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The use of AI assisted tools for pedagogical and software engineering applications is an active

area for research. For novice programmers, compilation errors pose a major hurdle in learning.

Moreover, the compiler provided feedback often targets more seasoned programmers and hence

may not make sense to beginners. Automated compilation error repair uses AI based algorithms

to generate fixes to erroneous programs and can help a programmer greatly.

We propose MACER++ which breaks down the task of program repair into several modules.

Such modular structure was first proposed by MACER [5]. We propose optimizations in almost

every module of the pipeline and also propose a synthetic data generation algorithm which enables

few shot learning. We evaluate our optimizations on two data-sets, one having 4326 programs with

single line errors and other having 6996 programs with multi line errors. Compared to MACER

[5] our approach gives an improvement of 4-5% in repair accuracy on both data-sets and 2%

improvement in Pred@5 metric which indicates that our fixes more closely resemble the fixes

applied by students. Moreover, our approach is significantly faster than another state of the art

method DrRepair [16] and provides better performance on single line data-set.

We also present PRIORITY, an AI assisted tool for labelling programming problems. The tool

is intended to help tutors of ESC101, a programming course offered at IIT Kanpur. PRIORITY

uses semi supervised techniques to label the large corpora of programming problems from previous

offerings of ESC101, thus making these problems search-able. This can make the task of tutors

much faster and easier.
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CHAPTER 1

Introduction

Contents

1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The field of Artificial Intelligence (AI) has seen a remarkable rise in interest in various areas.

Of specific interest has been a rise in application of AI tools and algorithms to the field of edu-

cation [4]. Massive open online courses (MOOCs) are fast becoming a popular way of teaching

programming. As the number of students in these courses increases it becomes more and more

important to develop tools which can ease the burden on the instructors and teaching assistants

(TA’s).

For a novice programmer, compilation errors are one of the biggest hurdles to learning. [7]

shows that novice programmers spend a lot of time trying to resolve these errors. Moreover, the

compiler provided diagnostics are often too cryptic for novice programmers, hence may lead to

further confusion instead of helping to solve the issue [15]. Because of this the area of automatic

compilation error repair has seen a lot of interest recently. [5] proposes an AI based pipeline that

takes as an input an erroneous program and produces a correct target program. Moreover, they

break down this process for compilation error repair into various simple modules which makes

the pipeline a much better fit for pedagogical applications as compared to other state of the art

methods. We improve upon their work by making improvements in multiple modules. Concretely,

we show that compiler diagnostic can provide valuable feedback and also show how smarter use

of label metadata can augment the pipeline significantly. We also propose a novel synthetic data

generation method which aids in training AI models, especially when training data is scarce.

Another issue faced by large MOOC’s is that of question/problem re-usability. Consider

ESC101, a basic programming course at IIT Kanpur, offered every semester to hundreds of stu-

dents. In every offering of the course, the instructors and tutors need to put together programming

problems which are then solved by students in lab sessions. But since these problems are not

indexed, subsequent offerings are not able to utilize this large corpora of problems that has been

collected. To remedy this, we develop PRIORITY (PRoblem IndicatOr ReposITorY), an AI based

labelling mechanism to label these problems and develop a web app to allow tutors of this course

to search for a problem from previous offerings.

1



2 Chapter 1. Introduction

1 #include <stdio.h>
2 int main() {
3 int age;
4 scanf( "%d" , &age);
5 if (age => 18 ){
6 printf( "Can vote" );
7 }
8 }

1 #include <stdio.h>
2 int main() {
3 int age;
4 scanf( "%d" , &age);
5 if (age >= 18 ){
6 printf( "Can vote" );
7 }
8 }

Error Message: file.c:6:13: error: expected expression

Repair: Replace => with >= on line 5.

Table 1.1: Example of repair generated by MACER++

1.1 Our Contributions

The key contributions of this thesis are enumerated below:

1. MACER [5] divides the task of erroneous program repair into various modules and intro-

duces the notion of repair classes to succinctly describe the repair steps required to correct

the erro on a given line of code. We propose efficient yet impactful optimizations to these

modules that significantly boost the performance of the overall pipeline.

• We show how compiler error messages can be used for better error line localization.

• We show how the repair classes contain valuable information which can be used to

improve the performance of the pipeline and how existing XML techniques can be

used to learn a hierarchy of repair classes.

• We also suggest a change in the formation of the repair classes themselves which

results in better performance on zero shot cases.

2. We propose novel synthetic data generation techniques that use available training data to

generate new synthetic examples. These synthetic examples mimic realistic errors made by

novice programmers and augment the amount of training data available to the AI models

that boosts performance significantly.

3. We propose an algorithm to label programming problems with pedagogical tags so as to

construct finely indexed question banks consisting of questions from previous offerings of

programming courses. Such a question bank can then be queried by course admins while

preparing questions for the current offering of the course. This greatly reduces time and

mental effort required to set questions for large programming courses.

We also developed real world deployments of these tools and discuss how they can benefit

the students and course admins. The details of these deployments and user studies are a part of

the companion thesis titled “Real World Deployment of AI-assisted compilation error repair and

program retrieval” [10].

2



CHAPTER 2

Related Works

Contents
2.1 TEGCER and TRACER: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 MACER (Modular Accelerated Compilation Error Repair) . . . . . . . . . . . . . . . 4

2.3 Dr Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 SampleFix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 DECAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Hierarchical classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The use of machine learning and deep learning techniques for fixing erroneous programs has

seen a lot of interest in recent years. This area has shown a lot of promise especially from a peda-

gogical perspective. One of the first papers in this area was DeepFix [8], which uses a sequence-to-

sequence model to generate a syntactically correct program given an erroneous program. Several

other works have been reported in this area since then.

Another approach, TRACER [1], breaks down the process of fixing an incorrect program into

more than one step. They use student data, having source and target pairs, collected using the

PRUTOR IDE [6], hence are able to capture mistakes made by students rather than relying on

synthetically generated data. MACER [5] further breaks down the job of correcting the erroneous

programs into several modules and uses light weight machine learning techniques to fix the syntax

errors. Thus they not only improve upon TRACER’s [1] accuracy but also improve training and

testing time. Another approach, SampleFix [9], uses a conditional variational encoder to introduce

diversity in the fixes suggested by the model.

One of the state-of-the-art methods for compilation error repair is DrRepair [16]. They use

a full fledged sequence to sequence model along with graph attention and a pointer generator

network to generate the correct program given an incorrect one in one shot. One disadvantage

of this technique is that its resource intensive requiring extensive training on reasonably powerful

GPU architectures.

In this thesis we introduce MACER++ , which improves upon MACER [5], by making op-

timizations to each of its modules. MACER++ also uses the concept of repair classes used by

MACER [5] and TRACER [1] but significantly augments its utility to use them to generate syn-

thetic data.

This chapter briefly explains all of the above mentioned approaches along with some extreme

multi label classification techniques which were experimented with.

3



4 Chapter 2. Related Works

2.1 TEGCER and TRACER:

• We will not be describing the detailed approaches of these papers, but just the notion of a

repair class and program abstraction, which was introduced by these papers and is used by

MACER++ (and MACER).

• TRACER [1] was one of the first methods that segregated the repair procedure into multiple

steps viz. Code Abstraction, Error Localization, Abstract Code Repair and Concretization.

Training of MACER++ is inspired by TRACER where training is done on erroneous source

line and corrected target line pairs instead of whole source-target program pairs.

• TRACER [1] instead of working on the source programs directly, first abstracts out identi-

fiers and literals which are not much informative for error correction.

• We use TRACERS abstraction module which uses LLVM compiler to replace the iden-

tifiers/literals with generic tokens (like V_INT, V_CHAR, L_INT etc.). There are some

exceptions to this, and we refer you to the TRACER [1] paper for more details.

• The advantage of working on abstract code instead of concrete code is that it limits the

vocabulary size (which could be infinite in case of concrete code). This helps the ML

algorithms immensely.

