
Automated Feedback and Grading for Programs

in Introductory Programming Courses

A thesis submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Ziyaan Dadachanji

Roll Number: 14111048

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

May, 2016

iii

ABSTRACT

Teaching introductory programming has been a challenge at the undergraduate

level. The introductory programming course conducted at IIT Kanpur uses a software

system called Prutor. It is a system developed to facilitate effective problem solving

and provide individual feedback to students. During the course we noticed that

students struggle with simple compile-time errors and hence are not able to solve

the problem. Good feedback is essential to help speed up the learning process. Also,

grading is done with the help of teaching assistants (TAs). This is a time consuming

task and prone to inconsistencies. It is important to maintain the quality of grading

as it serves as a measure to track the performance of a student.

In this thesis we present a system that will automatically provide feedback to

students and automatically grade their solutions. Our feedback is in the form of

simple suggestions with examples to explain the compile-time errors made by students.

We studied the grading policies commonly set by instructors and decided the features

to be used by our automated grading system based on these findings. We show

that the automated feedback system helps students more than the feedback given

by the compiler. Additionally, we show that the automated grading system works

comparable to human TAs. It can also be used to detect inconsistencies in TA

grading.

Dedicated to my family

Acknowledgements

I would like to sincerely thank my thesis supervisor Dr. Amey Karkare for his

continuous help and support in the completion of this thesis. He always provided

prompt suggestions and guided us towards our goal. I would like to extend my

gratitude to my thesis co-supervisor Dr. Arnab Bhattacharya for his help and

support during the work on this thesis. This work would not have been completed

without their guidance.

I would like to thank a few people who have been very helpful during the course

of this thesis.

Praveen Kumar Singh with whom I worked throughout this thesis. Without him

this thesis would not have been possible.

Rajdeep Das for helping me with any issues with Prutor and guiding me in the

integration of our system with it.

Umair Z Ahmed for his help in collecting the data that was useful to us in our

experiments.

Sagar Parihar whose work was helpful to understand the domain of automated

grading.

I would like to thank my family for their motivation and support. Last but

definitely not least, I would like to thank my friends especially Milan who pro-

vided valuable suggestions in many situations, Vikrant, Rishabh, Vivek Anand,

Awanish and many others for their valuable input.

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Idea and Motivation . 1

1.1.1 Automated Feedback . 1

1.1.2 Automated Grading . 2

1.2 Integration with an Online Tutor . 3

1.3 Thesis Overview . 3

2 Background and Related Work 5

3 Automated Feedback 8

3.1 What is Automated Feedback . 8

3.2 Improved Feedback . 9

3.3 Automated Feedback System . 13

3.3.1 Idea of Feedback System . 13

3.3.2 Selecting Errors . 14

3.3.3 Feedback . 19

4 Grading Model 23

4.1 Features for Grading . 26

4.1.1 Number of Test Cases Passed 26

4.1.2 Number of Comments . 27

vii

4.1.3 Indentation . 28

4.2 Additional Checks by Auto Grading Tool 28

4.2.1 Hardcoded Solutions . 28

4.2.2 Relaxed Output . 29

4.3 Idea for Grading System . 31

4.4 Final Score Calculation . 32

5 System Overview 34

5.1 Automated Feedback System Overview 34

5.2 Automated Grading System Overview 36

5.3 Configuration Parameters . 38

6 Experiments and Results 40

6.1 Rating of Suggestions . 41

6.2 Response Time of Grading System 43

6.3 Automated Grading vs Human TA 45

6.3.1 Inconsistency in TA Grading 46

6.3.2 Mismatch in Output . 49

7 Conclusions and Future Scope 50

7.1 Conclusions . 50

7.1.1 Applications . 51

7.2 Future Scope . 51

7.2.1 Improvements to Grading . 51

7.2.2 Automated Repair . 53

References 54

List of Tables

3.1 Data Collected . 14

3.2 List of Selected Errors . 17

3.3 Some Frequent Errors . 22

6.1 Response Time of Grading System 44

List of Figures

3.1 Frequency of Different Types of Errors 18

5.1 Automated Feedback System . 35

5.2 Automated Grading System . 37

5.3 Configuration Parameters Web Page 38

6.1 A Web Page to Rate Suggestions . 41

6.2 Ratings Given to Submissions . 42

6.3 Performance of Autograder Over Events in ESc101 44

6.4 Difference Between TA Marks and Tool Marks 46

6.5 Inconsistencies in TA Grading Compared to Autograding 48

Chapter 1

Introduction

Introductory Programming is a compulsory course conducted for all branches of

engineering in many colleges and universities. Teaching introductory programming

has been a challenge at the undergraduate level. Some colleges use Intelligent

Tutoring Systems for conducting such courses and develop tools to make the learning

experience more user friendly. It is necessary that the students are provided with

good feedback during such courses. The basic form of feedback that students receive

is through compiler messages. This feedback is not very detailed and does not always

help in correcting the student’s mistakes. Grading is another important form of

feedback provided to students indicating their progress during the course. Immediate

grading can be useful to students.

