
A manifold based clustering
algorithm and application to object

discovery in RGBD data

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Rahul Erai

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

July 6, 2012

CERTIFICATE

It is certified that the work contained in this thesis entitled “A manifold based

clustering algorithm and application to object discovery in RGBD data”, by

Rahul Erai (Roll No. 10111029), has been carried out under my supervision and

that this work has not been submitted elsewhere for a degree.

(Prof. Amitabha Mukerjee)

Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur

Kanpur-208016

2 July, 2012

Abstract

Traditional clustering algorithms like k means clustering assumes that the

data points that are to be to be clustered are distributed as spherical blobs.

Hence, they fail when the data to be clustered comes from multiple underly-

ing manifolds. The situation becomes more complex, when the constituting

manifolds intersects each other. In this thesis we introduce a new manifold

based clustering algorithm, that would cluster these points into their corre-

sponding manifold. The algorithm is inspired from the ideas of gestalt per-

ception and tries to model how we, as humans, perceive manifolds. We also

introduce a new distance metric called Correlation based Earth Mover’s Dis-

tance(CEMD), a modified version of the traditional Earth Mover Distance,

which is very efficient in data clustering, especially in manifold separation.

As an interesting application of the proposed algorithm, we employ it in

discovering object classes from a 3D pointcloud dataset containing house-

hold objects. With the help of CEMD and some shape and color features

extracted from the pointclouds, the manifold clustering algorithm was able

to discover object classes present in the dataset. The results of this unsuper-

vised clustering were comparable with the results of applying a supervised

K nearest neighbor classification on the same dataset.

To my parents...

Acknowledgements

First and foremost, I would like to thank to my thesis supervisor Dr.

Amitabha Mukerjee for all his valuable guidance and advice through out

the course my thesis. I sincerely appreciate the academic freedom that he

gave me in my research. He has been a constant source of inspiration not

only in my research, but also for me, as a person.

I would like to thank three amazing persons, Neethi, Ajith,and Varun, who

more or less have been my family here for the last two years. With out their

support and encouragements, this thesis would not have been possible. I

also would like to thank two of my good friends, Ashendra and Chittibabu,

for those late night discussions and their valuable suggestions which greatly

benefited this thesis. I would also like to express my gratitude to Radu

B Rusu at Willow Garage for the amazing Point Cloud Library and for

personally helping me with some of the technical problems that I faced. I

am also grateful to the department of CSE, IIT Kanpur for the the facilities,

freedom and the great research environment that I enjoyed. I also would

like to thank all my batch mates, for making the last two years memorable.

Last, but certainly not in anyway the least, I sincerely thank my parents

and my little brother for their love, support, and care, with out which none

of this would have been even remotely possible ever.

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Manifold based clustering . 2

1.1.1 Traditional dimensionality reduction techniques 4

1.1.2 Analyzing intersecting manifolds 7

1.2 3D perception and Pointclouds . 11

1.2.1 Kinect RGB-D object dataset . 12

1.3 Organization of the thesis . 13

2 Manifold based spatial clustering 15

2.1 Problem statement . 15

2.2 The proposed manifold based clustering algorithm 15

2.2.1 Dynamic branching factor . 16

2.2.2 Continuity score . 17

2.2.3 Informal description of the algorithm 22

2.3 Gestalt perception . 24

2.3.1 Principle of Proximity . 25

2.3.2 Principle of Closure . 26

2.3.3 Principle of Continuity . 27

2.4 Results on Humaneva dataset . 29

v

CONTENTS

3 Correlation based Earth Mover’s Distance (CEMD) 33

3.1 Properties of CEMD . 35

3.1.1 Non-Negativity . 35

3.1.2 Identity of indiscernibles . 36

3.1.3 Symmetry . 36

3.1.4 Triangular inequality . 36

3.2 “Wormholes” and their implications . 37

3.3 Computational complexities of CEMD 38

3.3.1 Optimizing CEMD for manifold growing 39

4 Object class discovery by manifold clustering 43

4.1 Introduction . 43

4.2 Objective . 44

4.3 Past attempts in RGBD object detection 45

4.4 Object class discovery by manifold based clustering 46

4.4.1 Object signature . 47

4.4.1.1 Viewpoint Feature Histogram (VFH) 47

4.4.1.2 RGB histogram . 50

4.4.1.3 PHOG histogram . 50

4.4.1.4 Efficiency of the new signature 51

4.4.2 Results on RGB-D dataset . 52

4.4.2.1 Effect of dynamic branching factor and CEMD distance

measure . 53

4.4.2.2 Comparison between supervised Vs unsupervised learning 54

4.5 Conclusion . 59

5 Conclusion 61

5.1 Plausible future works . 62

A 3D object segmentation 65

References 67

vi

List of Figures

1.1 Microsoft Kinect . 2

1.2 Examples for intersecting manifolds (Dub11) 4

1.3 Human interpretation of manifolds . 5

1.4 Intersecting manifolds: A real world example 6

1.5 Results of Souvenir et al’s manifold clustering algorithm as reported as

Nandan et al. (Dub11) . 8

1.6 A colorless pointcloud . 12

1.7 A few of the objects in RGBD dataset 13

2.1 Manifold separation with static branching factor 17

2.2 Manifold separation with dynamic branching factor 18

2.3 Visualizing continuity score . 21

2.4 Effect of weighing factor α on continuity score 24

2.5 Results on synthetically created manifolds 25

2.6 Different ways of interpreting the constituent manifolds in a multi-manifold

embedded structure . 26

2.7 Gestalt principle of Proximity . 27

2.8 Result of applying our algorithm on the structure in figure 2.7 27

2.9 Gestalt principle of Closure . 28

2.10 Result of applying our algorithm on the structure in Figure 2.9 28

2.11 Result of applying our algorithm on the structure in Figure 2.6 29

2.12 Gestalt principle of similarity . 30

2.13 Gestalt principle of symmetry . 30

2.14 Humaneva results: “Walking” cluster . 31

2.15 Humaneva results: “One leg balancing” cluster 31

vii

LIST OF FIGURES

2.16 Humaneva results: “hopping” cluster . 32

3.1 CEMD ground distance . 35

3.2 CEMD as transportation problem . 38

4.1 Multiple views of a cereal box . 44

4.2 Spin image example . 45

4.3 Darboux coordinate system . 48

4.4 Calculating the viewpoint component of VFH 49

4.5 VFH signature of a segmented juice bottle and a coffee mug 50

4.6 The color features: RGB histogram and a PHOG histogram of a cereal

box . 51

4.7 The confusion matrix between the objects discovered 53

4.8 The most confused pair of objects . 54

4.9 The least confused objects . 55

4.10 Discovered manifold:Boxes . 56

4.11 Discovered manifold:Keyboards . 57

4.12 Discovered manifold:Bananas . 58

4.13 Discovered manifold:Mushrooms . 58

A.1 Object segmentation algorithm outline 65

A.2 Segmenting the tabletop out . 66

A.3 The final segmented objects after region growing 66

viii

List of Tables

4.1 Object class detection results using K nearest neighbor classifier 51

4.2 Object class discovery: a comparison between our algorithm and K

means clustering . 53

4.3 Results with dynamic branching turned off 54

4.4 Results with dynamic branching turned on(kmin = 1, kpatch = 10, α = 0.5) 55

ix

LIST OF TABLES

x

1

Introduction

This thesis makes two main contributions. First, it is one of the first works to unsu-

pervised approaches for object classification on image-cum- depth (RGB-D) data made

available by integrated rangefinder cameras such as the Kinect (Mic10). But perhaps

more general is the second claim, where we develop a novel approach to discovering

structures in high-dimensional data based using dynamic neighborhood expansion on

the underlying manifold. Since the unsupervised object classification task may be con-

sidered an application of the manifold-based clustering approach, we first introduce the

manifold-based approach in this presentation.

Unsupervised clustering techniques have always played an important role in statis-

tical analysis of large amount of data. Even though there are a lot of sophisticated

algorithms available to do the job, most of them, like the popular k means clustering,

assumes that points data would be spread as a spherical blob in the space in which

they are portrayed. This is an acceptable assumption if one does not have any prior

information about the way in which data is distributed in the space. But often in

practical situations, data points tends follow some specific structure than the generic

spherical distribution causing algorithms like k means clustering to fail spectacularly.

Even though the explicit dimensionality of the data space could be huge, these geo-

metric structures tends to have a comparatively smaller intrinsic dimension. These low

dimensional topological constructs are often called as manifolds. Hence, in this thesis,

we propose a powerful manifold based spatial clustering algorithm that would be able

to separate and cluster points from a multi-manifold embedded space.Our studies pre-

sented in this thesis can be conceptuality divided into two phases. In the first phase,

1

1. INTRODUCTION

we discuss the new spatial clustering algorithm we introduced. In the second phase,

we look into an interesting application of our algorithm, ie., unsupervised discovery of

object categories from a huge 3D image dataset of household objects.

Figure 1.1: Microsoft Kinect

Object recognition using RGB-D data is still a relatively less explored area. But

this field is becoming more and more popular, since cheaper technologies like Microsoft

Kinect to capture 3D data are being introduced. Kinect came as a part of XBOX,

Microsoft’s gaming console, and uses infrared structured light to capture the depth

data. The image captured using Kinect is not exactly full 3D, but it is more like

a 2D image with an extra depth information associated with every pixel, along with

the color information. Nevertheless, this is a giant leap from the traditional imaging

technologies, starting a whole new era in computer vision and its applications.

1.1 Manifold based clustering

A manifold is a topological space that locally resembles a euclidean space at small

scales. That is, they are topological structures such that each point on them has a

neighborhood that is homeomorphic to a open set of the Euclidean space. In machine

learning, one encounters data in high dimensions, e.g. RGB-D data may have an m x

n image, with 3 RGB colors and one depth per pixel. This implies that it has m · n
dimensions, i.e. each image is a point in a Rmn dimensional space, where the value of

the point is a 4-vector of RGBD. Let’s say we are considering the task of distinguish-

ing an apple from a lemon and a banana. Now, all possible images of an apple (or

all these objects altogether) constitute a vanishingly small fraction of all the possible

images in the Rmn space. Thus, the all images in the class apple would lie on some

subspace of the image space, which can be said with probability approaching 1, to be

2

1.1 Manifold based clustering

dominantly embedded in some lower dimensional subspace. In manifold-based dimen-

sionality reduction algorithms, it is assumed that these lower-dimensional subspaces

are smooth manifolds - i.e. images that are similar have in-between images that con-

tinuously deform one to the other, and also that everywhere in the subspace, the local

neighborhoods resemble an euclidean disk of the some dimension, say d. The task then

is to estimate d and also to construct an embedding of the mn-dimensional image space

for the classes apple, and discriminate these from the classes lemon or banana. In a su-

pervised task each image would be associated with labels such as ”apple” or ”banana”.

In an unsupervised classification task, we may assume that each of these objects lie on

separable manifolds, and we wish to identify all manifolds in the mixed-up image sets

and characterize the objects in this manner.

As an example, a line or a circle has a intrinsic dimensionality of 1, irrespective of

the dimension of the space in which they are drown. Study of manifolds are particularly

interesting in machine learning and data mining, since sometimes data sampled from

in a very high dimension could form some smooth manifolds of much lower dimension,

and if one could detect it, then those data points can be mapped down to the lower

dimension, making the learning/mining much more effective and efficient. However, in

this thesis we are not concerned about mapping these high dimensional manifolds into

their respective lower dimensional embedding. Rather we propose an algorithm that

would cluster the points sampled from a multi-manifold embedded high dimensional

space to the corresponding manifold they belong to. This manifold separation algorithm

can be effectively used in classification/clustering problems, provided there is some

topological structure to the data. Manifold based machine learning approaches are

particularly interesting in a computer vision standpoint, since, very often image datasets

would contain images that are very much alike, with some slight changes in parameters

like viewpoint, light intensity or orientation. Such images would in fact be lying on

some manifold, that automatically characterizes the way the parameters changes from

image to image, enabling the model free interpretation of image data. Similarly, if one

is analyzing activities in videos, then consecutive frames would be very much alike, and

frames containing some specific activity would form a smooth manifold in the image

space. Thus by separating these manifolds, we in turn would be separating the activities

involved in the video.

3

1. INTRODUCTION

Figure 1.2: Examples for intersecting manifolds (Dub11)

But in most practical cases, these constituent manifolds would be intermingled in

complex ways. Hence identifying and and separating these embedded manifolds are

very difficult. The separation of intersecting manifolds is not that straightforward,

since one need to define why a point would belong to a particular manifold rather than

any other. For this we have to see how humans perceive and interprets manifolds.