• Moreover, we improve upon TRACER’s error line localization module. TRACER uses com-

piler reported error line and 2 other lines (one above and one below the compiler reported

error line) and feeds them (after encoding) to its deep learning model.

• TEGCER [2] is a tool that suggests to students, based on the error they made in their code,

similar examples and their fixes made by their peers.

• TEGCER [2] first defines error-repair classes using compiler reported error messages, and

the changes made to the erroneous lines by the student to repair them. Then, an encoded

feature vector is created using the compiler reported error lines and the unigrams and bi-

grams of the erroneous line. This feature vector is used to train a dense feedforward neural

network for predicting the error-repair classes.

2.2 MACER (Modular Accelerated Compilation Error Repair)

• Since our work is closely related to MACER [5], we explain the architecture of MACER in

greater detail. [5] in more detail.

• MACER [5] sets up a modular pipeline that, in addition to locating lines that need repair,

further segregates the repair pipeline by identifying what is the type of repair needed on

each line (the repair-class of that line), and where in that line to apply that repair (the repair-

profile of that line). They also show that MACER [5] can specifically target certain error

types.

• They use the notion of repair classes introduced by TEGCER [2].

4



2.3. Dr Repair 5

Figure 2.1: MACER’s pipeline. Image Credit [5]

• They introduce techniques used in large-scale multi-class and multi-label learning tasks,

such as hierarchical classification and reranking techniques, to the problem of program re-

pair.

• As show in Figure 2.1, MACER [5] segregates the repair process into six distinct steps.

1. Repair Lines: Locate within the source code, which lines are erroneous and require

repair. This is done by including the compiler reported error lines, a line above that

and a line below that.

2. Feature Encoding: For each of the identified lines, perform code abstraction and obtain

a 2239- dimensional feature vector.

3. Repair Class Prediction: Use the feature vector to predict which of the 1016 repair

classes is applicable i.e., which type of repair is required. MACER [5] uses a Prob-

abilistic Label Tree (PLT) technique (explained later) for multi class classification of

repair classes.

4. Repair Localization (Repair Profile prediction): Use the feature vector to predict loca-

tions within the source lines at which repairs should be applied. MACER [5] takes a

DisMEC (explained later) style approach for repair profile prediction which is a multi-

label classification problem.

5. Repair Application: Apply the predicted repairs at the predicted locations.

6. Repair Concretization: Undo code abstraction and compile.

2.3 Dr Repair

• DrRepair [16] proposes a Graph Attention-based LSTM network for Compiler Error cor-

rection using compiler diagnostic feedback. It takes in a program x and diagnostic feedback

from a compiler as inputs, encodes them via LSTM and graph attention layers, and decodes

the error line index k and repaired code yk.

5



6 Chapter 2. Related Works

• They propose a joint graph representation of a program and diagnostic feedback that cap-

tures the underlying semantic structure of symbols (program-feedback graph). Specifically,

it takes all identifiers in the source code and any symbols in the diagnostic arguments as

nodes and connects instances of the same symbols with edges to encode the semantic corre-

spondence.

• They then design a neural net model with a graph-attention mechanism on the program-

feedback graph to model the symbol tracking process.

• They model the probability of a line k being erroneous via a feedforward network, and

model its repair yk, via a pointer-generator decoder.

• Main disadvantage of this approach is that it requires several days to train even on a reason-

ably powerful GPU infrastructure. Moreover, the one-step approach makes it challenging to

fine-tune their method to focus more on certain types of errors than others.

• They also introduced a novel program corruption procedure for generating more synthetic

training data.

• For program corruptions they first analysed common compiler errors in three settings: ex-

perienced developers, beginner programmers, and predicted code of program synthesis. For

each case, they collected statistics from different data-sets, and grouped the errors into four

major categories.

– Syntax: which randomly deletes, inserts, or replaces an operator / punctuation.

– ID-type: which randomly deletes, inserts, or replaces an identifier (ID) type such as

int, float, char.

– ID-typo: which randomly deletes, inserts, or replaces an identifier.

– Keyword: which randomly deletes, inserts, or replaces a use of program language

keyword or library function, such as if and size ().

• Then, they took syntactically correct programs from codeforces website and, based on the

analysis, introduce each of this error based on some probability distribution into this correct

programs to generate more source/target pairs. They use this synthetically generated data to

pre-train their model.

2.4 SampleFix

• SampleFix [9] proposes an approach focused on tackling ambiguity and diversity in code.

Since more than one piece of code can result in the same output, they propose that the

problem of fixing a buggy problem be treated as a one-to-many mapping between source

and target programs.

• At the core of their approach is a conditional variational autoencoder that is trained to sample

accurate and diverse fixes for the given erroneous programs and interacts with a compiler

that evaluates the sampled candidate fixes in the context of the given programs.

6



2.5. DECAF 7

• They also propose a novel regularizer which encourages diversity by penalizing the dis-

tance among candidate samples, which thereby significantly increases the effectiveness by

producing more diverse samples.

2.5 DECAF

• Extreme multi-label classification (XML) refers to the task of tagging data points with a

relevant subset of labels from an extremely large label set. DECAF [12] paper demonstrates

that XML algorithms stand to gain significantly by incorporating label metadata.

• In most of the XML applications and also in repair class prediction for MACER++ labels

contain a lot of information.

• Using label metadata means incorporating information contained in labels into the Machine

Learning model.

• Label metadata can allow collaborative learning, which especially benefits tail labels. Tail

labels are those for which very few training points are available and form most labels in

XML applications.

• DECAF [12] learns a separate linear classifier per label based on the 1-vs-All approach.

These classifiers critically utilize label metadata and require careful initialization.

• Specific contributions are made in designing a shortlister with a large fan-out and a two-

stage training strategy. DECAF [12] also introduces a novel initialization strategy for clas-

sifiers that leads to accuracy gains, more prominently on data-scarce tail labels. It scales to

XML tasks with millions of labels

• It consists of three components 1) a lightweight text embedding block suitable for short-text

applications, 2) 1-vs-All classifiers per label that incorporate label text, and 3) A shortlister

that offers a high recall label shortlist for data points.

2.6 Hierarchical classification

• The use of these approaches for MACER++ is explained in section 4. Just a succinct expla-

nation of each technique:

1. PLT [11] - The Probabilistic Label Tree technique considers a fixed (handcrafted or

learnt separately) label tree where every leaf of the tree is a label. The technique offers

a way to navigate this tree effectively to retrieve for any data point, the subset of labels

(equivalent subset of leaves) which are most applicable to that data point. Each node

in the tree gives probability estimates of their children being applicable to a data point.

2. DiSMEC- It is a highly parallelized implementation of one-vs-all (OvA) classifiers

for extreme multi-label classification problems. The authors implement two levels of

parallelism: first they divide the labels into batches which can be trained independently

7



8 Chapter 2. Related Works

and second, within each batch, classifiers of each label are trained independently and

in parallel.

3. Tree Based XML techniques (Parabel & CraftML):

Tree-based methods (like Parabel, CraftML etc) implement a divide-and-conquer

paradigm and scale to large label sets in XMC by partitioning the labels space. As a

result, these schemes of methods have the computational advantage of enabling faster

training and prediction.

Tree-based methods transform the initial large-scale problem into a series of small-

scale subproblems by hierarchically partitioning the instance set or the label set.

Parabel [13] learns a hierarchy over labels rather than data points.

Parabel [13] improves over PLT [11] by learning the label hierarchy rather than

using a fixed one, by modelling the joint label distribution rather than the marginals

and by developing more efficient optimizers.

CRAFTML [14] is a forest of decision trees trained with the supervision of the

labels where the splitting conditions are based on all the features.

We experimented by incorporating different Hierarchical classification techniques

with the MACER [5] pipeline.

