CS 681: Computational Number Theory and Algebra Lecture 20
Pollard’s p-1 algorithm for factoring integers

Lecturer: Manindra Agrawal Scribe: Chandan Saha

Septembor 22, 2005

In the previous lecture we have proven the following theorem:

Theorem 0.1 If ¢(x,y) =| {m < x| m is y-smooth} | then, for y = Q(log?x), Y (z,y) ~

T __Inz
wa, where u = Ty
_]2 _ _Inx
Let y = In“x then u = 77— Therefore,
() -
€T ~N —™ ™
W ey ol
2lnin x
T Inz-Inlnln x
~ € 2ninz
e%lnw
1 Inlnln x

~ 2 - x 2lninzx

Problem: Find the smallest value of y such that ¥ (z,y) = Q(x).

1 Pollard’s p-1 method for factoring

Let n = pg be the number to be factored. Suppose p — 1 be a k-smooth number. Let
K = (k)P By Fermat’s Little Theorem, a® = 1 (mod p). Suppose that, ¢ — 1 is not
k-smooth. Then, the claim is that a® = 1 (mod q) for ‘few’ a’s. This is because, if a® =
1 (mod q) then, a9°¥¥:4=1) = 1 (mod q). At most ged(K, g—1) of a’s can satisfy the equation
a9¢K:a=1) = 1 (mod q) and ged(K,q—1) < %. This yields the following algorithm:

1.1 Algorithm

Input: Positive integer n.
Output: Either a proper divisor of n or ‘failure’.
For k=2,3,4,... do

1. Randomly select a € Z,.
2. K — (khgm),

3. b a® (modn).

4. d — ged(b—1,n).
5. if 1 < d < n then return d else return ‘failure’.

For the correct choice of k the above algorithm returns a proper divisor of n with probability
greater than 3. Since (k!)/°9" = ((k — 1)1)lo9m . glogn Step 2 requires O(klogn - logk) bit
operations per iteration. Step 3 requires O(klog®n - log k) bit operations per iteration and

Step 4 requires O(logn) operations per iteration. Therefore time complexity of the above
algorithm is O(k?log®n - log k) bit operations.

