Recall $|B| \ge (\ln n)^r$ where $r = \frac{\ln n}{\ln k}$

Time Complexity of Dixon's Algorithm

Expected number of iterations in Dixon's algorithm to get a single pair $(a, b) \leq (\ln n)^r$

Time complexity of the algorithm $= \tilde{O}(k^3 + k^2(\ln n)^r)$

The goal now is to choose k such that the time complexity is minimized. The time complexity for matrix multiplication, using Gaussian elimination, is $\bigcirc(k^3)$, but this can be reduced for sparse matrices.

Sparse Matrix has l non-zero entries out n^2 . **Theorem:** There is an algorithm to invert such a matrix with time complexity $\bigcirc(nl)$.

The $(t+1) \ge t$ matrix (α_{ij}) has at most $(t+1) \log n$ non-zero entries. So, the time complexity of finding a non-trivial vector in the null-space of this matrix $= \bigcirc (t^2 \ln n) = \bigcirc (k^2 \ln n)$

Improved time complexity of Dixon's Algorithm = $\tilde{O}(k^2(\ln n)^r)$

 $\begin{aligned} k^2(\ln n)^r &= e^{2\ln k + r\ln n\ln\ln n} = e^{2\ln k + \frac{\ln n\ln\ln n}{\ln k}}\\ \text{Minimum is achieved when } 2\ln k &= \frac{\ln n\ln\ln n}{\ln k}, \text{ that is, when } \ln k = \frac{1}{\sqrt{2}}(\ln n\ln\ln n)^{\frac{1}{2}} \end{aligned}$

Time complexity = $\tilde{O}(e^{2\sqrt{2}(\ln n \ln \ln n)^{\frac{1}{2}}})$

Quadratic Sieve

Let $c = \lfloor \sqrt{n} \rfloor$ Consider numbers of the form $(c+l)^2 - n$. $(c+l)^2 - n \approx 2cl + l^2$ If $l \leq n^{\epsilon}$ then $(c+l)^2 - n = \bigcirc (n^{\frac{1}{2}+\epsilon})$.

1

We choose b among these numbers as the fraction of k-smooth numbers among them is higher. Although this is strongly implied by certain conjectures, there is no proof.

 $\mathbf{2}$