
CS 681: Computational Number Theory and Algebra Lecture 29
Lecturer: Manindra Agrawal Notes by: Ashwini Aroskar

October 28, 2005.

Idea: Given v1, v2, ..., vn, compute v∗
1, v∗

2, ..., v∗
n and sort v1, v2, ..., vn in increasing order

of |v∗
n|

The reordered sequence v′
1, v′

2, ..., v′
n is a reduced basis, but as we cannot claim v′

1 = v′∗
1 ,

the proof of the earlier lemma about a reduced basis does not go through. Hence, we cannot
get the shortest vector in this manner.

First Algorithm proposed

Input: v1, v2, ..., vn

Step 1: Compute u1, u2, ..., un from v1, v2, ..., vn using ’approximate orthogonaliza-
tion’ process
Step 2: Check if u1, u2, ..., un is a reduced basis
If not suppose the first violation occurs at index i.
Step 3: Swap ui and ui+1, rename the sequence v1, v2, ..., vn and goto Step 1

This algorithm stops only if we have a reduced basis.

Analysis of the above algorithm

u∗
i = ui −

∑
j<idµijcuj

Denote the sequence as û1, û2, ...ûn after the swap.
But we want û∗

j = u∗
j for all j < i and j > i

Therefore we modify the above algorithm.

Modified Algorithm

Input: v1, v2, ..., vn

Step 0: Let ui = vi

Step 1: for(i = 1; i ≤ n;) {
Step 2: Compute ui = vi −

∑
j<idµijcuj

& u∗
i = v∗

i −
∑

j<idµijcu∗
j

Step 3: Check if |u∗
i+1| ≤ 2|u∗

i |2

1

Step 4: If not, swap ui+1 and ui and let i = i − 1
Step 5: else let i = i + 1
}
The analysis of the modified algorithm will follow in the next class.

2

