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Software Development Challenges 
Growing size and complexity of 
modern computer programs 
Complicated architectures 
 Massively parallel architectures, 

Memory hierarchy, distributed 
systems,… 

Fast and cost effective software 
development 
Above all: Correctness! 
 Proof that the program works for all 

cases 
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Well-structured Software 
Easy to write and debug 
Reusable modules 
Amenable to proofs 
Permit rapid prototyping 
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Solutions to the development challenges.  
 
Programming style to support development 
of well-structured software. 



Functional Languages 
Fundamental operation is the 
application of functions to 
arguments. 
Main features to improve 
modularity: 
 No (almost none!!) side effects 
 Higher order functions 
 Lazy evaluation 
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Example 
Summing the integers 1 to 10 in C: 

int total = 0, i; 

for (i = 1; i <= 10; ++i) 

   total = total+i; 

 Values change for both total and i during program 
 execution 
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Example 
Summing integers 1 to 10 in a pure 
functional language 
 No side effect => No assignments to 

variables! 
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sum (m, n) = if (m > n) 0 

             else m + sum (m+1, n) 

 

sum (1, 10) // main function 



Historical Background 
[source: http://www.cs.nott.ac.uk/~gmh/chapter1.ppt] 

1930s: 

Alonzo Church develops the lambda calculus, 
a simple but powerful theory of functions. 

6 



Historical Background 
 [source: http://www.cs.nott.ac.uk/~gmh/chapter1.ppt] 

1950s: 

John McCarthy develops Lisp, the first functional 
language, with some influences from the lambda 
calculus, but retaining variable assignments. 
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Historical Background 
 [source: http://www.cs.nott.ac.uk/~gmh/chapter1.ppt] 

1970s: 

John Backus develops FP, a functional 
language that emphasizes higher-order 
functions and reasoning about programs. 
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Trivia 
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John Backus : Proposed (in 1954) a 
program that translated high level 
expressions into native machine code.  
Fortran I project (1954-1957): The 
first compiler was released 

1977 ACM Turing Award  
“for profound, influential, and lasting 
contributions to the design of practical 
high-level programming systems, 
notably through his work on 
FORTRAN, and for publication of 
formal procedures for the specification 
of programming languages.” 
 Introduced FP in his Turing Award lecture  
"Can Programming be Liberated from the von 
Neumann Style?". 



Quicksort: English description 
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1. Empty list is already sorted.  
2. For a non empty list 

a. Pick the first element, pivot, from the array. 
b. Recursively quicksort the array of elements with 

values less than the pivot. Call it S. 
c. Recursively quicksort the array of elements with 

values greater than or equal to the pivot, except 
the pivot. Call it G. 

d. The final sorted array is: the elements of S 
followed by pivot, followed by the elements of 
G. 



Quicksort: Functional 
(Haskell) description* 

quicksort [] = []  
quicksort (x:xs) =  
           quicksort [y | y <- xs, y<x] 
           ++ [x] 
           ++ quicksort [y | y <- xs, y>=x] 
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* source:   https://www.haskell.org/tutorial/haskell-98-tutorial.pdf 



Higher order function 
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add x y = x + y 
inc = add 1  
 
map f [] = []  
map f (x:xs) = f x : map f xs 

map inc [1, 2, 3]  =>    [2, 3, 4] 

• map is a higher order function. It takes a function 
as argument.  

• Functional programming treats functions as first-
class citizens. There is no discrimination between 
function and data. 



Lazy evaluation 
Do not evaluate an expression unless 
it is needed 
Never evaluate an expression more 
than once 
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length [1/1, 2/2, 0/0, 4/4]   
                                        =>    4 
 
numsFrom n = n : numsFrom (n+1) 
squares = map (^2) (numsfrom 0) 
take 5 squares          
                     => [0,1,4,9,16] 



Lambda calculus 

The “assembly language” of 
functional programming 



The Abstract Syntax 
A really tiny language of expressions 
 

   𝑒 ∷ 𝑥  
 | 𝜆𝜆. 𝑒1  

                 | 𝑒1 𝑒2 
                          | (𝑒1) 
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// Variable 

// Function Definition 

// Function Application 

That’s all the Syntax!! 

