CS 681: Computational Number Theory and Algebra	Lecture 21
Dixon's Algorithm for Factoring Integers	
Lecturer: Manindra Agrawal	Scribe: Sudeepa Roy
	September 27, 2005

1 Introduction

Dixon's algorithm is an improvement over *Fermat's factorization method* which finds integers x and y such that $n = x^2 - y^2 = (x + y)(x - y)$ and n gets factored. Dixon's algorithm tries to find x and y efficiently by computing $x, y \in Z_n$ such that $x^2 = y^2 \pmod{n}$. Then with probability $\geq \frac{1}{2}$, $x \neq \pm y \pmod{n}$, and hence gcd(x - y, n) produces a factor of n with probability $\geq \frac{1}{2}$.

2 Algorithm

Here are the steps of the algorithm.

- 1. Randomly select $a \in Z_n$.
- 2. Let $b = a^2 \pmod{n}$.
- 3. Check if b is k-smooth [k to be defined later].
- 4. If YES, let $b = \prod_{i=1}^{t} p_i^{\alpha_i}$ where $\{p_1, \cdots, p_t\}$ is the set of primes $\leq k$.
- 5. Collect t + 1 such pairs $(a_1, b_1), (a_2, b_2), \dots, (a_{t+1}, b_{t+1})$.
- 6. Let $b_j = \prod_{i=1}^t p_i^{\alpha_{ij}}$.
- 7. Find β_j 's such that $\sum_{j=1}^{t+1} \beta_j \alpha_{ij}$ is even for each *i*.
- 8. $x = \prod_{j=1}^{t+1} a_j^{\beta_j}$ and $y = (\prod_{j=1}^{t+1} b_j^{\beta_j})^{\frac{1}{2}}$.

3 Analysis

First we discuss why the step 7 is necessary. Consider

$$\prod_{j=1}^{t+1} b_j^{\beta_j} \text{ for } \beta_j \in \{0,1\}$$

$$= \prod_{j=1}^{t+1} \prod_{i=1}^t p_i^{\beta_j \alpha_{ij}}$$

$$= \prod_{i=1}^t p_i^{\sum_{j=1}^{t+1} \beta_j \alpha_{ij}}$$

If the term exponent $\sum_{j=1}^{t+1} \beta_j \alpha_{ij}$ is even for all i = 1 to t, then the number is a perfect square over integers.

Now,

to find β_j 's such that $\sum_{j=1}^{t+1} \beta_j \alpha_{ij}$ is even for each i \equiv to find vector $\vec{\beta}$ such that $\vec{\beta}.\vec{\alpha_i} = 0 \pmod{2}$ for each i \equiv to find $\vec{\beta}$ such that $\vec{\beta}.[\vec{\alpha_1} \ \vec{\alpha_2} \ \cdots \vec{\alpha_t}]_{(t+1)\times t} = 0$

which is easy given $\vec{\alpha_1}, \vec{\alpha_2}, \cdots, \vec{\alpha_t}$.

Also it is easy to check that the x and y satisfy $x^2 = y^2 \pmod{n}$. $x^2 = \prod_{j=1}^{t+1} a_j^{2\beta_j}$ $= \prod_{j=1}^{t+1} b_j^{\beta_j} \pmod{n}$ $= y^2 \pmod{n}$

Now the problem is to find How many k-smooth b's exist in Z_n of the form $a^2 \pmod{n}$?

Let T be the number of b's of the above kind. Recall that $\Psi(n,k) = \{m \le n \mid m \text{ is } k\text{-smooth }\}$ and $\psi(n,k) = |\Psi(n,k)|$. Then it is easy to see that,

 $T \ge \psi(\sqrt{n}, k) \text{ [taking all } k \text{-smooth numbers upto } \sqrt{n} \text{ as } a\text{'s]} \\ \approx \left(\frac{\frac{1}{2}\ln n}{\ln k}\right)^{\frac{1}{2}\ln n}$

But we need to find a better lower bound of T.

[To be continued in the next lecture].