8
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Proposed Optimizations
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As discussed earlier, MACER [5] segregates the task of repairing an erroneous program into

6 different modules and uses lightweight machine learning techniques to determine the type of

repair to be applied and where to apply them. Thus MACER [5] outperforms previous techniques

not only in terms of repair accuracy but also is much less resource intensive. However, MACER

[5] suffers from some issues. One major critique of MACER [5] is that it doesn’t utilize the infor-

mation provided by the compiler diagnostic very well. They just use the line number reported by

the compiler. DrRepair [16] has shown that using compiler diagnostic can provide some valuable

feedback which can significantly boost the performance of the machine learning techniques.

Another issue with MACER [5] is that it suffers from zero shot cases. Zero shot cases are the

repairs which do not appear in the training set and hence MACER [5] is unable to repair them.

Also MACER [5] doesn’t utilize the information contained in the repair classes themselves which

can be valuable. We try to tackle all of the above issues as well as try to improve upon the repair

class prediction and repair profile prediction modules.

Apart from this we also introduce a novel synthetic data generation technique which uses

the concept of repair classes to generate new examples from existing data. Even though other

techniques try to generate artificial data, they do this in more or less random manner hence the

generated data may not resemble the mistakes made by programmers. Instead our approach can

generate examples which much closely resembles the errors made by programmers since the repair

classes are created from these errors in the first place.

9
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3.1 Reworking repair classes:

• The notion of repair class is central to MACER++ (and MACER [5]). Given a test program

line MACER predicts the repair class which suggests the type of repair to be applied to

correct the erroneous line.

• We automatically figure out the set of these repair classes during training using the edit

distance between the source and target programs. The repair classes not only contains in-

formation about the type of error in the source line but also how to repair the erroneous

line.

• These repair classes contain three pieces of information used to repair an erroneous line:

– The Error ID (s) as reported by the compiler.

– A enumeration of tokens to be inserted.

– A enumeration of tokens to be deleted.

• Looking at the formation of the repair class it does not seem intuitive to include the error ids

in the repair class. If the repair classes have identical tokens to be inserted / deleted, then

the repair required should be the same regardless of the error ids reported by the compiler.

• Hence, we removed the error ids from the formation.

• This has 2 (logical) advantages:

• The first is that the number of repair classes went down from 1000 to 700 (a 30% reduction).

Reducing the number of Classes can greatly help the ML algorithms used for multi class

classification.

• Second is that since multiple classes are now condensed into one the number of training

instance per repair class increases, which can be extremely helpful especially for tail classes

(Classes which have very few training examples)

• We did see some improvements in prediction accuracies by applying this simple change.

3.2 Using compiler message for Localization:

• Compilers report line numbers where an error is located but they fail to pinpoint the exact

location of error accurately. [15]

• One critique of techniques like MACER [5], TRACER [1] etc is that they do not use infor-

mation provided by the compiler diagnostic message fully.

• One of the major components of MACER++ pipeline is its line no. localization module.

Since, getting an incorrect line number would result in applying corrections on an incorrect

line, thus causing MACER++ to fail in correcting the erroneous program.

10
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• As explained earlier, MACER [5] uses the compiler reported error line and lines above and

below that to create a set of lines to inspect, and then applies the rest of the pipeline on each

of these lines individually.

• However, the compiler message still contains more valuable information that they ignore.

• One such piece of information is the identifier / symbol reported by the compiler in the

diagnostic feedback. DrRepair [16] uses this information along with the source code to

form an attention graph. It takes all identifiers in the source code and any symbols in the

diagnostic arguments as nodes and connects instances of the same symbols with edges.

• Taking inspiration from these we extract the identifiers / symbols present in the compiler

diagnostic feedback, then we iterate the source code to find occurrences of these symbols

and include those lines where they occur in the set of lines to inspect.

• This improves MACER’s localization accuracy, without hurting the running time too much.

• Not only does this make better use of the valuable information provided by the compiler, but

also this allows MACER++ to fix some long-range errors which MACER would not have

been able to fix.

• Consider this example:

1 #include <stdio.h>
2 int main()
3 {
4 int N ;
5 scanf("%d",&N);
6 int a,b,c;
7 int count =0;
8 if (a < b && b < c)
9 count ++;

10 }
11 printf("%d",count);
12 return 0;
13 }
14

• As you can see the error in the code is unmatched braces. One fix could be to delete the

closing brace on line 10. However, the compiler reports this error:

file.c:13:1: error: extraneous closing brace (’}’)

• Thus the line which require edit is not near the compiler reported line. However if we

consider the identifier reported by the compiler and search for it in the source text, we can

better locate the line which requires edit and thus fix the error.

3.3 Learned Hierarchical Classification:

• If we look at the set of repair classes, there is a natural (fixed) hierarchy Figure 2.1 which

can be formed. MACER [5] uses this fixed hierarchy inspired by PLT [11] to predict the

11
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repair classes.

• Other approach for such hierarchical classification could be to learn a hierarchy of labels

instead of using a fixed hierarchy. There are existing techniques, generally used for extreme

multi label classification (XML for short), which can learn a hierarchy of labels based on

different similarity measures and at the same time scale up to a million labels.

• We tried replacing MACER’s repair class classification module with some of these XML

techniques viz. Parabel [13] and CraftML [14] (from now on refered to as XML algorithms).

• This XML algorithms basically learn an ensemble of Decision trees where leaves of the

trees indicate one or more labels. While prediction step labels recommended by a majority

of the trees are given a higher score. The output of these algorithms is a ranking of the labels

from most relevant to least relevant.

• The feature encoding step is same as that of MACER [5]. We then feed this feature vectors

to the XML algorithms which assign a probability score to each label, thus giving us a

ranked list of most applicable labels (in our case repair classes). We pick top k of these

recommended repair classes (k being a hyper-parameter) and then follow through with repair

profile prediction, repair application and concretization steps to generate target programs.

Finally, we compile each target program to find the correct solution.

• Even though the results (discussed later) are not that impressive, because of the modular na-

ture of MACER and quick training and testing times, such algorithms can easily be plugged

in and tested out as a black box with little effort. Any further improvements in any of these

algorithms can directly improve MACER++ ’s performance.

• One other advantage of these algorithms is that they are built to run efficiently in extreme

cases where the number of labels is in order of millions (or even billions). Hence for ap-

plications like MACER++ where the number of labels is comparatively quite small these

algorithms are extremely fast (faster than using a fixed hierarchy).

• Also, since MACER++ pipeline takes just a few minutes of time to train and test we can try

out a variety of approaches quickly, thus being able to land upon the most suitable method.

3.4 Label features:

• Generally in multi class and multi label classification settings the class or labels are encoded

as integers or as one hot vectors. However, recent work shows that use of label metadata,

information contained in classes or labels, can help improve the performance of various

algorithms.

• One peculiar thing about repair classes is that they themselves pack a lot of information

about the repair that must be made. Using this information can help boost the performance

of MACER++ pipeline.

12
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• Also, the use of label metadata can enable collaborative learning. For example, consider

two repair classes.

1. [=] [==]: replace an assignment operator with a comparison operator.

2. [!] [==] [!=]: replace a not and a comparison operator with not equals operator.

• Both classes will not have any common training examples. However, they both share a

common token (the comparison operator). Incorporating this information can help the ML

model perform better, especially for tail classes (which have very few training examples).

• However, MACER [5] and other techniques ignore this valuable piece of information by

merely encoding the repair classes as integers.

• One way of incorporating information from the labels (repair classes) is to use a re-ranker

along with the existing method used by MACER [5] for repair class prediction.

• Label text was incorporated into these classifiers as follows: for every training sample i,

let sil be the relevance score the XML classifier predicted for label l for document i. As

suggested by DECAF [12] we can augment this score to incorporate label text by computing.

sil′ = α · sil + (1− α)σ(xiᵀzl)

• Here, α ∈ [0, 1] was fine tuned to offer the best results, xi is the feature vector for the current

training example and zl is the corresponding label (repair class) representation and σ is the

sigmoid function

• To obtain zl, we simply consider the repair class as a plain text and use uni and bi-grams

features. We also append the tokens with either del or add to differentiate between tokens

to be deleted or inserted. For e.g., Consider a replace (reworked) repair class representing

replacing 2 commas with 2 semicolons:

[, ,][; ;]

• This will be encoded as:

[del, ][del, ][add; ][add; ][, ][, ][; ][; ][, , ][, ; ][; ; ]

• We then experiment with one hot encoders, count vectorizers etc. to convert this represen-

tation of repair classes to numerical formats.

