CS 681: Computational Number Theory and Algebra Lecture 14 A Polynomial time algorithm for Primality Testing Lecturer: Manindra Agrawal Scribe: Chandan Saha Septembor 9, 2005

In the previous lecture we have proved the two size reduction lemma. It follows that:

If

- 1. $T = \{X^j + a \mid 0 \le j < r, 0 \le a \le 2\sqrt{rlgn}\}$
- 2. $p > t > 4 \log^2 n$
- 3. ψ is linear on T

then $n = p^j$ for some $j \in N$.

1 The Algorithm and its correctness

1.1 Algorithm

Input: integer n > 1.

- 1. Test if $n = m^j$ for some j > 1. If yes output COMPOSITE.
- 2. Find the smallest r such that $order_r(n) > 4log^2n$.
- 3. If 1 < (a, n) < n for some $a \le r$, output COMPOSITE.
- 4. If n < r, output PRIME.
- 5. For $1\leq a\leq 2\sqrt{rlogn}$ do if $((X+a)^n\neq X^n+a(\mbox{ mod }X^r-1,n))$, output COMPOSITE.
- 6. output PRIME.

1.2 Correctness

Theorem 1.1 The algorithm above returns PRIME if and only if n is prime.

Lemma 1.1 If n is PRIME, the algorithm returns PRIME.

Proof: If n is prime then either the algorithm outputs PRIME in Step 4 or else the condition tested in Step 5 never holds and the algorithm returns PRIME in Step 6.

Lemma 1.2 If the algorithm returns PRIME then n is prime.

Proof: If the algorithm returns PRIME in Step 4 then n is indeed prime. For the rest of the proof, consider that the algorithm returns PRIME in Step 6. This implies that,

$$\psi(X + a) = (X + a)^n \pmod{n, X^r - 1}$$

= Xⁿ + a (mod n, X^r - 1)
= \u03c6(X) + a (mod n, X^r - 1)

for $0 \le a \le 2\sqrt{rlogn}$. Replacing X by X^j we get,

$$\psi(X^j + a) = \psi(X^j) + a \pmod{n, X^{jr} - 1}$$
$$= \psi(X^j) + a \pmod{n, X^r - 1}$$
$$= \psi(X^j) + a \pmod{p, h(X)}$$

By definition, $G = \{\phi^i \psi^j(X) \mid i, j \ge 0, X \in F\} = \{X^{n^j p^i}\}$. Choose the irreducible factor h(x) of the polynomial $x^r - 1$ in $F_p[x]$ that has an r^{th} primitive root of unity over the field F_p (this can always be done). This choice of h(x) makes $t = |\{n^i p^j(r) \mid i, j \ge 0\}|$. This implies that $t \ge order_r(n) > 4log^2n$. Also we have $r \ge t$ and p > r (from Step 3). Therefore, $n = p^j$ for some j. Since at Step 6 we have that $n \ne m^j$ for any m and any j > 1, we get n = p.

2 Time Complexity Analysis

We will need the following fact about the lcm of the first m numbers.

Lemma 2.1 Let LCM(m) denotes the lcm of the first m numbers. For $m \ge 7$ we have $LCM(m) \ge 2^m$.

The following lemma bounds the magnitude of r.

Lemma 2.2 There exists an $r \leq 16 \log^5 n$ such that $order_r(n) > 4 \log^2 n$.

Proof: Consider the product

$$A = n \cdot \prod_{j=1}^{4\log^2 n} (n^j - 1)$$

Say an r is bad if either $r \mid n$ or $order_r(n) \leq 4log^2 n$. It is easy to see that all bad r's divide A. Moreover,

$$A < n \cdot n^{\sum_{1}^{4\log^2 n} j} \le 2^{16\log^5 n}$$

Therefore by Lemma 2.1 there exists an $r \leq 16\log^5 n$ such that r does not divide A, implying that r is not bad. If now (r, n) = 1 then we are done. If (r, n) > 1 then $s = \frac{r}{(r, n)}$ does not divide A and s is relatively prime to n. This implies that $order_s(n) > 4\log^2 n$.

Theorem 2.1 The asymptotic time complexity of the algorithm is $\tilde{O}(\log^{21/2}n)$.

Proof: Time taken in Step 1 is $\tilde{O}(log^3n)$. In Step 2, time spent to check if $order_r(n) > 4log^2n$ is $\tilde{O}(log^2n)$ for any r (logr factor hidden). Therefore, Step 2 takes $\tilde{O}(rlog^2n)$ total time. Execution of Step 3 can be done in $\tilde{O}(rlogn)$ time. Time taken to compute $(X + a)^n$ and X^n in the ring $Z_n[X]/(X^r - 1)$ is $\tilde{O}(rlog^2n)$ (hiding the logr factor) for any fixed a. Therefore, total time spent in Step 4 is $\tilde{O}(r^{\frac{3}{2}}log^3n)$. The theorem follows from Lemma 2.2.