There are many psychological theories trying to explain human perception, gestalt

perception being the prominent among them. There has been studies which investigated

the relationship between manifolds and gestalt perception. For example, (CCM+07)

uses manifold learning to explain human perception of architecture of buildings. Refer

the part(a) of the figure 1.3. We as humans tends to interpret them as two separate

circles, even though there are other possible interpretations(part(b), part(c)).This can

be explained by gestalt laws of grouping. More on gestalt perception and how it ties

up with our algorithm, can be seen in chapter 2 in detail.

1.1.1 Traditional dimensionality reduction techniques

Classical dimensionality reduction techniques on a dataset generally rely on either Prin-

ciple Component Analysis(PCA) (Jol02), or Independent Component Analysis(ICA) (HKO01).

These techniques tries to find a basis for the observed data, and represent them as a

linear combination of mutually independent basis vectors. This is very efficient if the

underlying data has a linear structure. But, as in most of the cases, data could lie on

a non-linear complex structure with possibly an very low intrinsic dimensionality. But

4

1.1 Manifold based clustering

(a) (b)

(c) (d)

Figure 1.3: Even though the constituent manifolds in figure (a) can be interpreted as

(b), (c) and (d), we as humans tends to prefer (d) as the preferred interpretation

despite of the low dimensionality of the data, linear dimensional techniques like PCA

would not be able to find its intrinsic dimension (TDSL00).

This led to the introduction of a series of new methods that tried to estimate the

low dimensional non-linear manifolds, by analyzing the local neighborhood of a point

and preserving the local properties in the low dimensional embeddings. One of them

was the Isomap algorithm (TDSL00), which, in fact, was the one to introduce the term

NLDR(Non Linear Dimensionality Reduction) (LV07). Most NLDR algos assume that

the data has been densely sampled from a smooth d-dimensional manifold. Thus, small

neighborhoods on the manifold are taken to constitute linear d-dimensional spaces,n

and these are often combined on a graph, the nodes of which represent each data point,

and edges are instantiated only between near neighbors.

In the Isomap algorithm , the distance between any two points is set to their eu-

5

1. INTRODUCTION

Figure 1.4: Real-life example of intersecting manifold. Two separate ac-

tions (head up-down movement and head left-right movement) sharing some similar

frames.Source: (Dub11)

clidean distance if they are within this small neighborhood. Otherwise, assuming that

they lie on a connected component of the graph, a a shortest path connecting them

is found on the neighborhood graph. This shortest path can be thought of as an ap-

proximation of the geodesic path along the manifold. By adding the lengths of the

edges along the path, the isomap estimates the geodesic distance (distance measured

along the surface of the manifold) from one point to the other. Thus, Isomap imagines

that the manifold is constructed by stitching together the various local neighborhoods.

Once these distances have been computed, Isomap uses the classical linear dimen-

sionality reduction technique of MDS to map the input data into a lower-dimensional

space while minimizing the distortion in the geodesic distances. Locally Linear Em-

bedding(LLE) (RS00) another example for a NLDR algorithm, and it tries to preserve

the neighborhood structure by representing a point as a weighted combination of its

neighbors in lower dimension.

But all these methods safely assume that the data is sampled from separate mani-

folds and hence they can not handle intersecting manifolds. But we are more concerned

about a mixed-manifold embedded space with possible mutual and self intersecting

manifolds. We would like to identify and separate these manifolds in the high dimen-

6

1.1 Manifold based clustering

sional space itself, and thus clustering the points based on the manifold it belongs

to. There are two types of mixed manifolds. A single manifold can be mixed, if its

dimensionality changes from one part of the manifold to other. Our algorithm is not

designed to handle thsese sort of manifolds. They are meant for the second type of

mixed manifolds, which is a collection of multiple manifolds, each with a fixed intrinsic

dimension, possibly intersecting others and themselves.

1.1.2 Analyzing intersecting manifolds

Despite of being one of the powerful ideas in data mining and machine learning, man-

ifold based clustering has not been exhaustively explored yet. But there have been

some interesting studies in manifold separation in the past. Some of them were in

neighborhood selection, where points belonging to manifolds are identified in the high

dimensional space itself, where other studies even tried map these identified points into

their lower dimensional projections.

In (BM05), Bengio et al., discuss the problem of multi-manifolds, where the data

comes from a large set of underlying low dimensional manifolds. They suggested a

non-local manifold learning algorithm which attempted to discover shared structure in

the tangent planes at different positions thus identifying the constituting manifolds.

But this algorithm assumed that even though there could be multiple manifolds in the

high dimensional space, none of the intersects with each other and this is the major

drawback of this method.

A major contribution to neighborhood selection was by Souvenir et al (SP05). Their

algorithm was general enough to handle multiple intersecting manifolds. They used

Expectation Maximization and wighted MDS to cluster the manifold points. The al-

gorithm accepted three parameters.

• Number of manifolds and their dimensionality

• Threshold variance: Determines when to stop iteration. If the residual variance

of error in lower dimension embedding falls bellow this level, algorithm assumes

all the points has been correctly clustered and terminates.

• Maximum number of iteration: Since this is an iterative algorithm, one needs to

define maximum number of iterations allowed to reach a convergence. Algorithm

terminates once this limit is reached, often with out satisfactory clusters.

7

1. INTRODUCTION

The algorithm runs in two steps. In E step, each data point is assigned to the best

fit manifold. In M step, model parameter are updated based on the embedding error

occurred while mapping the points to the lower dimensional manifold that was assigned

to them in E step. Embedding error is calculated by a wighted variant of the classical

MDS algorithm, which they called WMDS. When ran iteratively, these EM steps are

supposed to converge, giving the optimal manifold clusters. The major merits of this

algorithm are,

• Handles intersecting manifolds

• Algorithm is iterative, implying that the global structure of the manifold is also

taken into account while doing the clustering. This is something that our algo-

rithm can not do.

Figure 1.5: Results of Souvenir et al’s manifold clustering algorithm as reported as

Nandan et al. (Dub11)

Despite of these attractive merits, the algorithm suffers due to following facts.

• Most of the time the algorithm doesn’t converge. Even if they converge, it has

been noticed that the results are not accurate enough.1.5.

• The other side of the algorithm being iterative is that the computational time re-

quired is too heavy that algorithm can not be employed in any practical situation

with large number of data points.

8

1.1 Manifold based clustering

Recently Dubey et al. proposed a manifold pursuit algorithm that claimed to ef-

fectively separate intersecting manifolds. The inputs parameters required for this algo-

rithm are,

• Number of manifolds.

• Dimensionality of each manifolds.

• A safe starting point on each manifold.

• thspread, the upper limit on the allowed error in selecting a point as the part of

the neighborhood of a point.

• thcurv, Maximum value of curvature allowed when local neighborhoods of two

points are merged together while growing a manifold.

• kmax, the maximum neighborhood size of any point.

As the first step, they defined a tangent space for every point in the data set. It is a

local d dimensional orthonormal coordinate system, such that some k neighbors of the

point are optimally represented in the defined coordinate system with minimal error.

Then, for every point in the manifold, a local neighborhood is found out adaptively.

This is done by calculating kmax neighbors of every point, and then deleting all those

points which has an embedding error more than thspread. Embedding error shows how

well a member of the neighborhood of a point pi can be represented in the tangent

space defined at pi. Embedding error of a point pj in the neighborhood of the point pi

can be calculated as,

ε∗ij = ||zij −
l=k∑
l=1

(zij .v̂il)v̂il|| (1.1)

Once the tangent space and local neighborhood are defined for every point in the

manifold, a graph is grown from each given starting point. Let pi be a point that already

has been added to the current manifold. Let point pj be a member of the neighborhood

of the point pi, whose membership in the current manifold has to be evaluated. This

is carried out based on two parameters namely subspace-subspace distance(SSD) and

spread. SSD basically defines a distance between the tangent space at the two points

pi and pj . It is defined as follows.

Let S1 and S2 be the two tangent space defined at the points p1 and p2 respectively. Let

9

1. INTRODUCTION

{û1, û2, . . . , ûd} be an orthonormal basis of S1 and {v̂1, v̂2, . . . , v̂d} be the orthonormal

basis for S2. Let dH(ui, S2) denote the so-called L2 -hausdorff distance which is defined

between a vector and a subspace (S2) as

dH(ui, S2) = minv∈S2||ui − v|| where, ui is any vector. (1.2)

Then SSD between Si and Sj is defined as

dist(S1, S2) =

√√√√ d∑
i=1

d2H(ûi, S2) (1.3)

Intuitively, the distance of two subspaces should reflect the difference between their

directions.

Spread, on the other hand, depicts how well the new point pj can be represented in

the tangent space Si at the point pi. It is defined as,

spread(pi, pj)Si =
||(pi − pj)− (pi − pj).Si||

||(pi − pj).Si||
(1.4)

Using these two parameters, every point in the neighborhood of the point pi is

ranked, and satisfactory points are added into the current manifold.

Some of the drawbacks of these algorithm are,

• Too many parameters to be specified. Hence wont work if one doesn’t have much

prior knowledge about the data.

• SSD and spread are not strong enough to handle intersections of manifolds. The

reason is that, assume the two points pi and pj are sampled near to the intersection

of two manifolds such that pj belongs to a different manifold than that of pi. If

they are adequately close to each other, the neighborhood of both pi and pj would

have a lot of common points, making SSD and spread between these two points

small. Closer these points are, lesser would be the value of these parameters.

Thus, as the manifold growing reaches at pi, spread and SSD of pj would have

very similar values to the values of other nearby points that belong to the same

manifold as pi belongs to. This would confuse the algorithm at manifold junctions

and thus a good result can not be always guaranteed.

10

1.2 3D perception and Pointclouds

In 2011, Mike Gashler et al. proposed a adaptive neighborhood finding algorithm

named saffron (GM11). Generally, to find a proper neighborhood of a point, the

structure of the manifold around the point has to be known a priori. But the shape

of the manifold can not be estimated until the whole manifold is grown for which the

neighborhoods of every points has to be calculated first. Saffron algorithm claims

to have addressed this. It iteratively approximate the tangent space around a point,

and comes up with a set of neighbors that matches with the approximated tangent

space. Initially, to find a neighborhood of size k around a point pi, the algorithm

starts with a set candidate neighborhood points whose cardinality is bigger than k.

In the beginning, an equal weight is given to all the candidate neighborhood points,

and using them, the tangent space for the point pi is calculated. Now, the weights of

each candidate neighbors are reevaluated again based on how well the points fit to the

calculated tangent space at pi. ”Membershipness“ of a point pj to the tangent space Si

at point pi is quantized using two angles called monohedral angle and dihedral angle.

Monohedral angle is computed by projecting point pj onto Si, and then computing the

angle formed by the three points pj , pi, and pi +Si(pj , pi). Equation 1.5 computes the

cosine of monohedral angle.

m(pi, Si, pj) =
||Si(pj − pi)||
||(pj − pi)||

(1.5)

The dihedral (two-surfaces) angle is dened between two tangent spaces, Si and Sj .

Informally, it is the angle formed between the normals of the surfaces at pi and pj . The

equation 1.6 defines how well the point pj belongs to the space Si.

α(pi, Si, pj , S − j) = m(pi, Si, pj)
2 ∗m(pj , Sj , pi)

2 ∗ d(Si, Sj) (1.6)

Weights of the candidate neighborhood points are reassigned accordingly, and the pro-

cess is continued until the convergence is attained. Again, this algorithm can not be

effective near the intersection of two manifolds candidate neighbors of a point near the

junction of two manifold would contain points from both the manifold, resulting the

algorithm to converge providing undesirable tangent space of the point.

1.2 3D perception and Pointclouds

Object recognition is a well studied topic in computer vision, with much progress made

in recent years. As of now, there are some impressive object recognition systems and

11

1. INTRODUCTION

algorithms (Goo11) that are (almost) comparable with human capabilities in recogni-

tion. With the introduction of Microsoft’s Kinect, a low cost camera that can capture

depth data along with the RGB image, the field of RGB-D images got a significant

boost.

Figure 1.6: A colorless pointcloud

Pointclouds are 3D counterparts of images. They are a collection of 3D points with

the three coordinate values and possibly with RGB color information for each of the

points. The pointcloud captured from Kinect is not exactly in full 3D, but more like a

2.5D image (Mar74), with X,Y and Z world coordinates associated with each pixel.