• Note that this technique doesn’t change the existing pipeline. In fact, there is no change

to be made during training. Only during prediction we have another score in the form of

σ(xi
ᵀzi), which can be thought of as a re-ranker, hence the name naive re-ranker.

13
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3.4.1 DECAF:

• We experimented with DECAF [12], which extracts label features from label metadata and

applies deep learning techniques to give state of the art performance on the existing XML

benchmarks.

• Much like other XML techniques, given a feature vector DECAF [12] outputs a ranked list

of labels (repair classes) and assigns a score to each label. However, they use a shared vo-

cabulary between the feature vectors and label vectors. This enables collaborative learning

when two labels share the same tokens which can help improve the performance for rare

labels.

• Label vector were generated from the repair classes using the same procedure as discussed

above.

• We tried replacing both MACER’s [5] repair class prediction module (which is a multi-

class classification problem) and the repair profile prediction module (which is a multi-label

prediction problem).

3.5 Repair application:

• MACER [5] classifies the repair classes into 4 broad categories:

– Replace repair class: where the repair can be made using just replace operations.

– Insert repair class: where tokens are just to be inserted.

– Delete repair class: where tokens are just to be deleted.

– Rest (misc.) repair class: some combination of the above classes.

• After predicting which repair class is to be applied, it uses the repair profiles predicted using

One vs All classifiers to apply repair classes to source lines in order to obtain the corrected

lines. These repair profiles are nothing but an enumeration of bi-grams which appear in the

source line and which require an edit to correct the error.

• However, as pointed out earlier, the predicted repair class itself contains information which

can be used to improve on the existing repair application step.

• Specifically, for delete and replace classes, the repair class tells us which tokens are to be

deleted. These classes can only be applied to the bi-grams which contain the token to be

deleted. The predicted repair profile does not account for this fact, hence it is possible that

the bi-gram predicted to be edited might not contain this token(s) and hence MACER fails

to apply the repair.

• We incorporate this fact to improve on the repair application step of MACER. In more detail,

while correcting an erroneous line, if the predicted repair class is a delete or replace class,

we adopt a more brute force approach. We scan the line to find bi-grams which contain the

tokens to be deleted and then apply the edit (delete or replace) on the discovered bi-grams.

14
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• One problem with this approach is that the same token (to be deleted) might appear multiple

times in the erroneous line. To handle this, we generate all combinations of edits possible

on the line and then compile all of them to see which one works.

• One issue with this solution is when the number of combinations become too large, it might

slow down the pipeline. To avoid this, we define a threshold (hyper-parameter). If the

number of combinations become larger than this threshold, we fall back to the repair profile

and use it to make the repair. Note that we compute the number of combinations that would

be generated before actually generating them hence this doesn’t slow down the pipeline even

when we have to fall back to the repair profiles.

• This gave us a significant boost in accuracies.

3.6 Synthetic Data generation:

• Techniques like MACER [5], used to solve automatic program repair problem rely on

aligned training data i.e., training data must have both source and target programs.

• However, available aligned training data is limited in size (of the order of 10K).

• DrRepair [16] tries to solve this problem using a self-supervised approach. Briefly, they

scrape the internet to get source programs and introduce errors in them using a novel cor-

ruption module. This technique allows them to get a lot of aligned data points (order of 1

million).

• However, since the corruption module introduces errors randomly (by deleting/ inserting/

replacing tokens) it is difficult to say if the generated synthetic data has a good representation

of errors made by novice programmers.

• We introduce our own synthetic data generation module which uses the concept of repair

classes to generate more training data by reproducing errors already encountered in the

training set. Since these errors were committed by novice programmers themselves, these

new training points capture the actual errors in a much more reliable way.

• Some examples of generated synthetic data are included in Table 3.1

3.6.1 Generating Synthetic examples using repair classes.

• Method of generating new training examples vary based on the type of repair class we are

trying to introduce:

• Insert repair classes: Each insert repair class has tokens to be inserted in an incorrect

program line. Thus, to generate an example of this class we need to remove these tokens

from the correct line of the program. We do this as follows:

For each correct program in training data, we iterate over all lines and if any line con-

tains all tokens to be inserted in the insert repair class, delete these tokens from the line, thus

creating a new example of corresponding insert repair class.

15
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• Replace repair class: Each replace class has a set of tokens to be deleted and another set of

tokens to be inserted in place of these deleted tokens. Thus, to generate a new example of

replace class we replace the tokens to be inserted with the tokens to be deleted as follows:

For each correct program iterate over all lines and if any line contains all tokens to be

inserted for the repair class, replace these tokens with corresponding tokens to be deleted,

thus creating a new example of the corresponding replace repair class.

• Delete repair class: Here we want to insert the tokens appearing in the delete repair classes

into a syntactically correct line. Inserting these tokens randomly in any line does not make

sense since the generated data point will not be related to any actual error made by a pro-

grammer and will not create realistic errors. Since we do not have a straightforward way to

determine which lines, we should do these for, we have used the following method.

We have around 3000 examples with delete repair needed in the available training data.

First, we train an One vs Rest (OVR for short) binary classifier which given a syntacti-

cally correct line and a delete repair class tells whether this class should be applied to given

line or not.

Then we train a set of OVR models (taking inspiration from MACER’s [5] repair pro-

files) which tell us where (in which bi-gram) in the given erroneous line should we insert

the tokens appearing in given delete class.

We use the above to models to generate new examples for delete repair classes.

Let’s consider an example from the table (row 3). The original line is an else statement

free from errors. We want to generate an example of repair class which deletes a pair of

parenthesis (delete ( )). First we use the corresponding binary classifier for this class to

determine whether this repair class can be applied to the given source line. If yes, then we

use the corresponding OVA classifier for this repair class to determine which bi-grams in

the given lines should be edited. The model in this case returns the bi-gram < else { >. So

we insert the pair of parenthesis after the else keyword thus generating a new example for

this repair class.

• Rest repair class: Rest or miscellaneous repair classes require more than one edit (insert/

delete /replace) operation. To create synthetic data of rest repair classes we follow the

following steps:

We first split the rest repair class into three parts having insert, delete and replace oper-

ations respectively.

For insert and replace parts we follow the same steps as a insert and replace repair class

respectively.

For delete part, we randomly insert the tokens in a given line. Note that we don’t need

a classifier to tell us which lines should be used to insert these tokens since a rest class is

guaranteed to have at least one of insert or replace parts along with this delete part.

• Since repair classes are in abstract form, we need to concretize the final buggy target pro-

gram generated, before adding it to the training set.
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• There are a couple of advantages to generating data this way:

One is that it generates realistic errors as discussed before.

The second advantage is that if we look at the distribution of repair classes, we observe a

heavy tail i.e., a lot of the rare repair classes have very few training examples. By generating

training data using these repair classes we give the ML model much more data to work with

for these tail classes, thus improving accuracy for these.

Moreover, to determine how many synthetic training examples to generate for each

repair class we use the distribution of errors itself. Briefly, we generate more training ex-

amples for classes which are rare (in the training data-set). For this we use the concept of

binning. We split the training data-set into same sized bins. Now we place each training

example in a bin depending on how rare the repair class for that example is. We try to keep

the sizes of each bin approximately the same. At the same time, if two examples belong to

the same repair class they must go in the same bin. Once we have obtained the bins, we can

use them to determine how many synthetic examples should be generated for repair classes

in each bin. For now, we generate 10 extra examples per repair class for top 30% of bins,

25 extra examples for repair classes in next 30 % of bins and 50 examples of the remaining

classes.