1.1 Idea and Motivation

1.1.1 Automated Feedback

It was observed that at the beginning of an introductory programming course

students find it difficult to understand compiler error messages and hence struggle

to fix even simple syntax errors such as a missing semicolon or a missing parenthesis.

It takes time for students to become familiar with the syntax of various statements.

It takes some students longer than others. As a result a lot of their time is spent in

2

correcting these errors and they are not able to complete their assignments in time.

Some of them try different and random possibilities before arriving at the correct

statement while some remain stuck and need to seek the help of TAs.

Thus, many students do not learn from their mistakes as they blindly follow what

the TA says without trying to understand the compile-time error. Most of the

compiler error messages are unclear to them and there should be a simpler form

of feedback. To this end we have created an Automated Feedback System to give

suggestions for errors in simple statements along with valid and invalid examples to

help the students better understand compile-time errors. The valid examples show

students the correct way to solve the error while the invalid examples show them the

other errors that may occur related to that error. This helps the student learn and

reduces the chance of similar errors in the future.

1.1.2 Automated Grading

Grading is the basic level of feedback to the students in any programming course.

It serves as a measure to track the performance of the students. It is a powerful

motivational tool that drives the students. The maintenance of quality in grading of

introductory programming course assignments requires a significant amount of time

and effort. To this end most universities hire human teaching assistants (TAs). This

policy has two major drawbacks.

1) Turnaround time for grading is very large. A large number of students are

enrolled in introductory programming courses making prompt action impossible.

For example, at IIT Kanpur, where all first-year students (irrespective of the

branches of study) undertake the introductory programming course, the TAs are

unable to provide immediate grading for the submissions.

2) The TAs are post-graduate students who have graduated from different universities.

They may have taken programming courses in the pursuit of their degrees. It

stands to reason that there is a large variation in their knowledge and experience

3

in programming. In spite of specific and detailed instructions and grading policies

being provided to the TAs, it is not possible to avoid human bias thus causing

variability in grading. Consistency in grading similar assignments is compromised.

An efficient and well developed autograding system can either replace TAs grading

process or complement it by pointing out any inconsistencies and biases.

1.2 Integration with an Online Tutor

Prutor (PRogramming tUTOR) [Das15] is a software system for teaching and

conducting introductory programming courses. It was designed and developed by

Rajdeep Das under the guidance of Dr. Amey Karkare at the department of Computer

Science and Engineering at IIT Kanpur. Prutor was developed to facilitate effective

problem solving and to provide feedback to students individually. It is a valuable

tool for educationists who can use this system to collect data and help them to

understand various patterns in the learning process of students.

ESc101: Fundamentals of Computing is an introductory programming course

conducted at IIT Kanpur for all branches of engineering. It uses Prutor to teach

the students introductory programming. All the assignments and lab exams are

conducted on Prutor. It logs a large amount of data related to students’ assignments,

exams, marks awarded, TA grading tasks, compilation errors, etc. This has given us

a lot of real world data to work with. Prutor also provides us with a rich platform

to test our system.

1.3 Thesis Overview

The outline of the thesis is as follows:

• Chapter 2: Related Work

This chapter describes the earlier work that has been done related to our work.

4

• Chapter 3: Automated Feedback

This chapter describes our feedback system. It consists of our ideas and

motivation along with the methods used to create the system.

• Chapter 4: Automated Grading

This chapter describes the various features that have been used in our auto-

grading tool along with the reasons of inclusion and methods of calculation.

• Chapter 5: System Overview

This chapter describes how our tool has been integrated with Prutor [Das15]

and its overall functioning.

• Chapter 6: Experiments and Results

This chapter describes the experiments we have performed to evaluate our

system and the results we obtained.

• Chapter 7: Conclusion and Future Scope

This chapter concludes our thesis and describes a few points that have strong

potential for future work.

Chapter 2

Background and Related Work

This chapter consists of a brief description of the earlier work that has been done

related to our work. We have done our research on the related work before beginning

with implementing our system.

A Platform for Data Analysis and Tutoring For Introductory Programming [Das15]

created by Rajdeep Das at IIT Kanpur, has provided us with a platform which allows

us to integrate feedback tools to run in introductory programming courses. This

intelligent tutoring system is called Prutor (PRogramming tUTOR) [Das15] .

Prutor was developed to facilitate effective problem solving and to provide

feedback to students individually. It is very useful to students, instructors and

developers. Without this system, it would have been very difficult to get such rich

real world data on which we could test our system.

