u_i = v_i$ **Step 1**: for $(i = 1; i \le n;)$ { **Step 2**: Compute $u_i = v_i - \sum_{j < i} \lceil \mu_{ij} \rfloor u_j$ & $u_i^* = v_i^* - \sum_{j < i} \lceil \mu_{ij} \rfloor u_j^*$ **Step 3**: Check if $|u_{i+1}^*| \le 2|u_i^*|^2$

1

 $\mathbf{2}$