• Further Work: While generating new examples for insert, replace and rest (misc.) classes

we don’t consider the order of tokens that appear in the repair class. Basically if all the

tokens appearing in the repair class also appear in a target line we apply the procedure

discussed above to generate a synthetic training example regardless of whether these tokens

appear in the same order or not. However this results in introduction of some new repair

classes which were not present in the training set. Though this is not a big issue it can be

improved upon.

Original Source Line Generated Source Line Repair Class
printf ( " %d \n " , age ) ; printf ( " %d \n " age ) ; [,][]
scanf ( " %f %f " , & a , & b) ; scanf ( " %f %f " , * a , * b) ; [& &][* *]
else { else ( ) { [][( )]
scanf(" %d", &a ); scanf(" %d " &a ,); [,][,]

Table 3.1: Examples generated using our Synthetic data generation method.

3.7 Atomic Repair:

• A major issue with MACER++ is that it is unable to repair errors which require previous

unseen repairs. We call this case Zeros Shot cases.

• These zero shot cases arise because MACER uses composite repair classes. That is a single

repair class contains all the edits that need to be made to correct an incorrect line. However,

since the type of errors a programmer can make is not bounded, theoretically the number

17
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of possible repair classes would be infinite. Practically, though, there is a pattern of errors

made by students.

• However, these zero shot cases do appear in the test data and can affect the pipelines perfor-

mance significantly.

• Consider the following source line:

printf("%d" marks)

As you can see there are two, more or less unrelated, errors in this line. One, the missing

comma between the string literal and the variable and two, the missing semicolon at the end

of line. For MACER++ to be able to repair this line, we would need a repair class that

inserts a comma and a semicolon. However, since it is rare for a student to make a mistake

like this, its possible that we never find this kind of complex error in our training set and

hence this becomes a zero shot case for MACER++ .

• One way to solve this issue is to use atomic repair classes i.e., instead of predicting the entire

repair needed to correct the erroneous line we first predict one edit (insert/ delete / replace),

perform the edit, and get the partially corrected line, then pass this partially corrected line

as an input to predict the next edit and so on till the program compiles or some threshold is

met.

• For this the repair class used by MACER++ needs to be broken down into atomic repair

classes which represent just a single insert, single delete or a single replace operation.

• We came up with an implementation (naive) for this. Details are as follows.

3.7.1 Data Generation:

• For implementing this pipeline, we would need aligned atomic repair data i.e., where the

source erroneous line and the correct target line differ only in one atomic edit operation.

• In TRACER’s [1] single line data-set, the source and target programs differ just in one line.

However, the source line might require multiple edits to be translated to the corresponding

target line.

• We generated the atomic repair data from TRACER’s [1] single line data by splitting each

source and target line pairs into multiple pairs by using the concept of edit distance. Mean-

while we also had to do some data cleaning since, in case of erroneous programs, the ab-

straction given by clang is not perfect especially when the program has syntax errors.

• The generated data had around 37K source and target pairs which differ only by one atomic

edit operation. Note that the target code in this case may not necessarily compile since more

edit operations might be required to fix it.

• We also maintain the order of edit operations while generating the data-set so that first all

replace edits are done followed by insert and lastly delete operations are applied.
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Figure 3.1: Prediction Pipeline for atomic repair

3.7.2 Feature Encoding:

• Used the same feature encoding and program abstraction step as MACER [5].

3.7.3 Training Process and Model:

• To predict whether the given source line requires a (atomic) replace, insert or delete opera-

tion we train 3 binary classifiers. Each of these binary classifier is a Fully Connected Neural

Network with 2 hidden layers each having 128 neurons followed by a Dropout layer.

• Each of these neural networks are trained on the training examples which require replace,

insert or delete operation respectively.

• Then to determine which specific class among the replace, insert, or delete class is required

to be applied we train 3 linear models (Logistic Regression) respectively.

• After this we use MACER’s [5] repair profile module and repair application module to

predict where to apply the repair and apply it.

3.7.4 Prediction Process:

• The prediction process is shown in the Figure 3.1. While predicting we first identify the line

number(s) for which the repair must be made using the process described in section 3.2.

• Once we know the set of line(s) is to be edited, we apply the following steps for each line.

19



20 Chapter 3. Proposed Optimizations

• First, we extract the features (uni-grams and bi-grams) and encode it to get the feature vector.

Then we ask each Neural network (one for replace, delete and insert) whether the current

line needs an edit (replace, delete, or insert resp.). We consider the replace edit to be of the

most priority followed by insert and lastly delete (In case if multiple networks say an edit is

required).

• Based on which edit is to be made we determine the exact repair class to be applied with the

help of the corresponding (linear) model.

• Now we proceed to apply the edit according to the output of the 3 neural networks. For

applying the edit we first predict the repair profile just like MACER++ and follow the similar

repair application step like MACER++ .

• In the end we get a transformed line(s). This line(s) may not be the correct line and might

require further repairs to be applied. Moreover, since the repair application step is not

deterministic, we might end up with more than one transformed line in each iteration.

• So, the search space is a general tree. We apply breadth first traversal of this tree till either

we find a line that compiles or some threshold number of nodes have been examined.

• Consider the example given in the figure. Here, to repair the erroneous line, 2 edit operations

are required. First we need to insert a comma (,) between the variable and the double quotes

and second we need to insert a semicolon at the end of line. First we pass the encoded

feature vector through the pipeline, which predicts that the repair class is [insert ,]. We

use the repair profile prediction and repair application steps as discussed in section 3.5 and

section 2.2 to finally get partially corrected line. This partially corrected line then becomes

the source line for the next step. This process is repeated till the line compiles (or number of

errors in the program are reduced) or some threshold number of attempts have been made.

3.7.5 Future Work:

• Better tree search methods can be applied. Even depth first search might give better results

since we would be exploring a path completely before moving on to a new one.

• Using MACER’s [5], re-ranking step might help predict the repair class better.

• Moreover we could use a combination of composite and atomic repair classes to get best of

both worlds.

• Also, currently we select the edit operation to be applied using this priority order, replace

> insert > delete. However, one idea could be to ask the models to provide a confidence

score for their prediction the decision to select the edit operation can be made based on this

confidence score.
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ESC101 is a course offered every semester for novice programmers to teach fundamental

principles of programming. In this course labs are conducted every week where students are given

programming questions which they have to solve within given time frame. This questions are

based on the concepts of programming taught in the ongoing and previous weeks lectures. The

tutors (and TA’s) of the course are required to formulate these programming questions every week.

From all the offerings of this course a large corpora of such questions has been collected using

online coding platform PRUTOR [6]. But since these problems are not search able every year the

tutors have to start creating these questions from scratch. This takes a lot of effort and time.

The main motive for PRIORITY is to make the large corpus of programs available from pre-

vious ESC101 course offering search able. Tutors and TA’s should be able to perform a search

over these problems based on the skills required to solve these problems, their difficulty etc. This

would offer the tutors a good starting point as they can have a look at what kind of problems where

used in the previous offerings. This makes the task of setting problems much simpler and faster.

To make these problems searchable we came up with 28 programming concepts related tags or

labels. In this section we discuss how we tag these problems using some supervised and semi

supervised machine learning techniques.

We also developed a web-app so that tutors could easily utilize the problems tagged by our

algorithm.
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4.1 Data Pre-processing:

• Initially, the (SQL) dump of coding questions (and solutions), collected by PRUTOR [6],

was available to us. This data had approximate 2000 questions along with their solution

codes and some other data.

• Along with these, with the help of some tutors, we were able to manually label a small set

of problems (around 10-15% of the total data samples available).

• These labels represented skills and knowledge of programming concepts that would be re-

quired to solve a given problem. The tutors were also instructed to give a difficulty score

(1-5) to each problem they labelled. We had a total of 10 major labels, each of which was

further divided into 2 to 4 minor labels.