Automated Grading Tool for Introductory Programming [Par15] created by Sagar

Parihar used different features to grade students submissions. The features used are

number of test cases passed, time taken by the student and the fraction of successful

compilations made by the student. This tool gave a real number from 0 to 1 which

when multiplied by the maximum marks of the problem gave the score that should

be awarded to students.

6

Brenda et al. [CKLO03] studied the implementation of an automated grading

system called Online Judge. It is a simple application that evaluates the student’s

submissions on a set of test cases taking into consideration memory and time limits.

A submission is correct if its output matches the pre-specified answers. The efficiency

of a submission is determined by the ability of the program to produce its output

within the memory and time limits.

Impact of auto-grading on an introductory computing course [SBL+13] presented

a web-based framework called Bottlenose. On receiving students submissions, it

provides immediate feedback. Students can use this feedback to improve their

submission and re-submit their code unlimited times before the deadline. They

observed that the number of submissions made by students increased with this

system which shows that students used this feedback to improve their submissions.

Sumit Gulwani, Ivan Radicek and Florian Zuleger authored Feedback Generation

for Performance Problems in Introductory Programming Assignments [GRZ14] where

they proposed and implemented a system that would automatically provide a list of

repairs to students submissions. Different algorithmic specifications for each problem

are required at the beginning and using these it tries to compare the students

submission to see which specification is similar and accordingly gives feedback. It is

important that different methods of solutions require different feedback.

Rishabh, Sumit and Armando presented a system that automatically provided

feedback for programs in introductory programming courses [SGSL13]. This system

required a reference implementation of the problem and an error model which

consisted of potential repairs to common errors. Using this, it would provide feedback

to the students in the form of minimal repairs to their solutions that are incorrect.

Compiler Error Messages: What Can Help Novices? [NPM08] authored by Nien-

altowski, Pedroni and Meyer consists of a study conducted involving two groups

of students. They used three different styles of messages and found that messages

7

which are more detailed would not necessarily help in understanding errors but their

location and structure was more important.

On Compiler Error Messages: What They Say and What They Mean [Tra10]

offered an analysis of the problem of cryptic compiler error messages and how this

makes it difficult for beginners to learn programming quickly.

Sumit Gulwani, Ivan Radicek and Florian Zuleger [GRZ16] presented a method

for generating feedback automatically. They first clustered the correct submissions

of students and used these clusters to generate specifications. When presented with

an incorrect submission, they automatically produced the minimal repair for the

submission by running a repair procedure against all specifications.

Sahil and Rishabh [BS16] presented a method that would generate repair feedback

for compile-time errors automatically. They used Recurrent Neural Networks to

model token sequences that are syntactically valid. They used this model to predict

token sequences that can repair the compile-time error. This sequence would then

replace the token sequence or be inserted at the position of the error.

After this research we designed and developed our Automated Feedback and

Grading System using different methods.

Chapter 3

Automated Feedback

3.1 What is Automated Feedback

Feedback is an essential part of teaching programming to students. A system

which provides good feedback is definitely better than a system which does not. If

a system gives good feedback it makes it easier for the student to understand his

mistakes. The basic form of feedback in an introductory programming course is

through compiler messages. The compiler will give a list of errors and warnings if

there are any errors or warnings in the code. This can be used by the student to

debug his code and arrive at the correct solution.

In Prutor [Das15], any standard C compiler can be used. For all our thesis results

we have worked with the data received during the ESc101 course conducted in the

2015-16 odd semester at IIT Kanpur. During this time, the gcc [GCC] compiler was

used to compile students’ programs. The messages given by this compiler are at

times difficult to understand for a student who has just begun programming and

sometimes even for a student who knows basic programming.

In an introductory programming course, students are bound to make several

compile-time errors in the beginning of the course. The compiler messages given

by gcc did not seem sufficient and most students struggled to understand messages

9

for even basic errors like missing semicolon or missing & in scanf statement, etc.

Thus, we found the need to improve the feedback provided to students during the

course. Our goal is to help them understand their mistakes quickly and move on to

solve the problem. The students find it very difficult to proceed with their program

when faced with several compiler error messages. Some of them lose hope of solving

the problem while some waste a lot of time in correcting these errors and still have

trouble correcting them. Due to this, they request TAs for help and this hampers

their learning as they become dependent on the TA to correct their compile-time

errors. Our goal is to provide the student with suggestions / feedback in such a

way that they will need little or no help from TAs in correcting compile-time errors.

They can use this feedback to understand their mistakes and learn from them so

that in the future they do not repeat the same mistakes.

This feedback would be shown to the students immediately when they compile

their code. This would help them in debugging compile-time errors quickly and

continue to solve the logic of the problem.