1.2.1 Kinect RGB-D object dataset

In this work, we shall be using Washington University’s RGB-D object dataset (LBRF11a),

an excellent dataset of pointclouds of household objects, captured using Kinect in a

systematic way. The dataset contains pointclouds, RGB images, and depth images of

51 categories of household objects. The images are of 640x480 resolution, scanned at

the rate of 30Hz. For each category, there are multiple instances available, hence the

dataset can be used for instance detection as well. For each instance of an object, there

are 3 image sequences shot with Kinect at three different heights, approximately 30, 45

and 60 degree above the horizon, which captures multiple views of the object. Each of

these three video shots has around 250 different views that spans all the 360 degrees

around the object. This multiple views of each of these object would form a strong

manifold in a rightly chosen higher dimensional space.

12

1.3 Organization of the thesis

Figure 1.7: A few of the objects in RGBD dataset

Our objective is to use our manifold based spatial clustering algorithm to discover

the various objects in the dataset, with out any supervision. We expect the multiple

views of every object would form a manifold and thus by separating the manifolds,

we should be able to discover object classes. More on pointclouds and the results of

applying our algorithm on RGB-D dataset can be seen in chapter 4.

1.3 Organization of the thesis

The thesis is organized into five chapters. The second chapter, the core of this thesis,

describes the newly proposed manifold based clustering algorithm in detail. A brief

note on gestalt perception and how it is connected with our algorithm, is also given. In

the third chapter, we introduce a new distance measure called Correlation Based Earth

Mover Distance, which is very effective for comparing two data points drown from a

distribution. Fourth chapter presents the results of using our algorithm in object class

discovery. The chapter also contains brief description about three feature vectors that

we used in the process. The final chapter is mainly the conclusion and some possible

future works.

13

1. INTRODUCTION

14

2

Manifold based spatial clustering

2.1 Problem statement

Let X = {x1, x2, .., xn} be the dataset where xi is sampled from <D, a D dimensional

space. Each xi is sampled from an underlying manifold of dimension d, where d << D.

But neither the number of manifolds(eg: number of objects) nor their dimensionality

is known before hand. One merely assumes that the algorithm initialization point does

not lie on any manifold intersection regions. The aim is to associate every xi ∈ X with

some label lj ∈ {l1, l2, .., lm} such that ∀xi ∈ X, one and only one label lj would be

associated. Note that m, the number of manifolds involved, need not have to be known

before hand.

2.2 The proposed manifold based clustering algorithm

Unlike the algorithms like Isomap(TDSL00) and LLE(RS00), we are not trying to find

the lower dimension projection of the high dimensional data. We are only interested

in clustering the points from the higher dimensional space based on the corresponding

manifold they are drawn from. Thus we would be separating the manifold in the

higher dimensional space rather than mapping them onto its intrinsic lower dimension

subspace. So our algorithm is more of a manifold based clustering algorithm than a

manifold identification algorithm.

Manifolds also can be impure, meaning, a single manifold would have different

dimensionality at different parts. Our algorithm is not designed to handle these cases,

hence it just ignores this situation.

15

2. MANIFOLD BASED SPATIAL CLUSTERING

If the manifolds are separable in the high dimensional space, a simple graph grow-

ing algorithm would cluster the manifolds. Graph growing algorithms starts from a

random point in the data, and grows a graph, by connecting the point to its k nearest

neighbors. Since the manifolds are not intersecting each other, all the manifolds would

be separated, provided an apt value for k is chosen.

But having a static k may not always give one good results. A small k could result

in the breakage of a manifold into multiple smaller sub-manifold patches, while a larger

k would bring too much freedom in graph growing, resulting the merging of multiple

manifolds into a single connected component. Refer figure 2.1 and section 2.2.1 for more

details. Hence, a manifold growing algorithm should have a k, that changes according

to the local neighborhood of the manifold.

Also, as a third case, manifolds could be intermingled with each other, making their

separation extremely difficult. So when the graph growing reaches at a point where

multiple manifolds cross over each other, the manifold growing algorithm should be

smart enough to decide the direction in which it has to proceed. This can be made

possible only by analyzing the structure of the manifold that it has grown till then.

Thus, as the second property, the ideal manifold growing algorithm should analyze the

shape/structure of the neighborhood of a point to make sure that the graph is grown in

the right direction from the point.

Since our proposed manifold growing algorithm takes care of both the cases discussed

above, it is powerful enough to separate even the complicatedly intermingled manifolds.

Based on this, the two major features of our algorithm are dynamic branching and

continuity score

2.2.1 Dynamic branching factor

Problem with the static k is handled in our algorithm by having an lower limit and

an upper limit on the branching factor namely kmin and kmax respectively. Hence,

after the graph growing, each node would have at least kmin edges starting from it.

At each node xi, the algorithm would start with a branching factor kmin. If all the

kmin closest neighbors are unvisited, then the graph simply grows to include all these

kmin neighbors. On the other hand, if some of the kmin neighbors of xi are already

visited, then the k is iteratively incremented until kmin unvisited neighbors are found

16

2.2 The proposed manifold based clustering algorithm

Two synthetic 2-dimensional manifolds Naive graph growing with k=2

Number of clusters: 27

Naive graph growing with k=3 Naive graph growing with k=4

Number of clusters: 5 Number of clusters: 2

Figure 2.1: Results of running graph growing algorithm with static k to separate two

synthetic manifolds. Lower branching factor left the discovered manifold in patches, while

increasing the branching factor resulted in merging of the manifolds together.

or till k > kmax. kmin and kmax are the parameters of the algorithm, and should be set

keeping the expected minimum inter-manifold distances in mind.

As seen in figure 2.2, dynamic branching factor helps the algorithm to satisfy the

gestalt low of closure.

2.2.2 Continuity score

Continuity score between two points are determined by two factors. Firstly, the points

should not be to far from each other, and secondly, they both should lie on the local

d dimensional hyperplane. These two factors are captured by the two parameters that

we are going to introduce, namely scaled projected distance and embedding error.

17

2. MANIFOLD BASED SPATIAL CLUSTERING

Figure 2.2: Result of running tha graph growing algorithm with dynamic k on the same

manifolds as shown in 2.2, with kmin = 1 and kmax = 9. The manifolds are separated

perfectly as one would expect.

Now, if the intrinsic dimensionality of manifold is d, then each point on it has a

d-dimensional tangent space defined by the d basis vectors, also called tangent bundles.

In manifold learning from the data points, we don’t have a continuous manifold and

hence we can not define a continuum which can give us the tangent vectors. To counter

this problem, we define the tangent space by finding the linear d- dimensional eigen

space for the local neighborhood. We define a linear subspace(S) of dimension d by the

principal components of the mean centered data points. These principle components are

calculated just as in the manifold pursuit algorithm(Dub11), but with a small difference.

In order to find the tangent space at a point xi, instead of finding a best fit vector space

taking k nearest neighbors of xi, we take k visited neighbors of xi that are the part

of currently growing manifold. Then a principal component analysis(Jol02) is done on

these k visited neighbors to identify d principal components, whose eigen values are

non-zeros. The reason why we insist that the tangent space has to be calculated from

the visited neighbors is that, it make sure that point chosen to calculate tangent space

comes from the currently growing manifold. We represent the approximated tangent

space together with the eigen value corresponding to each basis vector at a point xi by,

Si = {(e1, λ1), (e2, λ2), .., (ed, λd)} (2.1)

where,

ek: Unit eigen vector along the kth principle component.

λk: Eigen value corresponding to kth eigen vector.

18

2.2 The proposed manifold based clustering algorithm

Note that one can not pre-compute the tangent space at every point before the man-

ifold growing algorithm is initiated, since the unvisited neighbors of a point can be

determined only while the manifold is being grown.

Based on these, lets define what continuity score is. Assume that the manifold has

been grown till some point xi. While trying to grow the graph from xi in the manifold,

the proposed algorithm considers the local neighborhood around xi. Let xj be a point

in the vicinity of the point xi, to which the manifold could potentially grow in the next

step. Before adding the new point xj into the manifold, our algorithm first conforms

that the point added is in consensus with the structure of the manifold grown so far.

The decision is made based on a weighted combination of scaled distances of xj from

the local neighborhood of the point xj , and the deviation from the local tangent space.

This is termed as continuity score, a parameter that suggests how well the new point

xj matches with the local topology of the manifold around point xi.

Let Si = {(e1, λ1), (e2, λ2), .., (ed, λd)} be the eigen decomposition at the point xi.

The continuity score of xj is calculated as per algorithm 1. It is basically the weighted

sum of two terms, namely scaled projected distance and embedding error. Scaled pro-

jected distance of a point xj shows the distance of the point from the origin of the

tangent space Si, along the surface of the grown manifold, calculated as in equation

2.2.

scaled projected distance(Si, xj) =

d∑
k=1

Λ√
λk
· < ek, (xj − µi) > (2.2)

where,

µi is the origin of the tangent space at xi.

Λ =
∑d

k=1

√
λk

Now,
√
λk, the square root of the eigen value corresponding to an eigen vector ek, is

in fact the standard deviation of the points along the kth principal component(Jol02).

Thus
√
λk
Λ is the corresponding normalized standard deviation. Dividing components of

a point xj along each principal component by the normalized standard deviation along

the principal component, would relax the distance along the surface of the local patch

of the manifold, and would amplify any deviation from the manifold surface. That is,

one unit of distance along the surface of the manifold would contribute much lesser to

the scaled projected distance than one unit of distance perpendicular to the surface of

the manifold.

19

2. MANIFOLD BASED SPATIAL CLUSTERING

Embedding error (Dub11) at xj , on the other hand, shows how well the tangent

space Si at the point xi captures the point xj . It is the error of representing the point

xj as a linear combination of the basis vectors of Si and is calculated as in equation

2.3.

embedding error(Si, xj) = |xj −
d∑

k=1

(< ek, (xj − µi) > ·ek)| (2.3)

where µi is the origin of the tangent space Si.

The final continuity score of the point xj is calculated as the weighted sum of two

components, as bellow,

continuity score(Si, xj) = α · scaled projected distance(Si, xj) +

(1− α) · embedding error(Si, xj)

where, α determines the weight given for the two factors, scaled projected distance

and embedding error. Lower the α, the higher would be the weight given for embedding

error, enabling the algorithm to prefer the low curvature direction while growing the

manifold. Since continuity score quantizes the smoothness of the manifold growth, one

can say that it directly implements gestalt principle of continuity. Figure 2.3 shows

how effective the continuity scores really are in growing the manifold.

To decide α, one need to test the relative importance of scaled projected distance

and embedding error(Figure 2.4). Lower the α, higher is the weight given to the em-

bedding error, and vise versa. Consider part (a) of the figure. Since α = 0, scaled

projected distance is completely ignored, making the embedding error the only crite-

rion for choosing points. When all the kmax points are coming from the same manifold,

their embedding error would be almost zero, making the selection of kmin points from

kmax random. This makes the manifold growing stop abruptly, dividing the structure

in to fragments. In part (c), α has raised to 0.3. As one can see, still circles can not be

separated. However, at alpha = 0.5 the algorithm is found to separate the two circles.

As one keep on increasing α, less weight is given to the embedding error, reducing the

penalty of taking turns along the manifold. Thus, as expected, in part (d) of the figure,

extracted manifolds are not circles, but ones with sharp corners. Thus, scaled projected

distance basically captures the distance from a point from a surface patch, as where

20

2.2 The proposed manifold based clustering algorithm

(a)

(b)

Figure 2.3:

part(a): Two intersecting circles. Note the intersecting part marked in red. There is a gap

introduced between the circles.

part(b): Continuity score at the junction. Manifold is grown till the point p, in the

direction of the arrow shown. Candidate neighbors of p are color coded based on their

local continuity. Greener the points, better they belongs to the grown manifold. Redder

the point, worse they fit in to the current manifold.

embedding error indicates how sharply the surface curvature changes along the surface

of the manifold.

kmin and kmax on the other hand, are set according to the expected variance in the

data and gaps in the manifold. kmin determined the degree of growth of the manifold.

Higher kmin implies the graph is grown into more points from every point. A higher

kmin is preferred when the dimensionality of the expected manifold is high. kmax on

the other hand, determines the maximum number of points that the algorithm can

consider to choose kmin neighbors of a point. This essentially indicates the gaps in the

manifold. If there are bigger gaps in the manifold, a larger kmax would be needed to

bridge them. Increasing the kmax also increases the chance of merging one manifold

into another. Thus kmax has to be set carefully.