// An expression can be a 



Conventions 
𝜆𝜆. 𝑒1𝑒2𝑒3is an abbreviation for 
𝜆𝜆. 𝑒1𝑒2𝑒3 , i.e., the scope of 𝑥 is as far 
to the right as possible until it is 
 terminated by a ) whose matching ( occurs 

to the left of the 𝜆, or 
 terminated by the end of the term 
Application associates to the left:𝑒1𝑒2𝑒3is 
to be read as (𝑒1𝑒2)𝑒3 and not as 𝑒1(𝑒2𝑒3) 
𝜆𝜆𝜆𝜆. 𝑒  is an abbreviation for 𝜆𝜆𝜆𝑦𝜆𝑧. 𝑒  
which in turn is actually 𝜆𝜆. (𝜆𝑦. 𝜆𝜆. 𝑒 )  
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𝛼-renaming  
The name of a bound variable has no 
meaning except for its use to identify 
the bounding λ.  
Renaming a λ variable including all its 
bound occurrences does not change 
the meaning of an expression.  
For example, 𝜆𝜆. 𝑥 𝑥 𝑦 is equivalent to 
𝜆𝑢.𝑢 𝑢 𝑦 
 But it is not same as 𝜆𝜆. 𝑥 𝑥 𝑤 
 Can not change free variable!  
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𝛽-reduction(Execution)  
if an abstraction 𝜆𝜆. 𝑒1is applied to a 
term 𝑒2 then the result of the 
application is 
  the body of the abstraction 𝑒1with all free 

occurrences of the formal parameter 𝑥 
replaced with 𝑒2. 

For example, 

𝜆𝜆𝜆𝜆. 𝑓 (𝑓 𝑥)  𝑡𝑡𝑡𝑡𝑡 →𝛽  
𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡𝑡𝑡𝑡 𝑥) 
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Caution 
During 𝛽-reduction, make sure a free 
variable is not captured inadvertently. 
The following reduction is WRONG 

𝜆𝜆. 𝜆𝜆. 𝑥  𝜆𝜆.𝑦 → 𝜆𝜆. 𝜆𝜆. 𝑦 
Use 𝛼-renaming to avoid variable 
capture 
𝜆𝜆. 𝜆𝜆. 𝑥  𝜆𝜆.𝑦 → 𝜆𝑢𝑢𝑢.𝑢 𝜆𝑥. 𝑦         

        → 𝜆𝜆. 𝜆𝜆.𝑦 
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Exercise 
Apply 𝛽-reduction as far as possible 

 
1. (𝜆𝜆 𝑦 𝑧.  𝑥 𝑧 𝑦 𝑧 ) 𝜆𝜆 𝑦. 𝑥  (𝜆𝜆.𝑦) 

 
2. 𝜆 𝑥. 𝑥 𝑥  𝜆𝑥. 𝑥 𝑥   

 
3. 𝜆𝜆 𝑦 𝑧.  𝑥 𝑧 (𝑦 𝑧)  𝜆𝜆 𝑦. 𝑥 ( 𝜆𝜆. 𝑥 𝑥 𝜆𝜆. 𝑥 𝑥 ) 
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Church-Rosser Theorem 
Multiple ways to apply 𝛽-reduction 
Some may not terminate 
However, if two different reduction 
sequences terminate then they always 
terminate in the same term 
 
 
 
Leftmost, outermost reduction will find 
the normal form if it exists 
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𝑒 

𝑒′ 

𝑒2 𝑒1 



But what about other stuff? 
Constants ? 
 Numbers 
 Booleans 
Complex Types ? 
 Lists 
 Arrays 
Don’t we need “data”? 
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Recall: functions are first-class citizens! 
Function is data and data is function. 



Numbers 
We need a “Zero” 
 “Absence of item” 
And something to count  
 “Presence of item” 
Intuition: Whiteboard and Marker 
 Blank board represents Zero 
 Each mark by marker represents a count. 
 However, other pairs of objects will work 

as well 
Lets translate this intuition into λ-expr 
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Numbers 
Zero = 𝜆𝜆.  𝜆𝜆.𝑤 
 No mark on whiteboard 
One = 𝜆𝑚.  𝜆𝑤.𝑚 𝑤 
Two = 𝜆𝑚.  𝜆𝑤.𝑚 𝑚 𝑤  
… 
 
What about operations? 
 add, multiply, subtract, divide … 
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Operations on Numbers 
succ = 𝜆𝜆𝜆𝜆.  𝑚 (𝑥 𝑚 𝑤) 
 Verify that  𝑠𝑠𝑠𝑠 𝑁 = 𝑁 + 1 
 
add = 𝜆𝑥𝑥𝑥𝑤.  𝑥 𝑚 𝑦 𝑚 𝑤  
 Verify that  𝑎𝑎𝑎 𝑁 𝑀 = 𝑁 + 𝑀 

 
mult = 𝜆𝑥𝑥𝑥𝑥.  𝑥 𝑦 𝑚  𝑤 
 Verify that  𝑚𝑚𝑚𝑚 𝑁 𝑀 = 𝑁 ∗ 𝑀 
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 called Church Numerals. 