• For example, one of the major label was Conditionals basically indicating that a student

requires knowledge of Conditional statements to solve the question. This major label was

further divided into 4 sub labels, one or more of which may apply, viz.

1. Basic : simple if/if-else statements

2. Switch : use of switch statements

3. Advanced : use of nested conditionals, ternary statements

4. Flag : use of flags

• A full list of the labels and there description can be found in the Appendix section 7.1.

• First task, before moving on to applying Machine learning models, was to combine these

two sources of data, separate the labelled and unlabelled samples, and convert the data in

appropriate form for the Machine learning pipeline.

• Finally the data obtained, after all the pre-processing, was a csv file with information like

the problem statement, solution code, template code and a list of labels (if labelled) for each

of the coding question in the PRUTOR data-set.

4.1.1 Challenges faced:

• Overlap in the labelled set: Since the data was labelled by multiple tutors, some data points

were (deliberately) given to more than one tutor. While cleaning of data we had to decide

how to resolve such conflicts where different tutors gave different labels to the same coding

question. We resolved this conflict by taking a union over the labels given by the tutors. For

determining the difficulty we took the average of the difficulty scores given by the tutors

(rounded to closest integer).

• Encoding/ decoding issues: The data dump available from PRUTOR was a SQL database

table with entries corresponding to each problem statement along with its solution and some

other information. These problem statements and solution codes where stored as a base 64

encoded string. Some these strings were not properly encoded and hence that data sample

had to be discarded.
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Figure 4.1: Distribution of labelled examples among labels

4.1.2 Observations:

• As you can see the amount of labelled data was very low. Moreover if we split the data

points based on the tags (labels) given to them by tutors, we can see in Figure 4.1 that

most of the labelled data points belong to only a few popular labels like conditionals, basic

loops, terminal i/o etc. while some of the rare labels like DP algorithms, Divide and conquer

algorithms etc have less than 10 labelled points. In fact, the 8 most rarest labels have less

than 20 data points.

• Hence, if we train a binary classifier, which differentiates the examples which is tagged with

the label from the ones that are not, it suffers heavily from a class imbalance problem for

these rare labels.

4.2 Feature Extraction:

• After data pre-processing, for each problem we had a problem statement and the solution

(gold) code. We decided to use only the gold code to create the feature vector as the problem

statement often has a lot of irrelevant information since the tutors are instructed to make a

nice story around the problem.

• One (naive) way to encode the solution code is to treat the entire code as a text, and use Bag
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Figure 4.2: Label propagation to utilize unlabelled examples

of words type features (like uni-grams, bi-grams, etc). This method however fails to capture

the syntactic details of the source code and also produces very long feature vectors.

• For example, consider the statements:

z =-1

z -=1

• The above statements would have very similar uni-gram/bi-gram representations but mean

completely different things. One initializes the identifier z with negative 1 and other decre-

ments the value of z by one.

• Hence, we extract the features from the solution code with the help of the abstract syntax

tree (AST).

• Abstract Syntax Trees provide a wealth of information about computer programs. It espe-

cially helps in analysing the syntactic structure of computer programs.

• We use Pycparser [3] to walk the AST of the solution code and extract relevant features. We

use the list of labels (given in appendix chapter 7) to decide what syntactic constructs can

help predict the labels. We extract information like number of conditionals used, number

of logical & arithmetic operators used, number and dimensions of array’s used etc. Apart

from these we also check whether the code uses in-built functions like printf, scanf, memory

operations etc. which can be a valuable hint towards determining the skills required to solve

the problem.

• We encode this information using a CountVectorizer from sklearn to get a 50 dimensional

feature vector.
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4.3 ML Model:

In this section, we describe the models we used and experimented with to predict both the labels

and the difficulty scores of a given programming problem.

4.3.1 Model for label prediction

• The problem at hand is effectively a multi label classification problem where given a feature

vector representing the solution code we have to predict which of the 28 labels are applicable

and also predict the difficulty score (multi class classification).

• Since we have such a limited labelled data points most of the well known algorithms for

supervised multi label classification give us a poor performance. We tried using One vs

rest (OVR) approach with different base models. However all these methods gave a poor

performance. This could be because, one the amount of labelled data is very little and

second the data is heavily skewed in favour of only a few popular labels.

• Another approach we tried is Multi label k nearest neighbours (MLKNN) [17]. This ap-

proach is an extension of the k nearest neighbour approach to work with multi label classi-

fication settings. MLKNN out-performed the One vs Rest methods with k = 10. However

the F1 score was still quite low.

• One disadvantage of these supervised algorithms is that they do not use the unlabelled data

points. To utilize these unlabelled data points we used a semi supervised learning technique

called Label propagation as illustrated in Figure 4.2.

• For each label we first train a Base classifier on the labelled data points which is 400

examples. Then we predict the labels for the remaining (unlabelled) points which are 1600

examples. We also ask the model to provide confidence scores to all of its predictions.

Based on these confidence scores we pick the top 50 examples on which the model is most

confident on and add them to our training set. Hence, the training set now consists of 450

samples. We retrain the Base classifier on this updated training set and repeat the process.

• At the end of each iteration, 50 unlabelled points are moved to the training set. We continue

this process till all the unlabelled points are labelled.

• We experimented with different Base classifiers but found Balanced Random Forest Classi-

fier to work best. As noted earlier, the rare labels suffer from class imbalance problem. This

can hurt a machine learning models performance. A balanced random forest classifier tries

to solve this problem by using techniques like over-sampling. Hence, it performs better than

a traditional Random Forest classifier.

• A disadvantage of this technique is that it may amplify the base classifiers incorrect predic-

tions (if the model is very confidently wrong).
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4.3.2 Model for difficulty score

• Difficulty of a problem is a number between 1 to 5, 1 indicating a very easy problem and 5

indicating a very challenging problem.

• Predicting a difficulty score for a given programming problem is a simple classification

problem with 5 classes.

• We experimented with a few multi class classification algorithms and found Random Forest

classifier to work best.

• We use the same feature vector for difficulty prediction since the syntactic structure of a

program is often a good indicator of how difficult it would be to solve a problem.

4.4 Illustration:

In this section we will go over the entire labelling process by taking an example. Consider the

following programming problem

Write a C Program to compute the area pi*r*r, where the float values are pi=3.14159265,

r is a user input and print the resulting area.

Input: A floating point number representing radius r of the circle.

Output: Area of circle with radius r. output should contain only 2 digits after the deci-

mal.

The solution code for above problem would look like this:

1 #include <stdio.h>
2 int main(){
3 float pi, r, a;
4 pi =3.1415926;
5 scanf("%f", &r);
6 a = pi*r*r;
7 printf("Area of circle with radius %0.2f is %0.2f\n", r, a);
8

9 return 0;
10 }

To solve the above problem a student would require knowledge about the following program-

ming concepts:

1. How to take input from the user and output the answer to the user using the correct format

specifiers specified by the question

2. Knowledge about basic arithmetic operators to calculate the area.

4.4.1 Feature extraction and encoding

As discussed in section 4.2, to extract the features from the solution code we generate an Abstract

Syntax Tree using Pycparser [3] and walk this AST to extract relevant information. For the given
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example, our approach extracts the following information:

• Use of Basic function (main).

• Use of assignment operator.

• Use of console input (scanf)

• Use of console output (printf)

• Use of arithmetic operator (*)

• Use of dereference operator (&)

We encode these features to get our feature vector.

4.4.2 Label Prediction

Once we have our feature vector, we feed it to the Balanced random forest classifier model, trained

using label propagation. For each of the 28 labels the model will output a 0 or 1 indicating whether

this problem should be tagged with the label or not. For the given example, the model outputs 2

tags viz. Arithmetic_Basic and TerminalIO_Advanced, indicating that the problem requires basic

knowledge of arithmetic operators and advanced knowledge of terminal (or console) input/output.