21

2. MANIFOLD BASED SPATIAL CLUSTERING

Algorithm 1 Calculate continuity score(xj , visited neighbors, α)

xj : Point for which the score has to be calculated

visited neighbors: The set of visited neighbors of the point xi, on to which xj has to

be projected.

α: Weighing factor

1: t = cardinality(visited neighbors)

2: Calculate the mean of visited neighbors, µi = 1
t

∑t
z=1 xz

3: Center visited neighbors and xj ; ∀xp ∈ visited neighbors, xp = xp − µi and xj =

xj − µi
4: Calculate C, the covariance matrix of visited neighbors;

5: Calculate eigen vectors ek and eigen values λk) of C, where 1 ≤ k ≤ d
6: Λ =

∑d
k=1

√
λk

7: scaled projected distance =
∑d

k=1
Λ√
λk
· < ek, (xj − µi) >

8: embedding error = |xj −
∑d

k=1(< ek, (xj − µi) > ·ek)|
9: continuity score(Si, xj) = α · scaled projected distance(Si, xj) + (1 − α) ·
embedding error(Si, xj)

10: return continuity score

2.2.3 Informal description of the algorithm

The proposed algorithm make use of both the properties explained above, the dynamic

branching factor and continuity score parameter. The algorithm is initiated from a

random point in the set of data points. At anytime, manifold would have a “growing

frontier” consisting of points/nodes from the boundary of the manifold grown so far.

We call this the open nodes. Let manifold id be a counter to keep track the manifolds

being discovered, and initialize it to 1 in the beginning. A node to be expanded, say

xi, is chosen from the set of open nodes. Then find kmax neighbors of xi, including the

already visited ones. Now, using the algorithm 1, calculate the continuity score for each

of the calculated neighbors of xi. Then, among from the kmax neighbors, identify kmin

unvisited nodes with the least continuity score. Connect all the kmin newly discovered

nodes to xi, and label them as manifold id. Finally push all the newly discovered nodes

to the open nodes queue, and repeat the procedure. If open nodes becomes empty, that

implies that current manifold has been traversed fully. Increment the manifold id and

repeat the whole procedure from a randomly chosen unvisited node until all the nodes

are visited. The complete steps are shown in algorithm 2.

22

2.2 The proposed manifold based clustering algorithm

Algorithm 2 Cluster manifolds(X, kmin, kmax, kpatch, α)

X = {x1, x2, .., xn} : Set of points to be clustered

kmin:Lower bound of k

kmax:Upper bound of k

kpatch: Neighborhood size on which PCA has to be performed

α: weighing factor

1: Initialize array visited[n] = 0

2: Initialize array label[n] = 0

3: open nodes = {r} where r the index of some randomly chosen point xr from X

4: Initialize manifold id = 1

5: while (∃i such that visited[i] 6= 1) do

6: if (open nodes is empty) then

7: manifold id = manifold id+ 1

8: open nodes = r, where r is the index of a random unvisited point xr from X

9: continue

10: end if

11: current = open nodes.dequeue()

12: visited[current] = 1

13: visitedneighbors= kpatch visited, nearest neighbors of xcurrent.

14: candidate neighbors = closest kmax neighbors of xcurrent

15: candidate neighbors = {xi ∈ candidate neighbors s.t visited[i] = 0}
16: ∀xi ∈ candidate neighbors, calculate continuity score(xi, visitedneighbors) by

algorithm 1

17: Sort candidate neighbors according to continuity scores

18: new nodes = {}
19: for i = 1 to min(kmin, |candidate neighbors|) do

20: new nodes = candidate neighbors[i]

21: end for

22: ∀xi ∈ new nodes, update label[i] = manifold id

23: open nodes.enqueue(new nodes)

24: end while

25: return label

23

2. MANIFOLD BASED SPATIAL CLUSTERING

(a) α = 0.0 (b) α = 0.3

(c) α = 0.5 (d) α = 0.9

Figure 2.4: Effect of weighing factor α on continuity score

The complexity of the algorithm mainly depends on two factors. Complexity of the

distance calculation, and complexity of the PCA algorithm. Let the time complexity

of the distance calculation be fd. PCA analysis of n points from a D dimensional

space would take O(D3 +D2n) time (GVL96). Then the totl complexity of the Cluster

manifold algorithm(2) would be, O(n2 · fd · log(kmax + O(nkmax(D3 + D2kpatch)).

Here, O(n2 · fd · log(kmax)) is the time taken to find kmax nearest neighbors of all the

point using some distance metric, O(nkmax(D3+D2kpatch)) is the complexity of finding

continuity score for kmax neighbors of every point.

As explained in the earlier chapter, our manifold algorithm models gestalt percep-

tion.

2.3 Gestalt perception

Gestalt theory of perception suggests that humans sees objects as a “whole” than as

a collection of individual building parts. In other words, “the whole is greater than

24

2.3 Gestalt perception

Line and a curve Cylinder and a plane

Figure 2.5: Results of running our algorithm on synthetically created intersecting mani-

folds. Algorithm was able to separate the manifolds successfully.

the sum of the parts”(Pet77). That is, a brick wall is more than a collection of bricks

and a rectangle is much more than a set of four lines. The “whole” object would be

having some additional emergent properties that none of its constituent has. Gestalt

psychologists reject the claim that we recognize object by identifying individual parts

or features; instead, we see and recognize each object or a unit, as a whole(Gal09).

Consider the example given in figure 2.6. Part (a) shows a structure which could

possibly be a combination of multiple manifolds. A manifold separation algorithm could

treat the whole structure as a single manifold, or it could assume it consists of multiple

manifolds, and might break it down to multiple sub-manifolds. Some of the possible

breakdowns are shown in part (b), (c), and (d) of the figure 2.6. Perhaps we as humans,

tend to prefer the one showed in part (d) which shows two complete circles. This can

be explained by gestalt principles of grouping. Some of its main aspects are defined

bellow as defined in (SMM07), and we would be trying to stick to these guidelines while

designing our manifold growing algorithm.

2.3.1 Principle of Proximity

Principle of proximity states that when we perceive a group of objects, we tend to see

the objects that are close to each other as forming a group. (Figure 2.7)

This property can be imposed on the manifold growing algorithm, by making sure

that manifolds grow from a point to its neighbors first. This would be taken care in

25

2. MANIFOLD BASED SPATIAL CLUSTERING

(a) (b)

(c) (d)

Figure 2.6: Different ways of interpreting the constituent manifolds in a multi-manifold

embedded structure

most of the manifold growing algorithms((Dub11), (TDSL00), (GM11)), since in one

way or the other, they would be considering k-nearest neighbors of a point before the

manifold is grown from a point.

2.3.2 Principle of Closure

Low of closure states that humans tend to perceptually close up, or complete, object

that are not, infact, complete. Our brain fills up the missing gaps and sees the object as

a whole entity, thus generalizing it. Refer figure 2.9. Principle of closure is implemented

in our algorithm by the dynamic branching factor, which is discussed in section 2.2.1.

Figure 2.9 shows a rectangle by the side of a circle. However, there are discontinuity

in the shapes. But despite of the gaps, we perceive them as two separate shapes, rather

than a set of discontinuous lines. To mimic human perception, a manifold growing

26

2.3 Gestalt perception

Figure 2.7: Gestalt principle of Proximity: We tends to perceive the collection of points

as two clusters

Figure 2.8: Result of applying our algorithm on the structure in figure 2.7

algorithm should have this property, since in most of the practical cases, manifolds in

consideration would have uneven gaps in it due to irregular sampling or noise.

2.3.3 Principle of Continuity

Principle of suggests states that humans tends to perceive smoothly flowing or continu-

ous forms rather than disrupted or discontinuous ones. This also explains why we tends

to perceive the figure 2.6 as two separate circles as opposed to shapes shown in part

(b) or part (c), since when viewed as two circles, it offers least amount interruption in

the structure of the newly formed shapes. This idea is implemented in our algorithm

27

2. MANIFOLD BASED SPATIAL CLUSTERING

Figure 2.9: Gestalt principle of Closure

Figure 2.10: Result of applying our algorithm on the structure in Figure 2.9

with the concept of continuity score, that would be discussed in section 2.2.2.

There are three more principles in Gestalt laws of perception, but they are not

relevant to the problem in hand. They are mentioned bellow.

Principle of similarity: Suggests that we tend to group objects that are visually

similar (Figure 2.12).

Principle of symmetry: We tend to cluster objects that are mirror images of one

another (Figure 2.13).

Principle of Figure-Ground: While perceiving a visual field, some object seems

prominent(figures), while other aspects of the field reside into background(ground).

28

2.4 Results on Humaneva dataset

Figure 2.11: Result of applying our algorithm on the structure in Figure 2.6

As seen in figure 2.5, our algorithm works well in clustering artificially created

manifolds. To test its performance on real world data, it was run on the Humaneva

dataset, and the results are given bellow.

2.4 Results on Humaneva dataset

Humaneva(SB06) is a dataset from the Brown university, which mainly depicts human

actions and poses. It contains 7 calibrated video sequences (4 gray scale and 3 color)

that are synchronized with 3D body poses obtained from a motion capture system. The

database contains 4 subjects performing a 6 common actions (e.g. walking, jogging,

gesturing, etc.). Some of those videos contains multiple actions. We considered such a

video sequence, where the subject walks around an empty room, followed by jogging,

then hopping in the center of the room, and finally balancing himself on a single leg.

In theory, all these actions should form a separate manifold in the image space. To test

the theory, we ran our algorithm on the video sequence. Some of the interesting clusters

identified are given in figures 2.14,2.15 and 2.16. Algorithm generally performed well on

this dataset, even though it was not able to distinguish between running and walking.

The possible reason could be the test images were too scaled down to separate these

two similar actions.

The results presented here were on RGB data, with Euclidean as the distance mea-

sure. The experiments in chapter four are on RGB-D data, with the newly introduced

29

2. MANIFOLD BASED SPATIAL CLUSTERING

Figure 2.12: Gestalt principle of similarity

Figure 2.13: Gestalt principle of symmetry

CEMD distance as the distance measure.

30

2.4 Results on Humaneva dataset

Figure 2.14: This cluster contains frames corresponding to the subject walking around

the room. Note that no frames from the second round, where the subject was running, is

present here

Figure 2.15: This cluster contains frames corresponding to the subject balancing himself

on one leg

31

2. MANIFOLD BASED SPATIAL CLUSTERING

Figure 2.16: This cluster contains frames where the subject was hopping in the center of

the room

32

3

Correlation based Earth Mover’s

Distance (CEMD)

Earth mover’s distance(EMD) is defined between two probability distribution over a

region R. Informally, if the distributions are seen as two piles of dirt over a region

R, then EMD can be viewed as the minimum work required to transform one pile to

another. “Work” done is calculated as the units of dirt moved times the distance they

moved across the distribution. This is perfect for comparing two histograms. But

before we proceed, one have to define the ground distance, ie the work needed to move

a unit amount of dirt from one bin into another. If the bins are ordered systematically,

the ground distance between ith and jth bin may defined as (i − j). This make sure

that if at all the contents of a bin are transfered, they are transfered to the nearest bin

as possible. Often this is an acceptable assumption. But very well need not have to be

true. Hence, we uses a modified version of EMD, where ground distance is defined in

terms of correlation between the bins.

Suppose we have two histograms/signatures H1 and H2 both from a d dimensional

space. We defined the ground distance as a measure that is inversely prepositional to

the correlation between the two bins i and j. This results the two bins to have a small

ground distance between them, if they are highly correlated. This make sure that the

higher the correlation between two bins, easier it is to move points between the bins.

This is exactly what we needed. The ground distance between the bins, gij is defined

33

3. CORRELATION BASED EARTH MOVER’S DISTANCE (CEMD)

as,

gij = 1− corr(Si, Sj)

= 1− Cov(Si, Sj)

σiσj
(3.1)

with,

σi =

√√√√ 1

n− 1

n∑
k=1

(H i
k − Ŝi)2

Cov(Si, Sj) =
1

n− 1

n∑
k=1

(H i
k − Ŝi)(H

j
k − Ŝj)

where,

σi is the standard deviation of the ith bin of the signature,

Cov(Si, Sj) is the covariance between ith and jth bin of the signature,

H i
k is the value of ith bin of the kth signature,

Ŝi is the mean value of the ith bin,

n is the number of total number of signatures/data points.

