CS 681: Computational Number Theory and Algebra Lecture 12: Primality testing Lecturer: Manindra Agrawal Notes by: Shashi Mittal

August 12, 2005.

1 Introduction

The primality testing problem is : Given a number $n \in \mathbb{Z}$, is n a prime number ? We want to perform this operation as efficiently as possible.

In this lecture, we will discuss a few algorithms and ideas for solving this problem using the properties of finite fields.

2 Using properties of \mathbb{Z}_n for primality testing

For any number n, consider the ring $R = \mathbb{Z}_n$. Recall the following two facts related to \mathbb{Z}_n .

Fact 2.1 If n is prime, then \mathbb{Z}_n is a field. The only automorphism of this field is the trivial automorphism, and for $a \in \mathbb{Z}_n$, $a^n = a$.

Fact 2.2 If n is composite, square free number divisible by at least two distinct primes, then R is not a field. R has only one automorphism, that is the trivial automorphism.

Further, in the case where n is composite, a^n may not be necessarily equal to a (unlike the case where n is a prime number). For example, if we take n = 6, then for $2 \in \mathbb{Z}_6$, $2^6 = 4$. This gives us a clue for primality testing : Take any $a \leq n$, and check if a^n is a in \mathbb{Z}_n or not. If not, then n is necessarily composite, otherwise n may or may not be prime (this depends on our choice of a, for example, if we choose for \mathbb{Z}_6 a = 3, then $3^6 = 3$, even though 6 is not a prime number).

Therefore we have the following algorithm for primality testing:

Algorithm-1(n)

- 1. Select a few $a \in \mathbb{Z}_n$
- 2. If $a^n = a$ in \mathbb{Z}_n for all a selected above, then print "Prime"
- 3. else print "Composite"

Note that we can perform the test that $a^n \equiv a \pmod{n}$ in $O(\log n)$ time, by the method of repeated squaring. Hence the above algorithm has a running time which is polynomial in $\log n$.

Unfortunately, Algorithm-1 does not always work correctly, because of existence of special kind of numbers, called *Carmichael numbers*.

Definition 2.1 A composite number n is a Carmichael number, if p-1|n-1 for all primes p|n.

Theorem 2.1 If n is a carmichael number, then $a^n \equiv a \pmod{n}$ for all a.

Proof: Suppose p|n, consider $a^n \pmod{p}$. Since p-1|n-1, therefore $a^{p-1} \equiv a \pmod{p}$ in \mathbb{Z}_p , and hence $a^n \pmod{p} = a.a^{n-1} \pmod{p} = a \pmod{p}$. Hence, $a^n \equiv a \pmod{p}$ for all p|n, and hence by Chinese remaindering theorem, $a^n \equiv a \pmod{n}$ for all a.

The smallest carmichael number is 561 (since $561 = 3 \times 11 \times 13$, and 2/3601, 10/560 and 16/560). It has been shown that there are infinitely many carmichael numbers [1].

Clearly our previous algorithm fails on all carmichael numbers. Therefore, we need to extend our method so that carmichael numbers can also be handled.

3 Generalizing the previous approach

Consider the ring

$$R = \mathbb{Z}_n[X]/(X^r - 1)$$

Suppose n is prime. Then, by Chinese remaindering theorem, we have

$$R = \mathbb{Z}_n \oplus \sum_{i=1}^k \mathbb{Z}_n / (h_i(x))$$

where $h_i(x)$ is irreducible over \mathbb{Z}_n .

Fact 3.1 All $h_i(x)$ have the same degree, and R has $(\frac{r-1}{k})^k$ automorphisms

In particular, $\psi(e(X)) = e^n(X)$ for $e(X) \in R$ is an automorphism. Therefore $\psi, \psi^2, \dots, \psi^{\frac{r-1}{k}}$ are distinct automorphisms.

However, if n is composite, then ψ may not be an automorphism. This gives us a clue for another potential algorithm for primality testing.

Algorithm-2(n)

- 1. Choose an appropriately small r.
- 2. Test if ψ is an automorphism in $R = \mathbb{Z}_n[x]/(x^r 1)$
- 3. If yes, then print "Prime"
- 4. else print "Composite"

3.1 Testing if ψ is an automorphism in R

- 1. From the definition of ψ , it is easy to see that the property $\psi(e_1(X)e_2(X)) = \psi(e_1(X))\psi(e_2(X))$ holds for all $e_1(X), e_2(X) \in \mathbb{R}$.
- 2. We need to have $\psi(e_1(X) + e_2(X)) = \psi(e_1(X)) + \psi(e_2(X))$. One possible method is to try out all possible $e_1(X)$ and $e_2(X)$ in this equation. Since there are n^r elements in R, this will require n^{2r} such equality testings. However, using the following lemma, this can be verified in n^r checks only :

Lemma 3.1 $\psi(e(X)) = e(\psi(X))$ for all $e(X) \in R$ iff ψ is a homomorphism under addition.

3. We also need to verify whether ψ is a one-one mapping or not. If ψ is a one-one mapping, then

$$\psi(e_1(X)) = \psi(e_2(X)) \psi(e_1(X) - e_2(X)) = 0 \psi(e_1(X) - e_2(X))^n = 0$$

Problem : Find the exact condition when $(e_1(X) - e_2(X))^n = 0$, i.e. characterize the conditions on n and $X^r - 1$ that make $e^n(X) = 0$ for non zero e(X).

References

[1] Alford, W.L., Granville, A. and Pomerance, C (1994). There are infinitely many Carmichael numbers. *Annals of Mathematics*