CS 681: Computational Number Theory and Algebra Log Problem Lecturer: Manindra Agrawal Notes by: Arun Iyer October 18, 2005.

1 Discrete Log Problem

Definition 1.1 Given a finite group G, and $g, e \in G$, find m (if it exists) such that $g^m = e$. This problem is known as the Discrete Log Problem.

Examples :

- 1. Given $G = \mathbb{Z}_n$ under +, find an m such that mg = e(mod n).
- 2. Given $G = \mathbb{Z}_n^*$ under *, find an m such that $g^m = e \pmod{n}$.
- 3. Given $G = P_n$ under composition and g and e be two permutations, find an m such that $g^m = e$.
- 4. Given $G = F_{p^r}$ under +, find an m such that mg(x) = e(x).
- 5. Given $G = F_{p^r}$ under +, find an m such that $g^m(x) = e(x) \pmod{p, h(x)}$.

2 Application : El Gamal Public Key Encryption

Given a group G and $g \in G$ of large order, randomly choose an $m \in \mathbb{Z}$ and let $e = g^m$. Then, Public Key : (g,e) Private Key : m

2.1 Encryption Method

Input : message s $(s \in G)$

- 1. Randomly choose $k \in \mathbb{Z}$
- 2. Compute $r = g^k$
- 3. Output se^k, r

2.2 Decryption Method

Input : se^k, r

- 1. Compute r^m
- 2. Compute inverse of r^m i.e $(r^m)^{-1}$
- 3. Output $se^k(r^m)^{-1}$

3 Slight Improvement in Special Case

Normally for encryption purposes we use the group $G = F_p^*$ under *. However, this encryption can fall weak if p-1 turns out to be smooth. To avoid this circumstance, a large prime p is chosen such that p-1 = 2q where q is a large prime as well.

4 Solving Discrete Log using Index Calculus

Basic Idea : Find r and s such that $g^r e^s = 1$ and (s, order(g)) = 1. (Note that : If m is the message, then $g^r e^s = g^r g^{ms} = g^{r+ms}$. This implies $m = -rs^{-1}(mod \ order(g))$)

- 1. Randomly choose r and s and compute $g^r e^s = u$
- 2. Check if u is k smooth
- 3. If yes, collect the triple (r,s,u)
- 4. Repeat until k tuples are collected, let $(r_i, s_i, u_i), 1 \le i \le k$ be these triples
- 5. Let $u_i = \prod_{j=1}^k p_j^{\alpha_{i,j}}$, $[p_j$'s are primes]
- 6. Find vector $\overrightarrow{\beta}$ such that

$$\sum_{j=1}^k \beta_i \alpha_{i,j} = 0 \pmod{p-1} \forall i$$

- 7. Compute $r = \sum_{i=1}^{k} \beta_i r_i$ and $s = \sum_{i=1}^{k} \beta_i s_i$
- 8. Compute $m = -rs^{-1} \pmod{p-1}$