With this definition of the ground distance, the new earth mover’s distance between

H1 and H2 calculated by estimating fij , the flow between ith and jth bin such that the

following expression is minimized,

CEMD(H1, H2) =

∑d
i=1

∑d
j=1 fij · gij∑d

i=1

∑d
j=1 fij

(3.2)

subjected to following constrains.

fij ≥ 0 ; such that 1 ≤ i, j ≤ d (3.3)

d∑
j=1

fij ≤ H i
1 ; such that 1 ≤ i ≤ d (3.4)

d∑
i=1

fij ≤ Hj
2 ; such that 1 ≤ j ≤ d (3.5)

d∑
i=1

d∑
j=1

fij = min(
d∑
i=1

H i
1,

d∑
j=1

Hj
1) (3.6)

where,

H1 and H2 are the two signatures,

34

3.1 Properties of CEMD

Figure 3.1: Ground distance between 250th bin and the remaining bins. As expected,

distance to the neighboring bins are small. Additionally, distance to some far away bins

are identified to be small, presumably because those bins are highly correlated to the 250th

bin.

d is the number of bins, ie., dimension, of the signatures,

fij is the flow calculated between ith bin and the jth bin,

H i
1 and Hj

2 are the values of ith and jth bins of H1 and H2 respectively.

This optimization can be seen as a instance of transportation problem, and can be

solved using algorithm((KV06) section 9.5). More discussions on the algorithm and its

completely can be seen in section 3.3.

3.1 Properties of CEMD

It can be seen the CEMD does not always qualifies as a metric. But still, its worth

noting that CEMD possess following properties.

3.1.1 Non-Negativity

Lemma 1. For any two signatures H1 and H2, CEMD(H1, H2) ≥ 0

Proof. For CEMD to be negative, either numerator or the denominator of Eqn.3.2 has

to be negative. The denominator
∑d

i=1

∑d
j=1 fij can not be negative since flow can

never be negative due to the constrain 3.3. Neither the numerator can be negative,

since correlation is always non-negative. Hence CEMD can never be negative.

35

3. CORRELATION BASED EARTH MOVER’S DISTANCE (CEMD)

3.1.2 Identity of indiscernibles

Lemma 2. For any two signatures H1 and H2, CEMD(H1, H2) = 0 if H1 = H2, but

the converse is not necessarily true.

Proof. We know that ground distance between a bin and itself is 0, since correlation

between a bin and itself would be always 1, making gii = 0. Also, since H1 = H2, we

know that H i
1 = H i

2 for all 1 ≤ i ≤ d. Now if we could define fij = H i
1 for all i = j and

fij = 0 for all i 6= j, it can be seen that CEMD(H1, H2) = 0 with all the constrains

satisfied. Previously, we already have shown that CEMD can not be negative. Hence

CEMD(H1, H2) = 0 is the optimal solution, proving the claim.

Also, its noteworthy that the converse of this claim need not have to be always true.

The nature of the ground distance g between the bins are to be blamed for this. As

a counterexample, consider a case where all the bins are completely correlated to each

other, making all gij = 0. From the eqn. 3.2, it can be directly seen that this makes

CEMD 0, irrespective of the values of H1 and H2.

3.1.3 Symmetry

Lemma 3. For any two signatures H1 and H2, CEMD(H1, H2) = CEMD(H2, H1).

Proof. Since correlation is symmetric, gij = gji.

Now, CEMD(H1, H2) ≯ CEMD(H2, H1), since reversing the flows fij together with

the fact that gij = gji would make CEMD(H1, H2) = CEMD(H2, H1).

Similarly, one can also show that CEMD(H2, H1) ≯ CEMD(H1, H2).

Form the above two statements, CEMD(H1, H2) = CEMD(H2, H1). Hence the proof.

3.1.4 Triangular inequality

Lemma 4. For any three signatures H1, H2, and H3, CEMD(H1, H3) ≤ CEMD(H1, H2)+

CEMD(H2, H3).

Proof. This is trivial since CEMD is calculated as an optimization problem of minimiz-

ing the expression 3.2. As defined earlier, CEMD between two histograms is defined as

the minimum work required to rearrange points between the bins of one histogram to

make it similar to the second histogram. Thus CEMD(H1, H2) + CEMD(H2, H3) is

the work needed to be done to rearrange H1 to H2, followed by a second rearrangement

to change H2 to H3. Now, if this total work was indeed less than CEMD(H1, H3),

36

3.2 “Wormholes” and their implications

that implies that CEMD(H1, H3) is not the optimal solution that we expecting it to

be, which violates our premise. Hence the proof.

3.2 “Wormholes” and their implications

We have already seen that CEMD(H1, H2) = 0 does not necessarily implies that

H1 = H2. This implies that the same point can exist at two different parts of the

CEMD space, creating a “worm hole” in space. Thus, when you are growing a manifold

through the space and ends up in one end of this worm hole, you would emerge through

the other end of worm hole at a different corner of the space. This makes the CEMD

space non-continuous thus making the space non-differentiable.

But analyzing CEMD in more detail shows that “worm holes” can be easily avoided

by carefully choosing the signatures. Assume that we have two non-empty signatures

H1 and H2 such that H1 6= H2 and they from a worm hole. Ie, CEMD(H1, H2) = 0.

⇒
d∑
i=1

d∑
j=1

fij · gij = 0 — from Eqn. 3.2

⇒ fij · gij = 0,∀i, j. — since gij , fij ≥ 0.

⇒ either fij = 0 or gij = 0,∀i, j

⇒ ∃gij = 0 for some i 6= j — since H1 6= H2

⇒ corr(Si, Sj) = 1 — from the equation 3.1

This shows that CEMD(H1, S2) = 0 only if there exists to bins Si,Sj s.t they are

completely correlated to each other. This implies that in such cases, any signature S,

we can find a dual Ŝ with CEMD(S, Ŝ) = 0, just by exchanging the contents of ith

bin of S with jth bin, thus forming a pair of worm holes. That is, every point in the

space would have a dual point. Thus, the jth(or the ith, if you prefer) dimension acts

as a mirror, replicating the entire space and thus not carrying any extra information in

it. Thus one can safely drop the jth dimension completely, before the correlations are

calculated, hence removing the possibility of fully correlated bins and worm holes.

37

3. CORRELATION BASED EARTH MOVER’S DISTANCE (CEMD)

Thus, if we discard all the the dimensions which are completely correlated to some

other bins, we can be assured that even identity of indiscernibles holds for CEMD,

making it a metric.

Sidenote: CEMD is effective only in the situations where all the data points be-

tween which you want to find distance, is given beforehand. This is because CEMD is

based on correlation between the different dimensions of data points, and this correla-

tion can potentially change when more and more new data points are added. This is

not a major concern, because CEMD is intended for clustering purposes, where all the

data points are available beforehand.

3.3 Computational complexities of CEMD

Figure 3.2: CEMD as transportation problem

Like any other earth mover’s distance, CEMD can also be seen as a instance of

transportation problem. This is a bipartite network flow problem which can be for-

malized as the Eqn. 3.2 and the constrains 3.3, 3.4, 3.5 and 3.6. If the aim is to find

CEMD(H1, H2), then bins of H1 can be seen as the source nodes and its supply, while

bins of H2 can be taken as destination nodes and its demands. The cost of moving a

unit of supply from one bin to another is showed by the edges between the supplier

nodes and the consumer nodes. This is an uncapacitated minimum cost flow problem,

which can be solved by Orlins algorithm((KV06) section 9.5) in O(d3logd) time, where

d is the number of bins.

38

3.3 Computational complexities of CEMD

3.3.1 Optimizing CEMD for manifold growing

As explained before, CEMD distance is a powerful measure to compare signatures to

each other. But it come with the cost of increased time complexity of O(d3logd) as

compared to O(d) complexity of calculating euclidean and cityblock distance.Thus if

one wants to find k nearest neighbors of a point among n points in CEMD distance,

then the running time of the algorithm would be O(nd3log(d)log(k)). This made it

impractical for large datasets. For example,it was evident from simulations that it

could take years for a program to calculate CEMD distance between the signatures of

all the objects in the RGB-D dataset. Hence the complexity of calculating CEMD had

to be brought down considerably for it to be tested on any big dataset.

We reduce this time completely by approximating CEMD in two phases.

As the first step, we introduce a greedy approximation algorithm by which the time

complexity can be brought down to O(d2logd). The assumptions are that maximum

amount of points would be moved between the pair of bins with minimum ground

distance and that the ground distance follows triangular inequality. We are fully aware

that the correlation does not follow triangular inequality. But we presume that most of

the time the correlation between the bins do follow triangular inequality. When they

don’t, say gik ≮ gij + gjk for some bins i,j and k, we assume that gik is not too large

than gij +gjk. Thus even if one moves a point from the bin i directly to bin k, with out

any intermediate bins, the calculated CEMD distance wont be too much off from the

optimal value. This simplifies the problem from being a linear programming problem

to a greedily solvable one.

To explain the new algorithm, lets view it as the transportation problem. The

task is to find the minimum cost flow in the bipartite graph shown in figure 3.2. The

bins of the two signatures H1 and H2 forms the sets of source nodes and sink nodes

respectively. Contents of the signature H1 are the supply at the source nodes. Simi-

larly, contents of H2 forms the demand at the sink nodes. Let E be the set of edges

between the source and sink nodes. Each edge ei ∈ E has three parameters namely

e.source, e.destination, and e.cost. Let d be the dimension of the signature. One

can see that the flow through emin, the edge with minimum cost, has to be maxi-

mum to get the minimum cost flow. Hence, the flow through the edge emin has to be

min(H1(emin.source), H2(emin.destination)). Once the edge emin is satisfied, the edge

39

3. CORRELATION BASED EARTH MOVER’S DISTANCE (CEMD)

is removed, and the process is repeated with the edge with the next minimum cost,

until supply at the source is exhausted or till the demand at the sink is fully met. Note

that is could potentially compromise constraint 3.6. The complete steps are given in

algorithm 3.

Algorithm 3 Calculate CEMD(H1, H2)

1: Initialize fij = 0 ∀i, j ≤ d
2: Initialize CEMD = 0

3: Let E = {e1, e2, .., ed2} be the sorted set of edges, based on the edge cost.

4: for ∀ek ∈ E do

5: i = ek.source

6: j = ek.destination

7: if Si1 > 0 AND Sj2 > 0 then

8: fij = min(Si1, S
j
2)

9: CEMD = CEMD + fij · ek.cost
10: Si1 = Si1 − fij
11: Sj2 = Sj2 − fij
12: end if

13: end for

14: CEMD = CEMD∑d
i=1

∑d
j=1 fij

15: return CEMD

However, the complexity of this algorithm can be brought down even further. Since

ground distance g between the bins of the signature remains the same for all the points

in a dataset, all the pairwise bin distance can be pre-sorted. With the sorted ground

distance, the complexity of calculating CEMD between two signatures comes down to

O(d2). Since there would be n2 bin pairs, the complexity for pre-sorting them would

be O(n2log(n)).

The second phase of reducing the complexity is specific fact that the CEMD would

be used in manifold growing/clustering. In manifold growing, we are interested only in

the CEMD distance between a point and its immediate k neighbors. Also, L1 distance

acts as a reasonable measure for CEMD, since L1 distance is the same as CEMD, if

the flow between two different bins are constrained to be zeros. ie, when fij = 0∀i 6= j

,CEMD(H1, H2) = L1(H1, H2). This is a reasonable approximation, since every bin

is highly correlated to itself, making the inter-bin flow minimum. Hence, if one wants

40

3.3 Computational complexities of CEMD

to find k neighbors of a point v in CEMD distance, he can reasonably assume that all

the k neighbors would be included in K neighbors of the same point v in L1 distance

where K is reasonably bigger than k. Once these K neighbors are determined, the

CEMD distance between v and K neighbors are calculated and the k points with

minimum CEMD value are chosen as the required neighbors. If there are n points, then

determining K nearest neighbors of a point in L1 distance can be done in O(ndlog(K))

time. Calculating the k nearest neighbors in CEMD among the already determined

K points would take O(Kd2log(k)) time. Thus the total complexity of this two level

procedure for calculating CEMD is O(ndlog(K)) +O(Kd2log(k)). Since K << n and

usually K is chosen as ck where c is some small constant, the resulting time complexity

would be much lesser than the original O(nd3log(d)log(k)).

The efficiency of CEMD over other distance measures are described in chapter 4.

See table 4.3 and table 4.4.