Passing the feature vector to the difficulty score prediction model, the model assigns a dif-

ficulty score of 1 to the problem. Difficulty of a problem can be subjective and can vary based

on the opinion and proficiency of the student, but the problem at hand is relatively simple and a

difficulty score of 1 is justifiable.

4.5 What lies ahead:

As mentioned earlier, we deployed a web-app which exposes the labelled data-set of programming

problems, labelled using PRIORITY, to tutors of ESC101 course. Details of this web-app can be

found in Sharath’s Thesis Real World Deployments of AI assisted compilation error repair and

program retrieval [10]. This web-app is currently used by the tutors of ongoing ESC101 offering.

Since most of the problems in this data-set were labelled by the machine learning model,

chances are that some of the labels would be incorrect i.e. the model may tag some problems

with a label which doesn’t apply to the problem or the model may also fail to apply a label to the

problem which should have been applied. Hence, one of the important aspect of the web-app is

feedback collection.

4.5.1 Feedback Collection

The web-app collects 3 types of feed backs which are as follows:

1. Active Feedback: If the tutor feels that the labels of a problem are incorrect, the web-app

allows him/her to specify which labels should/should not be applied. This type of feedback

can help the Machine Learning model directly since the tutors are indirectly labelling the
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data. Note that it may not be the best idea to take the tutors suggested labels as ground truth

and some clever filtering might be needed.

Besides this tutors can also give a star rating to a specific suggestion made by the model.

A 5 star rating would mean that they were completely satisfied with the labels while a 1 star

rating would mean that there was some mistakes in the labels.

2. Passive Feedback: It’s common for any recommendation system to collect passive feedback

from its users based on how they interact with the system. PRIORITY collects some passive

feedback as well. For example, the web-app records data like how many problems the user

had to visit before they were satisfied, how much time a user spent on one problem, did the

user copy the problem statement or code, etc. These feed backs can provide valuable hints

to whether the users liked the suggestion made by the model or not.

3. Text Feedback: Finally, the web-app allows the tutors to leave comments on a specific search

results or on the entire web-app in general.

Please refer to Sharath’s Thesis for more details on feedback collection.

All these feed backs can help improve the machine learning model drastically. For example,

if the user spends a longer time on a specific question then probably they are going through the

details of the question and hence chances are high that they liked the suggestion. The next step of

PRIORITY would be incorporate these feedback to further improve the Machine learning models.
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Experiments
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We applied all the optimizations discussed in chapter 3 for MACER++ and compared the

results with base MACER’s [5] results as well as with other state of the art methods. In this

chapter we describe all the results. We also discuss some ablation studies that we perform. For

PRIORITY we discuss why we chose to go with Label Propagation and compare its performance

with a few other methods.

5.1 Data-sets

We ran our experiments primarily on TRACER’s [1] single line data-set (now on referred to as

single line data). This data-set contains 4326 problems each of which has exactly one erroneous

line. Apart from this we also compare MACER++ performance on Deepfix [8] data-set. This

data-set has 6996 problems which have one or more erroneous lines.

For PRIORITY our data-set has roughly 2000 problems out of which approximately 460 are

labelled. We withhold 60 of these as test set and train the model on remaining 400 problems (and

also on unlabelled problems in case of semi supervised learning). We report accuracies on these

60 problems. Each of these problems can have one or more of 28 possible labels (section 7.1) as

well as a difficulty score.
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5.2 Comparison with MACER:

In this section we talk about the optimizations which gave us an improvement (in terms of various

metrics) over the reported metrics of the base MACER pipeline.

5.2.1 Short-hands:

Here are some short hands used in later sections.

• Error Line Localization (ELL): Better Line number localization using identifiers/ symbols

in compiler error message

• Without error id (weid): Revamped repair classes without error id

• Synthetic Data(md): Used artificially generated data while training

• Repair application(ra): Improved repair application for delete and replace classes by exam-

ining tokens in the predicted repair class

5.2.2 Localization Accuracy:

The localization Accuracy refers to how accurately did the pipeline identify the current line which

requires repair. Table 5.1 compares the localization accuracy of MACER++ with that of the base

MACER [5] pipeline.

As you can see, using compiler message to extract symbols and then using these symbols to

identify long range errors does indeed increase the localization accuracy by 3% on the single line

data.

Model Single Line Data
Localization accuracy

Macer 93
Macer + ell 96

Table 5.1: Better Line Localization us-
ing compiler diagnostic

5.2.3 Repair Accuracy

The Repair Accuracy of the model indicates the ratio of programs from the test data which the

model was able to repair, i.e. the program compiles after the transformation, to the total number

of programs in the data set. Repair@k indicates the repair accuracy while considering the top

k repair classes predicted by the model. We accept or reject this predictions by checking if the

transformed code compiles or not. The table compares the repair accuracy of MACER++ with

that of base MACER [5] pipeline, as well as an ablation study on which optimization gave how

much improvement.

As you can see from the table, using compiler feedback as well as using synthetic data im-

proves the repair accuracies on both data sets. Also better repair application by using the repair

classes greatly boosts performance of the pipeline.
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Model Single line data Deepfix data
Repair @ k Repair @k
K = 1 K = 5 K = 5

Macer 69.3 80.2 55.7
Macer + ell + weid 71.3 80.9 57.4
Macer + ell + md + weid 72.1 81.7 58.1
Macer + ell + weid + ra 73.4 83.7 59.6
Macer + ell + weid + ra + md 73.3 84.6 59.8

Table 5.2: Ablation Studies for MACER++

5.2.4 Pred@k metric

The Pred@k metric was introduced by MACER [5]. It indicates the ratio of programs from the

test data which the model got exactly correct, i.e. the target code matches exactly with the repair

made by the student, to the total number of programs in the data set. Again, the value of k

represents how many repair classes predicted by the model were considered. Table 5.3 reports the

Pred@k measure of MACER++ along with that of MACER [5] and provides an ablation on which

optimization was more beneficial.

Note that MACER [5] reported the Pred@k measure assuming that we know the gold error line

i.e. we don’t need to localize which line requires repair. However, since MACER++ improves

the line localization module, we report Pred@k measure both when we know the gold error line

numbers as well as when we don’t.

As you can see in the table, these optimizations not only improve repair accuracy but also

improve the Pred@k metrics. Thus the improvements not only succeed in repair the erroneous

line but also help improve the prediction of what the student actually wanted.

Gold Lines Active Localization
K = 5 K = 5

Macer 69.3 60.9
Macer + Weid + ell 69.3 63
Macer + Weid + ell + md 69.9 63.6
Macer + Weid + ell + ra + md 71.5 65.1

Table 5.3: Ablation studies for MACER++ using Pred@k measure

5.2.5 Accuracy on tail labels:

All the above metrics are macro measures i.e. they are calculated on the entire dataset, irrespective

of the class the repair belongs to. However, as the shown in Figure 5.1, there is a heavy tail in

the distribution of examples among the repair classes. Because of this it is easy for the model to

have high numbers in macro measures even though the model fails miserably on tail repair classes.

Hence, we need some way to compare these models performance on the tail repair classes as well.

We propose the following method:

The single line data has approximately 3.4k examples (ignoring the zero shot cases). The goal

is to divide these examples into 10 bins of roughly the same size, however we want to keep the
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Figure 5.1: Heavy tail in repair classes

Figure 5.2: Comparision of repair and pred accuracies for MACER vs MACER++ (MACER++
on right)

examples belonging to the same repair class in the same bin. For this we identify the repair class

of each of the examples (since we know the target program). We sort the repair classes based on

how many examples of that class exist. Then we pick all examples of the most popular repair class

and place them in bin 0. Then we pick all examples of next repair class and place it in the same

bin. We keep doing this till the bin is full (i.e. has more than total examples / 10 examples) then we

move to next bin. In our case the first bin has examples from only 1 repair class while the last bin

has examples from around 100 repair classes. Now we calculate the repair accuracy and Pred@k

measure for each of this bins separately. Figure 5.2 compares the repair accuracy and exact match

accuracy (which is the Pred@k measure without using gold line numbers) of MACER++ with that

of MACER for each bin. As you can see, MACER++ improves the accuracies for the tail classes.