Booleans 
True and False 

 
Intuition: Select one out of two 
possible choices. 

 
λ-expressions 
 True  = 𝜆𝜆 𝜆𝜆. 𝑥 
 False = 𝜆𝜆 𝜆𝜆.𝑦 
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Operations on Booleans 
Logical operations 

𝑎𝑎𝑎 = 𝜆𝑝 𝑞.  𝑝 𝑞 𝑝 
𝑛𝑛𝑛 = 𝜆𝜆 𝑡 𝑓.  𝑝 𝑓 𝑡 

   … 
The conditional function 𝑖𝑖  
  𝑖𝑖 𝑐  𝑒1  𝑒2 reduces to 𝑒1 if 𝑐 reduces to 

True and 𝑒2 if 𝑐 reduces to False 
𝑖𝑖 = 𝜆𝜆 𝑒𝑡 𝑒𝑓 . (𝑐 𝑒𝑡 𝑒𝑓) 
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More… 
More such types can be found at 
 https://en.wikipedia.org/wiki/Church_enc

oding 
 

It is fun to come up with your own 
definitions for constants and 
operations over different types 
 or to develop understanding for existing 

definitions. 
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https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Church_encoding


We are missing something!! 
The machinery described so far does 
not allow us to define Recursive 
functions 
 factorial, Fibonacci … 
There is no concept of “named” 
functions 
 So no way to refer to a function 

“recursively”? 
Fix-point computation comes to rescue 
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Fix-point and 𝑌-combinator 
A fix-point of a function 𝑓 is a value 
𝑝 such that  𝑓 𝑝 =  𝑝 
Assume existence of a magic 
expression, called 𝑌-combinator, that 
when applied to a λ-expression, gives 
its fixed point 

𝑌 𝑓 = 𝑓 (𝑌 𝑓) 
𝑌–combinator gives us a way to apply 
a function recursively 
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Factorial 
fact =  
      λn. if (isZero n) One (mult n (fact (pred n)))   
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= (λfλn. if (isZero n) One (mult n (f (pred n)))) fact 
 
fact = g fact 

fact is a fixed point of function 
      g =  λfλn. if (isZero n) One (mult n (f (pred n)))) 
 
Using Y-combinator, 
  fact = Y (λfλn. if (isZero n) One (mult n (f (pred n)))) 
        = Y g 



Verify 
 fact 2  
= (Y g) 2 = g (Y g) 2 
// Y f = f (Y f), definition of Y-combinator 
= (λfλn. if (is0 n) 1 (* n (f (pred n)))) (Y g) 2 
= (λn. if (is0 n) 1 (* n ((Y g) (pred n)))) 2 
= if (is0 2) 1 (* 2 ((Y g) (pred 2))) 
= (* 2 ((Y g) 1)) 
… 
= (* 2 (* 1 (if (is0 0) 1 (* 0 ((Y g) (pred 0))))) 
= (* 2 (* 1 1)) = 2  
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Recursion 
Y-combinator allows to unroll the body 
of loop once – similar to one unfolding 
of recursive call 
Sequence of Y-combinator applications 
allow complete unfolding of recursive 
calls 
BUT, what about the existence of Y-
combinator? 
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Y-combinators 
Many candidates exist 

𝑌1 = 𝜆𝜆 𝜆𝜆.  𝑓 𝑥 𝑥 𝜆𝜆. 𝑓 𝑥 𝑥  
 
𝑇 = 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆. 
            𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑌𝑓𝑓𝑓𝑓𝑓 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
• Verify that (Y f) = f (Y f) for each 
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Summary 
A cursory look at λ-calculus to 
understand how Functional 
Programming works 
 How it is different from imperative 

programming 
Functions are data, and Data are 
functions! 
Church Turing Thesis => The power of 
λ calculus equivalent to that of Turing 
Machine 
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