41

3. CORRELATION BASED EARTH MOVER’S DISTANCE (CEMD)

42

4

Object class discovery by

manifold clustering

4.1 Introduction

Object recognition has been one of the oldest problems in computer vision. Imparting

vision to machines enabling them recognize objects around, makes it possible for them

to interact with the world in a more human like way. There has been a whole lot of

studies in object recognition using 2D images in the past two decades. Object features

like HOG(DT05),SIFT(Low99) and SURF(BTVG06) were powerful enough to make

the object detection algorithms (almost) comparable with human abilities of recogni-

tion. On the other hand, object recognition using 3D images is mostly an unexplored

area. The reason is that,until recently, most of the 3D imaging technologies like range

imaging, where intended for mapping large scale terrains and was much costlier for

day today usage. But in the past five years, things have changed tremendously. New

cheaper technologies like Microsoft Kinect were introduced which could capture color

3D images. These 3D images are generally referred as pointclouds, which is essentially

a set of 3D points with a possible color value associated with each point.

One of the major challenges faced by traditional object recognition systems that

uses 2D images for recognition, was that segmenting the object of interest from the

background. This is extremely difficult, since in 2D imaging, the third dimension is

effectively lost, making occlusion handling with out any prior information very painful.

Even though the algorithms in 2D object recognition are pretty powerful, they com-

43

4. OBJECT CLASS DISCOVERY BY MANIFOLD CLUSTERING

pletely rely upon the object segmentation algorithm. This problem can be easily solved

with the new 3D imaging technologies. Since, along with a RGB value, a depth value

would also be defined at every pixel in a 3D image, object segmentation can be done

very easily. For example, appendix A shows how objects placed on top of a tabletop

can be segmented out from a 3D pointcloud of the scene. The second advantage of 3D

images in object recognition is that, besides the traditional 3D object features, one can

define 3D object features like VFH(RBTH10) that captures the shape ans structure

of the object. Combining these 2D and 3D image features gives object recognition a

whole new perspective, and thats exactly what we did here.

4.2 Objective

Our objective is to employ the manifold based clustering algorithm that we presented in

chapter 2, in unsupervised discovery of object classes from RGB-D dataset(LBRF11a)(described

in section 1.2.1). The RGB-D dataset is an excellent testbed to test our algorithm, since

images from each object from this dataset could lie on a one-dimensional circular mani-

fold in a rightly chosen high dimensional space. The dataset consists of 3D pointclouds

of 51 classes of common household objects. There are multiple object instances in every

class. Each instance has 3 sequences of images captures from 3 different heights. We

assume that these sequences of images, would form a one dimensional manifold, since

consecutive frames in each sequence would be similar to each other.Refer figure 4.1.

Our aim is to use our manifold based clustering algorithm and cluster these objects

with out any prior information.

Figure 4.1: Multiple views of a cereal box. We hope that since consecutive frames are

similar to each other, these views would form a one dimensional manifold.

44

4.3 Past attempts in RGBD object detection

4.3 Past attempts in RGBD object detection

As we mentioned before, 3D imaging is just coming into mainstream. Still some inter-

esting works has been done in this area, which are discussed bellow.

One of the early work done in 3D object recognition was by Andrew E. Johnson

et al. from NASA, in which they introduced the idea of spin images for matching

the surface of two objects in question(JH99). This was basically a 3D registration

algorithm, but based on the registration error, one could also tell if the two objects are

the same or not. Oriented points, 3-D points with associated surface normals, are used

to create spin-images. An oriented point defines a partial, object-centered, coordinate

system. Two cylindrical coordinates can be defined with respect to an oriented point:

the radial coordinate α, defined as the perpendicular distance to the line through the

surface normal, and the elevation coordinate β, defined as the signed perpendicular

distance to the tangent plane defined by vertex normal and position. Now, in order to

find the spin image for a point say xi, all other points whose surface normal makes an

angle less than a threshold support angle with the surface normal of the point xi, are

chosen. All the chosen points are represented in the two cylindrical coordinates defined

at the point xi, and (α,β) values are calculated. Now these (α,β) values are binned into

a 2D histogram, which in turn is the spin image of the point xi. These spin images are

calculated at every point on the object. Refer figure 4.2. If one wants to compare two

3D objects each other, he merely have to find an optimal matching between the points

of the two objects based on their spin images.

Figure 4.2: A 3D object and a spin image defined on a point on the object.(JH99)

Another major descriptor that was meant to detect 3D objects, was introduced by

45

4. OBJECT CLASS DISCOVERY BY MANIFOLD CLUSTERING

Radu B Rusu, called Viewpoint Feature Histogram(VFH)(RBTH10). This captures

both the shape and the view point of the 3D image, and is found to be very efficient in

detecting objects in our own experiments. A detail discussion on VFH can be seen in

section 4.4.1.1

In (LBRF11b), Kevin Lai et al. proposed a method for sparse Instance Distance

Learning(IDL): instead of learning per-view distances, they defined a per-instance dis-

tance that combines all views of an object instance. The per-instance distances were

learned jointly for all views of a particular object. The instance distance function

between example x and the jth instance of ith category Yij was calculated as,

fij(x) =
1

|Y − ij|
∑
y∈Yij

W Td(x, y) + bij (4.1)

where W is a set of weight vectors wy for all y ∈ Yij and bij is a bias term. The

weights W are learned from accuracies that each view brings into table on a supervised

instance detection. Unlike the nearest instance classifier, this is significantly more

expressive distance function since it allows the classifier to assign different weights to

each feature and for each view, enabling it to adapt to the data.

Recently, two separate studies by Liefeng Bo et al.(BLRF11a) and Liefeng Bo et

al.(BRF10), kernel descriptors were used to generate a rich visual feature set, which he

used in detecting objects from the RGB-D dataset. These works presented principled

framework to turn pixel attributes (gradient, color, local binary pattern, etc.) into

compact patch-level features.

4.4 Object class discovery by manifold based clustering

As we discussed before, the RGB-D dataset is a perfect testbed to test our manifold

based clustering algorithm. In order to employ any manifold clustering algorithm, one

need to have two things to be defined. A high dimensional space where each data

point can be represented, and a distance measure defined over this space. For the high

dimensional space, the obvious choice would be the image space it self. But there are

two main problems with using the images as such. The first problem is the very high

dimensionality of the resulting data points. On average, a segmented image of a object

in the RGB-D dataset would have around 5000 pixels. Each pixel has four fields defined,

three colour components and a depth component. That makes the total dimension

46

4.4 Object class discovery by manifold based clustering

20,000, making any classification algorithm on them very expensive. Even though

this may not seem like a big number, this has a major computational implications

in our case, because, to compare two points we would be using the CEMD distance

we introduced earlier. Even after optimizing, the complexity of calculating CEMD

between two points would be O(d2), where d is the dimensionality of the point(Refer

3.3.1). Thus the computation required increases quadratically with an increase in

dimension. The second problem is that, since the size of the image changes from object

to object, defining an consistent image space is very difficult. Hence, we decided to

extract features from the images, that would have low,consistent, dimensionality. In

this case, we define a 1040 dimensional feature vector for a 3D pointcloud. Each object

would have this unique object signature and thus it defines 1040 dimensional signature

space for the objects. We use CEMD defined in chapter 3 as the distance measure in

this signature space.

4.4.1 Object signature

The most vital part of designing any recognition system is to come up with a “signature”

for the objects, that is hopefully powerful enough to uniquely identify the objects in

consideration. There are a lot of features defined for 2D images, including but not

limited to PHOG(BZM07), SIFT(Low99) and SURF(BTVG06) features. But we are

in an advantage here, since we also have the depth information along with the RGB

data. To make sure we use all the information that we have in our disposal, we should

come up with a signature that would capture the surface shape along with the color

information. So the signature that we would be using to describe the object would be a

combination three histograms, namely Viewpoint Feature Histogram (VFH)(RBTH10),

PHOG, and a simple RGB color histogram.

4.4.1.1 Viewpoint Feature Histogram (VFH)

Viewpoint Feature Histogram (VFH)(RBTH10) is a descriptor for 3D point cloud data

that encodes geometry and the viewpoint of the 3D shape. VFH was formulated as

an extension of Point Feature Histogram(PFH)(RMBB08)(Rus09). PFH captures five

different features of the pointcloud, namely,pairwise pan, tilt and yaw angles between

every pair of normals on a surface, pairwise distance. As the first step, surface normals

are calculated at each point in the cloud. In order to find the normal at a point p,

47

4. OBJECT CLASS DISCOVERY BY MANIFOLD CLUSTERING

a principle component analysis is done on p and its k neighbors, and the normal is

approximated as a unit vector in the direction of the eigenvector corresponding to the

lowest eigenvalue. Now that we have normals defined at each point, construct a local

Darboux frame(FLW89) coordinate system for each pair of points in the cloud. Let

the pair of points under consideration be pi and pj and let ni and nj corresponding

normals. Then the three coordinates of the Darboux frame for the pair of points are

defined as follows.

u = ni

v = (pi − pj)× u

w = u× v

Figure 4.3: Relative angles between the surface normals of the two points in a Darboux

coordinate system

Once this local Darboux frame is established for a pair of points, calculate the four

features pan, tilt and yaw angles, and the Euclidean distance between the two points

using the following formulae.

d = ||pi − pj ||

α = v · nj

φ = u · (pj − pi)
d

θ = arctan(w · nj , u · nj)

48

4.4 Object class discovery by manifold based clustering

Calculate the above four parameters for all the n2 of points in the cloud, and bin

them to 45 bins each. Now we have a 180 bin long histogram that represents the shape

of the point cloud.

VFH has two major changes from PFH. In VFH, instead of defining a Darboux

frame between every pair of points on the pointcloud, it is defined only between every

point to the the point at the centroid of the pointcloud. Thus, the four parameters

explained above, are calculated only once per every point, reducing the complexity

from O(n2) to O(n). As the second change, they added a “viewpoint” component to

the histogram, which can capture the angle in which the pointcloud is being viewed.

This is calculated by binning the angle that each point normal makes with the central

viewpoint direction. These angles are binned to 128 bins. Note that the viewpoint

component would be sensitive to the angle from which the object is viewed(hence the

name), and hence it is useful in viewpoint identification.

Figure 4.4: Viewpoint part of VFH is calculated by binning relative angles between point

normals and central viewpoint direction

VFH histograms are not the only signatures available to capture the 3D shape of

an object. Spin images described earlier also does the same thing. But VFH has a

computational advantage over spin images. Given a oriented pointcloud with n points,

VFH can be calculated in O(n) time, while spin images would take O(n2) time time.

Also, (RBTH10) shows a significant improvement of object detection accuracy when

VFH is used over spin images.

49

4. OBJECT CLASS DISCOVERY BY MANIFOLD CLUSTERING

Figure 4.5: VFH signature of a segmented juice bottle and a coffee mug

4.4.1.2 RGB histogram

The second part of the signature is a simple RGB histogram, designed to capture the

global distribution of the colors of an object. RGB values of each pixel is binned into

one of the 192 bins reserved fro RGB histogram.

4.4.1.3 PHOG histogram

The RGB histograms are usually very weak, since they are not powerful enough to

describe how the colors vary locally on the surface of an object. That is, a checker

board would have the same RGB histogram as a square colored half black and the

other half white. So we need a more powerful signature,that would capture the local

color variation and the texture in the image. There are many popular image features like

SURF and SIFT, which are local descriptor points, and global features like Histogram

of gradients(DT05). Local descriptors like SURF and SIFT are not suitable for the

problem at hand, because, in order to initiate a manifold growing algorithm, we have

to define a fixed dimensional feature vector for every object to be clustered. But since

number of keypoints could vary from object to object, and arranging these points into

any particular order is almost impossible, defining a fixed length feature vector using

SURF/SIFT is very difficult.

Hence we use a variant of HOG called Pyramid Histogram of Oriented gradients

or PHOG(BZM07). In PHOG, local object appearance and shape of an object are

characterized by the distribution of local intensity gradients or edge directions. This is

implemented by dividing the image window into small spatial regions called cells,and

50

4.4 Object class discovery by manifold based clustering

Figure 4.6: The color features: RGB histogram and a PHOG histogram of a cereal box

calculating a local 1-D histogram of gradient directions or edge orientations over the

pixels of the cell. The process is repeated on a pyramid of input image so that the

histogram is scale-invariant. In our case, PHOG is calculated separately in the three

color components of the image, resulting in a 540 dimensional histogram.

4.4.1.4 Efficiency of the new signature

To test how good is the new signature, used them for training an object class classifier

on RGB-D dataset. There were 51 classes of objects in the dataset, and we randomly

picked one instance for testing, reserving all the remaining instances of every class for

training purposes. We trained just by using one of the three signatures mentioned

above, as well as clubbing all three together. Following were the results obtained.