5.3 Comparision with DrRepair:

We compared MACER++ with DrRepair [16], one of the state of the art method for compilation

error repair. Table 5.4 shows that MACER++ significantly outperforms DrRepair [16] on single

line data. Even though it falls quite short of DrRepair on Deepfix [8] data-set, its important to note
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that DrRepair is a heavy duty sequence to sequence model which requires a lot of resources (time

and compute) to train as well as test. We trained the best model of DrRepair on a Volta class GPU

and it took > 5 days to train while MACER++ trains in approximately 10 minutes on a CPU.

Repair Accuracy Training Time
(For best model)

Testing time
(one example)Tracer Single Line Dataset Deepfix Dataset

Dr Repair 64.5 68 > 5 days ~5 seconds
MACER++ 84.5 59.8 1̃0 minutes ~1 second

Table 5.4: Comparison of MACER++ with DrRepair

5.4 Optimizations that didn’t work:

In this section, we discuss the optimizations which seemed promising but didn’t provide any im-

provements over the base MACER [5] pipeline.

5.4.1 Learned Hierarchy:

We tried replacing MACER’s [5] repair class prediction module, which uses PLT [11] based fixed

hierarchy of labels to predict the repair class, by using algorithms which learn the hierarchy of

labels. As you can see Table 5.5, this experiment shows that for this use case using a Fixed

hierarchy of labels works much better than letting the algorithm learn the hierarchy between the

labels.

Repair Accuracy
PLT (original MACER) 80.2
Parabel 77.61
CraftML 76.8

Table 5.5: Comparison among different meth-
ods for repair class prediction

5.4.2 Label Features:

In this section we compare how using the label text (in this case repair classes) affects the perfor-

mance of the model. As shown in the Table 5.6, using the label metadata gives use improvements

for repair@1 accuracies. However, the performance for repair@5 is poorer as compared to when

not using the label metadata. One of the reason for this could be that our label representation isn’t

capturing enough information and a better label representation might be needed. Nonetheless, this

approach can be examined further since the difference in performance is very little.

5.4.3 Atomic repair:

MACER++ , even after applying all these optimizations, still suffers from zero shot cases. As

discussed earlier to overcome this problem we tried to break down the repair into elementary
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Repair Accuracy
K = 1 K = 5

MACER++ 72.1 83.7
DECAF 73.4 82.7
Naive re-ranker using label features 73.2 83

Table 5.6: Effect of using Label features with MACER++

operations. Each elementary operation is characterized by an elementary class. After generating

the data (as discussed in section 3.7), we found approximately 600 elementary classes. Applying

the method discussed in section 3.7, this new approach gave an accuracy of 50.2% on the single

line data. Even though this is considerably less than what MACER++ achieves, its still has a lot

of room for improvement. In theory, this method should perform at least as good as MACER++

. This is because all the repair classes formed by MACER++ are some combination of these

elementary repair classes. The reason for the sub optimal performance of this method could be:

• Improper search method: As discussed earlier we use BFS to search the search tree, but

some other search method might perform better.

• Need for better feature encoding: Using BoW type of features might not be powerful enough

to train the 3 neural networks and we might need to experiment with more sophisticated

methods.

5.5 Priority results

F-score Accuracy
MLKNN 37.75 90.1
Balanced RFC 42.07 87.14
Balanced RFC + label propogation 49.4 88.51

Table 5.7: Comparison of using different methods for label
tagging

We tried 3 different algorithms for the label tagging problem. We report the performance in

terms of accuracy as well as F-score. Considering a metric like F-score is important because the

data suffers from a class imbalance problem especially for the rare labels.

The first algorithm is Multi-label k Nearest Neighbours (MLKNN) [17]. This algorithm is an

adaptation of the k nearest neighbour algorithm for multi label classifciation problem. Though

this method gives a high accuracy, it suffers from a low recall and hence a low F-score.

The other method is to use a balanced Random Forest Classifier. This method uses a traditional

Random Forest Classifier but uses techniques like under-sampling and over-sampling to deal with

class imbalance problem. Finally, to better utilize the large number of unlabelled example, we

pair the Balanced Random Forest Classifier model with Label Propagation explained earlier and

as shown in the Table 5.7, this gives use the best performance.
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Conclusion

In this thesis we present MACER++ which proposes various optimizations over MACER [5].

Table 5.2 shows that these optimizations give a significant improvement in performance over the

base pipeline. Also, Figure 5.2 shows that our method perform significantly better on rare repair

classes. Moreover we explore the use of labels metadata to provide additional information which

can be an interesting area to look at for further improvements.

MACER++ also proposes a novel synthetic data generation method which can target specific

errors and generate examples for them. This can help with few shot cases where the amount of

training data is very low. We also explore the concept of atomic repair which can potentially work

on zero shot cases which the current pipeline fails to repair.

We also propose an algorithm that labels the given programming problem with tags indicating

the skills required to solve these problems. The algorithm uses label propagation to learn not

only from labelled examples, which are scarce, but also from unlabelled examples. As shown in

companion thesis, this algorithm can help create tools which can be of great help to tutor’s and

TA’s.
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CHAPTER 7

Appendix

7.1 Labels used in PRIORITY:

1. Difficulty [1,2,3,4,5]

• 1. Very easy

• 2 : Easy

• 3 : Medium

• 4 : Difficult

• 5 : Very difficult

2. Terminal IO [ Basic, Advanced ]

• Basic : simple IO with various data-types, use of escape sequences

• Advanced : pretty patterns/word art/non-trivial formatting, format specifiers e.g. %5.4f
or %0.2e, heavily formatted input e.g. (%d-%d-%d) to input (02-12-89)

3. Arithmetic [ Basic, Advanced, Bit ]

• Basic : simple arithmetic operations (+,-,*,/,%,++,–), expressions, bracketing

• Advanced : mixed type operations (e.g. long+int), explicit typecasting, math.h

• Bit : use of bit-wise operators, left/right shift, bit masks

4. Conditionals [ Basic, Switch, Advanced, Flag ]

• Basic : simple if/if-else statements, relational and logical operators

• Switch : use of switch statements

• Advanced : use of nested conditionals, ternary statements

• Flag : use of flags e.g. isSorted, isFirstIteration

5. Loops [ Basic, Advanced, In-variants ]

• Basic : simple use of for, while, do-while loops

• Advanced : nested loops, use of break/continue, use of infinite while loops e.g. while(1)...
and loops with empty headers e.g. for(;;)...

• In-variants : Use of partial sums, running counts, running products and others

6. Arrays [ Basic, Advanced, Memory ]

• Basic : 1D numeric arrays, creation, traversal, modification

• Advanced : 2D or nD arrays

• Memory : memory management using sizeof, malloc, calloc, realloc, free, stdlib.h

7. Pointers [ Basic, Advanced ]

• Basic : referencing, dereferencing, pointer arithmetic

• Advanced : arrays of pointers, pointers to pointers
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8. Char-String [ Basic, Advanced ]

• Basic : character IO, character arithmetic, string IO, NULL, EOF

• Advanced : sub-string manipulation, strings and pointers, string.h

9. Functions [ Basic, Advanced ]

• Basic : one or more scalar arguments and scalar return

• Advanced : pointer/reference/array arguments, pointer/reference/array return

10. Structures [ Basic, Advanced, DS ]

• Basic : storing user input in structures, arrays of structures

• Advanced : pointers to structures, nested structures

• DS : use/implementation of data structures e.g. linked list, stacks, (circular) queues,
trees, graphs possibly using struct, or even using arrays

11. Algorithms [ DC, Recursion, Greedy, DP ]

• DC : divide and conquer, bisection search etc

• Recursion : self/mutual recursion

• Greedy : greedy algorithms

• DP : dynamic programming
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