Table 4.1: Object class detection results using K nearest neighbor classifier

Features used Accuracy

VFH 54.4%

RGB Histogram 34.93%

PHOG 57.90%

VHF+RGB+PHOG 70.68%

The tests showed that combining all the three histograms together resulted in a

reasonably high detection rate of 70.68% with 51 object classes. The results obtained

are quite satisfying, given the current state of the art accuracy for the RGB-D dataset is

84.1%(BLRF11b). Also it is worth noting that the 70.68% accuracy that we got, is just

by using these signatures to train rather naive K nearest neighbor classifier. If one uses

these signatures together with more sophisticated classifiers like random forests(Bre01),

the accuracy could further improve considerably. But we move on, since we are more

interested in the unsupervised learning of the object classes.

51

4. OBJECT CLASS DISCOVERY BY MANIFOLD CLUSTERING

4.4.2 Results on RGB-D dataset

While growing the manifold, we used one randomly picked instance of the 51 classes

of objects available in the dataset, together with all its three view video sequence. To

reduce the complexity, four out of every consecutive 5 frames were skipped. Altogether,

there were 7019 images, belonging to one of the 51 classes. The result of applying our

algorithm is given in table 4.2, comparing with k means clustering. The parameters

used were, kmin = 1, kmax = 30, kpatch = 10 and α = 0.5. The efficinecy is quantized

using two parameters namely purity and Normalized Mutual Information(NMI). To

compute purity , each cluster is assigned to the class which is most frequent in the

cluster, and then the accuracy of this assignment is measured by counting the number

of correctly assigned points and dividing by total number of points. Formally,

purity(Ω, C) =
1

n

∑
k

argmaxj(|wk ∩ cj |) (4.2)

where,

Ω = {w1, w2, .., wk} is the set of clusters and C = {c1, c2, .., cj} is the set of classes.

High purity is easy to achieve when the number of clusters is large. In particular,

purity is 1 if each document gets its own cluster. Thus, we cannot use purity to trade

off the quality of the clustering against the number of clusters. Normalized Mutual

Information or NMI allows us to make this tradeoff. It is defined as,

NMI(Ω, C) =
I(Ω, C)

(H(Ω) +H(C))/2
(4.3)

I is the mutual information defined as,

I(Ω, C) =
∑
k

∑
j

P (wk ∩ cj) · log
P (wk ∩ cj)
P (wk)P (cj)

(4.4)

where P (wk), P (cj), and P (wk∩ cj) are the probabilities of a point being in cluster wk,

class cj , and in the intersection of wk and cj , respectively. H is the entropy defined as,

H(Ω) = −
∑
k

P (wk) · logP (wk) (4.5)

The confusion matrix is shown in figure 4.7, and the most confused pair of objects

and the least confused objects are shown in figure 4.8 and figure 4.9 respectively.

Some of the discovered manifold clusters are showin in figures 4.10, 4.11, 4.12, and

4.13

52

4.4 Object class discovery by manifold based clustering

Table 4.2: Object class discovery: a comparison between our algorithm and K means

clustering

K means clustering Manifold growing

No of clusters 100 100

NMI 78.42% 90.30%

Purity 69.36% 82.60%

Figure 4.7: The confusion matrix between the objects discovered

4.4.2.1 Effect of dynamic branching factor and CEMD distance measure

Dynamic branching factor and a new CEMD distance measure were two of our major

contributions to manifold separating. Thus its only fair to study how the purity would

vary with a static branching factor and with a different distance measure than CEMD.

But this time we chose only one video sequence for a randomly chosen instance from

every class. This was mainly to save the computation time, but also to see how the

purity would change from those reported in table 4.2 where we used all the three video

sequence while clustering. The results are given in tables 4.3 and 4.4.

As it can be seen from the tables, dynamic branching and CEMD always improved

53

4. OBJECT CLASS DISCOVERY BY MANIFOLD CLUSTERING

Figure 4.8: The most confused pair of objects

Table 4.3: Results with dynamic branching turned off

Distance metric branchingfactor Purity

Euclidean 2 72.26%

Cityblocks 2 86.87%

CEMD 2 92.27%

the performance of the algorithm. The high accuracy compared to the table 4.2 can be

attributed to the fact that only one video sequence from the three available was used

in manifold growing.

4.4.2.2 Comparison between supervised Vs unsupervised learning

In supervised learning, the algorithm would be learning prior information about data,

and how to map the given data point to the corresponding label. This generally done

by analyzing data points from a training set along with its corresponding labels. Then

these learned priors would be used to predict the class of any newly fed data point.

However, in unsupervised learning, we do not have this luxury. Generally, a clustering

54

4.4 Object class discovery by manifold based clustering

Figure 4.9: The least confused objects

Table 4.4: Results with dynamic branching turned on(kmin = 1, kpatch = 10, α = 0.5)

Distance metric kmax Purity

Euclidean 27 91.32%

Cityblocks 24 98.47%

CEMD 21 98.70%

algorithm is ran on the training dataset that would hopefully identify clusters in data

that are significant for the problem at hand. These clusters are labeled according to

their plurality, ie the label that is repeated the most in the cluster. Then a classifier is

trained based on these learned labels, and is tested on the testing set. Thus, such an

unsupervised learning algorithm can never be as accurate as a supervised algorithm,

since the labels of learning set used in unsupervised learning would always be just

an approximation for the actual labels. But it is interesting to see how much the

accuracy falls when one moves from supervised learning to unsupervised one. The

closer the accuracy of unsupervised learning to supervised learning, more efficient is

the unsupervised algorithm. Note that comparing our results with a supervised method

55

4. OBJECT CLASS DISCOVERY BY MANIFOLD CLUSTERING

Figure 4.10: One of the manifold discovered. It is mainly composed of boxes.As expected,

viewpoint order is preserved in the discovered manifold. There are different types of boxes

involved, namely cereal boxes, food boxes etc

requires a little of supervision. That is, we would be needing the label for one data

point per the cluster formed, so as to label the cluster with the label of its plurality.

Thus, we are reducing the need to label from ALL the input set to only 55.We did

two experiments, namely object viewpoint detection and object class detection, and

compared the accuracies that we got with our unsupervised manifold learning algorithm

with a supervised K nearest neighbor classifier accuracies. The parameters used were,

kmin = 1, kmax = 30, kpatch = 10 and α = 0.5

Viewpoint independent object detection: In viewpoint independent object de-

tection, we tested how well a classifier can identify objects from a different viewpoint

than the ones on which the classifier was trained on. So, images from the same object

were used for training and testing, but it was made sure that the testing images were

from a different viewpoint than the images on which the classifier was trained on. For

every instance of the objects from the first 10 classes, one video sequence was reserved

for testing, while the remaining two video sequence were used for training.

A supervised k nearest neighbor classifier gave an accuracy of 99.3%. The results

of using our algorithm for unsupervised learning, are as follows

56

4.4 Object class discovery by manifold based clustering

Figure 4.11: This manifold mainly consists of keyboards.But by the end of the manifold

contains some samples of calculator as well. This is not a surprise since calculators look a

whole lot like keyboards.

Unsupervised learning by manifold growing

Training
No of clusters 19
NMI 1.00
Purity 97.03%

Testing
KNN accuracy(Unsupervised) 93.19%

As one can see, accuracy only dropped by 6% when our algorithm is used for

unsupervised learning, which is a very much acceptable margin.

Object class detection: Object class detection is a little more tougher than view-

point independent object detection, since one would be trying to determine the classes

of previously unseen instances of objects.There were 51 classes of objects. Every fifth

image from all the three video sequence of a one randomly chosen instance of each

class were reserved for the testing phase, while every fifth image from the remaining

instances were used for training. were chosen for testing. This made sure that, no

57

4. OBJECT CLASS DISCOVERY BY MANIFOLD CLUSTERING

Figure 4.12: Banana manifold. consistent shape and color of bananas resulted in a pure

manifold.

Figure 4.13: Mushroom manifold. Unique shape and consistent green color resulted in a

strong, pure manifold

image of the objects tested were included in the training phase. As earlier, we trained

a supervised KNN classifier and compared the results with the results of unsupervised

classification using our manifold growing algorithm.

The supervised KNN classifier gave an accuracy of 74.04%. The results of using

our algorithm for unsupervised learning, are given bellow.

58

4.5 Conclusion

Unsupervised learning by manifold growing

Training
No of clusters 55
NMI 0.952
Purity 91.65%

Testing
KNN accuracy(Unsupervised) 67.24%

Accuracy has dropped from 74.04% to 67.26% when unsupervised manifold growing

algorithm was used in place of supervised KNN.

4.5 Conclusion

The attempt in this thesis was towards unsupervised discovery and not to improve the

supervised results per se. Thus, we used our manifold based clustering algorithm in a

unsupervised object discovery. Methods such as random forests etc which can be used

only in supervised situations were not explored very deeply. Unsupervised learning

using our algorithm gave results comparable with standard supervised learning tech-

niques(4.4.2.2). The major contribution to the accuracy came from the CEMD distance

measure we introduced, and from the dynamic branching factor of the manifold growing

algorithm. As seen from the tables 4.3 and 4.4, there was a consistent improvement in

the accuracies with dynamic branching factor turned on, across all the distance mea-

sures. It can be also seen that, the usage of CEMD as the distance measure gives better

results than other distance measures we tested our algorithm on.

One potential demerit of our clustering algorithm is the high computational time

it demands. Most of the computational overhead comes from the usage of CEMD as a

distance measure. The complexity of the greedy algorithm3 to calculate CEMD between

two points of dimension d is O(d2) as opposed to O(d) complexity of calculating regular

Euclidean distance. This is the major bottleneck in our algorithm, because, since our

feature vector has the dimensionality around 1000, making CEMD the calculation 1000

times slower than the time required for Euclidean distance. Feature extraction, CEMD

calculation, and running the clustering algorithm on 7019 data points took around 18

hours in a Intel i7 quad core processor with 8GB of RAM. It should be noted that

the most of the computation comes from the calculation of CEMD. The clustering

algorithm can use any distance measure; and if it had used usual distance matrices like

59

4. OBJECT CLASS DISCOVERY BY MANIFOLD CLUSTERING

Euclidean distance, its computational complexity would have been comparable with

any popular clustering algorithms like k means clustering.

60

5

Conclusion

In this thesis, we introduced a new spatial clustering algorithm that was inspired from

gestalt perception, and used it in discovering object object categories from a RGB-D

dataset. Given a set of points sampled from a space with several(possibly interesting)

manifolds, the algorithm attempts to cluster the points into the manifolds they belongs

to. Our algorithm does the job with minimal knowledge of the shape and other param-

eters of the manifolds involved. A major advantage of this algorithm over most of the

other similar algorithms is that, one need not have to explicitly mention the total num-

ber of manifolds involved and the dimensionality of each manifold. Also, algorithm is

designed to be tolerent to non-uniform sampling on manifold, by using dynamic neigh-

borhood assignment. Since the algorithm resembles some of the the gestalt principles

of grouping, the results are same for the human grouping for the same data.

We also introduced a distance metric called Correlation based Earth Mover’s Dis-

tance or CEMD. CEMD is a derivative of the standard Earth Mover’s Distance, with

bin distances defined in terms of the correlation between histogram bins. Bin dis-

tance between two bins i and j is defined as 1 − correlation(i, j). This implied that,

while calculating the CEMD, when the contents of a bin are moved, they are moved

to statistically similar bins. Use of CEMD significantly improved performance of man-

ifold clustering, over other distance measures like euclidean and cityblock distances in

manifold clustering.

As an interesting application of the newly proposed algorithm, we used it in un-

supervised discovery of object classes from a 3D object dataset of household objects.

The dataset that we chose was the Kinect RGB-D dataset. The images were captured

61

5. CONCLUSION

using Kinect, an extra depth information was also available, which better defined the

features of objects. The results of the unsupervised approach were impressive, to the

standard supervised learning methods. We concluded that the new manifold clustering

algorithm together with the new CEMD distance measure, is very efficient in clustering

data points that happen to be distributed along some manifold structure, rather than

as a spherical blob.

5.1 Plausible future works

As of now, our algorithm is meant only for clustering of data points from high dimen-

sional datasets. Unlike algorithms like isomaps, it does not maps the clustered points

onto their intrinsic lower dimensional space. But this is not too difficult to implement,

since our algorithm already creates a graph along the manifold surfaces. Now, to im-

plement an isomap like approach (TDSL00), one can easily use this graph to calculate

geodesic distance along the manifold. Once the geodesic distance between every points

is calculated, one can use dimensionality reduction techniques like MDS(Kru64) to map

the points to the respective lower dimensional space.

An improvement of the manifold clustering algorithm could be, eliminating the need

of kmin, the parameter that defines the nominal branching factor k while growing the

graph. Minimum branching kmin is usually set according to the nature of the manifold

that one is trying to cluster. Hence it can potentially be expressed as a function of the

local dimensionality of the manifold. Intuitively, a larger k has to be used if the local

dimensionality is very high, and a k can be used if the calculated local dimensionality

is very small. This not only removes the need of predefining kmin, but also make it

dynamic, based on the local structure of the manifold. A potential demerit of this could

be the algorithm being more susceptible to the noise.

One of the issues with the current algorithm is that, it assumes that every point

that has to be clustered belongs to a single manifold. Even though this can be a useful

assumption in some clustering scenarios(For example, in the object class discovery

experiment, one may not like an apple to be labeled as both apple and tomato), it may

not be that useful in other scenarios(As in figure 1.4, where the central face clearly

belongs to both the manifolds). But if one desires, this issue can be fixed quite easily, if

it is suitably defined by the user. One just have to relax the manifold growing algorithm

62

5.1 Plausible future works

so that it can even grow to the points that have been already identified as the part

of some other manifold. The patch to the algorithm 2 to accommodate this change is

given bellow.

Change line no 14:

candidate neighbors = {xi ∈ candidate neighbors s.t visited[i] = 0

to

candidate neighbors = {xi ∈ candidate neighbors s.t visited[i] = 0 OR label[i] <

manifold id

63

Appendix A

3D object segmentation

One of the main challenge in visual perception is to extract the objects of interest from

the background clutter. Compared to a 2D image, extracting objects from a 3D point

cloud data is relatively simple, since we can make use of the one extra dimension. On

the other hand, Kinect scans are very noisy, since its sole purpose was to use along

with an gaming console. Nevertheless, the simple algorithm outlined in Fig. A.1 was

able to extract objects from a relatively less cluttered environment. We assumed that

Figure A.1: Object segmentation algorithm outline

the object of interest would be always placed over a planar surface, like floor or a

tabletop. The first step is to segment out all the background clutter that fell beyond a

threshold distance. This can be easily be done since we know the depth of every point

in the pontcloud. After this step, hopefully, we would be left with a planar surface

with objects of our interest on top. This planar surface can be identified using the

RANSAC algorithm(FB81), which probabilistically determines the parameters of the

plane. Once we have the equation of the plane, the points that are on and beneath the

65

A. 3D OBJECT SEGMENTATION

plane were filtered out. A K-d tree(Ben75) was used for the 3D spatial decomposition,

so that nearest neighbors of a point can be calculated in O(logn), were n is the number

of points in consideration. With the help of the K-d tree, a statistical outlier removal

algorithm was ran on the point cloud, which filtered out some of the noises from the

data. Now we are left with point clusters, hopefully belonging to the objects of our

interest. A region growing algorithm was initiated from random points from the cloud,

and with an apt threshold, all the objects in the scene were segmented out. Even

though this algorithm is a very crude one, it is efficient enough to segment objects from

a controlled environment.

Figure A.2: The input pointcloud, and result after filtering the background and the

tabletop

Figure A.3: The final segmented objects after region growing

66

References

[Ben75] J.L. Bentley. Multidimensional bi-

nary search trees used for associa-

tive searching. Communications of

the ACM, 18(9):509–517, 1975. 66

[BLRF11a] L. Bo, K. Lai, X. Ren, and D. Fox.

Object recognition with hierarchi-

cal kernel descriptors. In Com-

puter Vision and Pattern Recogni-

tion (CVPR), 2011 IEEE Confer-

ence on, pages 1729–1736. IEEE,

2011. 46

[BLRF11b] L. Bo, K. Lai, X. Ren, and D. Fox.

Object recognition with hierarchi-

cal kernel descriptors. In Com-

puter Vision and Pattern Recogni-

tion (CVPR), 2011 IEEE Confer-

ence on, pages 1729–1736. IEEE,

2011. 51

[BM05] Y. Bengio and M. Monperrus. Non-

local manifold tangent learning. Ad-

vances in Neural Information Pro-

cessing Systems, 17:129–136, 2005. 7

[Bre01] L. Breiman. Random forests. Ma-

chine learning, 45(1):5–32, 2001. 51

[BRF10] L. Bo, X. Ren, and D. Fox. Ker-

nel descriptors for visual recogni-

tion. Advances in Neural Informa-

tion Processing Systems, 2010. 46

[BTVG06] H. Bay, T. Tuytelaars, and

L. Van Gool. Surf: Speeded

up robust features. Computer

Vision–ECCV 2006, pages 404–417,

2006. 43, 47

[BZM07] A. Bosch, A. Zisserman, and

X. Munoz. Representing shape

with a spatial pyramid kernel.

In Proceedings of the 6th ACM

international conference on Image

and video retrieval, pages 401–408.

ACM, 2007. 47, 50

[CCM+07] S.K. Chalup, R. Clement, J. Mar-

shall, C. Tucker, and M.J. Ost-

wald. Representations of streetscape

perceptions through manifold learn-

ing in the space of hough arrays.

In Artificial Life, 2007. ALIFE’07.

IEEE Symposium on, pages 362–

369. IEEE, 2007. 4

[DT05] N. Dalal and B. Triggs. Histograms

of oriented gradients for human de-

tection. In Computer Vision and

Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Con-

ference on, volume 1, pages 886–893.

Ieee, 2005. 43, 50

[Dub11] Nandan Dubey. Discovering inter-

secting smooth manifolds via pursuit

algorithm. M Tech thesis, 2011. vii,

4, 6, 8, 18, 20, 26

[FB81] M.A. Fischler and R.C. Bolles. Ran-

dom sample consensus: a paradigm

for model fitting with applications to

image analysis and automated car-

tography. Communications of the

ACM, 24(6):381–395, 1981. 65

[FLW89] FP Ferrie, J. Lagarde, and

P. Whaite. Darboux frames,

snakes, and super-quadrics: Ge-

ometry from the bottom-up. In

Interpretation of 3D Scenes, 1989.

67

REFERENCES

Proceedings., Workshop on, pages

170–176. IEEE, 1989. 48

[Gal09] K.M. Galotti. Cognitive psychology:

In and out of the laboratory. Cen-

gage Learning, 2009. 25

[GM11] M. Gashler and T. Martinez. Tan-

gent space guided intelligent neigh-

bor finding. In Neural Networks

(IJCNN), The 2011 International

Joint Conference on, pages 2617–

2624. IEEE, 2011. 11, 26

[Goo11] Google. Google goggles official web-

page, 2011. 12

[GVL96] G.H. Golub and C.F. Van Loan. Ma-

trix computations, volume 3. Johns

Hopkins Univ Pr, 1996. 24

[HKO01] A. Hyvärinen, J. Karhunen, and

E. Oja. Independent component

analysis, volume 26. Wiley-

interscience, 2001. 4

[JH99] A.E. Johnson and M. Hebert. Using

spin images for efficient object recog-

nition in cluttered 3d scenes. Pattern

Analysis and Machine Intelligence,

IEEE Transactions on, 21(5):433–

449, 1999. 45

[Jol02] Jolliffe. Principal component analy-

sis, volume 2. Wiley Online Library,

2002. 4, 18, 19

[Kru64] J.B. Kruskal. Multidimensional scal-

ing by optimizing goodness of fit to

a nonmetric hypothesis. Psychome-

trika, 29(1):1–27, 1964. 62

[KV06] B.H. Korte and J. Vygen. Combina-

torial optimization: theory and algo-

rithms, volume 21. Springer Verlag,

2006. 35, 38

[LBRF11a] K. Lai, L. Bo, X. Ren, and D. Fox.

A large-scale hierarchical multi-view

rgb-d object dataset. In Robotics and

Automation (ICRA), 2011 IEEE In-

ternational Conference on, pages

1817–1824. IEEE, 2011. 12, 44

[LBRF11b] K. Lai, L. Bo, X. Ren, and D. Fox.

Sparse distance learning for object

recognition combining rgb and depth

information. In Robotics and Au-

tomation (ICRA), 2011 IEEE Inter-

national Conference on, pages 4007–

4013. IEEE, 2011. 46

[Low99] D.G. Lowe. Object recognition from

local scale-invariant features. In

Computer Vision, 1999. The Pro-

ceedings of the Seventh IEEE Inter-

national Conference on, volume 2,

pages 1150–1157. Ieee, 1999. 43, 47

[LV07] J.A. Lee and M. Verleysen. Non-

linear dimensionality reduction.

Springer, 2007. 5

[Mar74] D. Marr. The computation of light-

ness by the primate retina. Vision

Research, 14(12):1377–1388, 1974.

12

[Mic10] Microsoft. Kinect official webpage,

November 2010. 1

[Pet77] A.M. Peters. Language learning

strategies: does the whole equal the

sum of the parts? Language, pages

560–573, 1977. 25

[RBTH10] R.B. Rusu, G. Bradski, R. Thibaux,

and J. Hsu. Fast 3d recognition and

pose using the viewpoint feature his-

togram. In Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ

International Conference on, pages

2155–2162. IEEE, 2010. 44, 46, 47,

49

68

REFERENCES

[RMBB08] R.B. Rusu, Z.C. Marton, N. Blodow,

and M. Beetz. Learning informa-

tive point classes for the acquisition

of object model maps. In Control,

Automation, Robotics and Vision,

2008. ICARCV 2008. 10th Interna-

tional Conference on, pages 643–650.

IEEE, 2008. 47

[RS00] S.T. Roweis and L.K. Saul. Non-

linear dimensionality reduction by

locally linear embedding. Science,

290(5500):2323–2326, 2000. 6, 15

[Rus09] Radu Bogdan Rusu. Semantic 3D

Object Maps for Everyday Manipula-

tion in Human Living Environments.

PhD thesis, October 2009. 47

[SB06] L. Sigal and M.J. Black. Humaneva:

Synchronized video and motion cap-

ture dataset for evaluation of artic-

ulated human motion. Brown Uni-

vertsity TR, 120, 2006. 29

[SMM07] R.J. Sternberg, J. Mio, and J.S. Mio.

Cognitive psychology. Wadsworth

Pub Co, 2007. 25

[SP05] R. Souvenir and R. Pless. Mani-

fold clustering. In Computer Vision,

2005. ICCV 2005. Tenth IEEE In-

ternational Conference on, volume 1,

pages 648–653. Ieee, 2005. 7

[TDSL00] J.B. Tenenbaum, V. De Silva, and

J.C. Langford. A global geo-

metric framework for nonlinear di-

mensionality reduction. Science,

290(5500):2319–2323, 2000. 5, 15,

26, 62

69

	List of Figures
	List of Tables
	1 Introduction
	1.1 Manifold based clustering
	1.1.1 Traditional dimensionality reduction techniques
	1.1.2 Analyzing intersecting manifolds

	1.2 3D perception and Pointclouds
	1.2.1 Kinect RGB-D object dataset

	1.3 Organization of the thesis

	2 Manifold based spatial clustering
	2.1 Problem statement
	2.2 The proposed manifold based clustering algorithm
	2.2.1 Dynamic branching factor
	2.2.2 Continuity score
	2.2.3 Informal description of the algorithm

	2.3 Gestalt perception
	2.3.1 Principle of Proximity
	2.3.2 Principle of Closure
	2.3.3 Principle of Continuity

	2.4 Results on Humaneva dataset

	3 Correlation based Earth Mover's Distance (CEMD)
	3.1 Properties of CEMD
	3.1.1 Non-Negativity
	3.1.2 Identity of indiscernibles
	3.1.3 Symmetry
	3.1.4 Triangular inequality

	3.2 ``Wormholes'' and their implications
	3.3 Computational complexities of CEMD
	3.3.1 Optimizing CEMD for manifold growing

	4 Object class discovery by manifold clustering
	4.1 Introduction
	4.2 Objective
	4.3 Past attempts in RGBD object detection
	4.4 Object class discovery by manifold based clustering
	4.4.1 Object signature
	4.4.1.1 Viewpoint Feature Histogram (VFH)
	4.4.1.2 RGB histogram
	4.4.1.3 PHOG histogram
	4.4.1.4 Efficiency of the new signature

	4.4.2 Results on RGB-D dataset
	4.4.2.1 Effect of dynamic branching factor and CEMD distance measure
	4.4.2.2 Comparison between supervised Vs unsupervised learning

	4.5 Conclusion

	5 Conclusion
	5.1 Plausible future works

	A 3D object segmentation
	References