3.2 Improved Feedback

Our main goal is to improve the feedback given to students. We want them to

spend less time correcting compile-time errors and spend that time in solving the

logic to the problem. We have tried a few methods before arriving at our final

Automated Feedback system.

1) Changed Gcc Compiler to Clang [Cla]

The error messages given by clang were far better in many cases than gcc. gcc

sometimes points to the line after the error and says that there is a mistake before

this but clang points to the line on which the error is present so it makes it much

clearer to students.

10

Example 3.1 Consider the following code with a missing semicolon on line 6.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main() {

5 int a=2;

6 scanf("%d",&a)

7 return 0;

8 }

When the above code is compiled with gcc, we get the following error message:

name.c:7:2: error: expected ‘;’ before ‘return’

return 0;

^

It can be seen that the error is shown on line 7 and the error message confuses

students who are just learning to program as they are not sure if they should put

the semicolon before return or at the end of the line above return.

When the above code is compiled with clang, we get the following error message:

name.c:6:16: error: expected ‘;’ after expression

scanf("%d",&a)

^

;

It clearly mentions that a semicolon is required after the statement on line 6.

This is a basic example to show the difference between the effectiveness of gcc

messages vs clang messages. There are several other cases where clang messages

are much better and simpler to understand than gcc messages.

2) Rewritten Clang Error Messages

Even though clang error messages are better than gcc error messages, it still is

not enough of an improvement to the feedback given to students. Our goal is to

help the students compile their programs easily.

11

Example 3.2 Consider the following code with a missing & in the scanf statement

on line 6.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main() {

5 int a=2;

6 scanf("%d",a);

7 return 0;

8 }

The default clang error message is as follows:

name.c:6:13: warning: format specifies type ‘int *’ but the

argument has type ‘int’ [-Wformat]

scanf("%d",a);

~~ ^

This compiler error wants to tell the student that he has missed an & before the

variable a on line 6. We observe that the error shown can be very difficult for

a student to understand. Thus the student may waste a lot of time trying to

understand this error before requesting a TA for help. We want to make the error

message very simple for the student to understand and correct quickly.

Thus we have rewritten the message as follows:

You might be using a wrong format specifier (%d, %f, etc) OR have

missed an & OR put an & where not required.

scanf("%d",a);

~~ ^

There are several other compile-time error messages that we have rewritten to

help students correct their mistakes quickly.

12

3) Suggestions

From our experience, rewriting error messages is still not enough to help the

students understand their mistakes. There are some cases in which it is easy for

students to understand the rewritten messages but some still seem difficult to

understand. Such cases are to be eliminated. Our aim is to enable the student to

see the feedback from the system and immediately understand what the mistake

is. We have provided examples as well in the feedback so that the student can

understand similar situations where the error may occur and may understand

before hand when faced with the similar error in the future.

This is the basis of our final Automated Feedback System. We give simple

suggestions to the student when they make compile-time errors. Along with the

suggestions, we give a few examples as well so that the student can understand

the compile-time error better. This type of feedback is very useful to the students

as it enables them to understand certain compile-time errors and learn from them

so that in the future they will not repeat such mistakes. This feedback system

has been integrated with Prutor [Das15] and students see the suggestions we have

provided when they compile their program, in addition to the compile-time errors.

Example 3.3 If we look at the rewritten message in Example 3.2, it is still a

little confusing for a student who has just begun programming. Our Automated

Feedback System will give the following feedback for the same error:

Line 6: You have not put an & before ‘a’ in the scanf statement on

this line. Whenever you use scanf to input a value, you must put

an & before the variable (except for pointers and strings).

Examples:

Valid statements:

1. scanf("%d",&a);

2. char str[20];

scanf("%s",str);

13

Invalid statements:

1. scanf("%d",a);

2. char str[20];

scanf("%s",&str);

This suggestion is very simple for students to understand as it clearly says that

the student has missed an & before his input variable ‘a’. There are also a few

examples of input statements with scanf given in the suggestion. This type of

feedback proves to be much better than all of the above methods and thus has

been used in our Automated Feedback System.

3.3 Automated Feedback System

3.3.1 Idea of Feedback System

Compile-time errors are the most basic form of errors made by every student in

an introductory programming course. Once the student is confident of the syntax

of statements in C, it is easier for him to code. However, it is very difficult for the

students to understand the feedback given by the compiler due to which they get

stuck and are not able to solve the problem. Without correcting compile-time errors

a student cannot possibly complete his program. Once the compile-time errors are

corrected, a student can comfortably think of the logic of the program. In case of

compile-time errors we want to make it as easy as possible for students to correct

them.

We want to make the students understand the errors quicker and learn from them

so that they do not repeat them in the future. If the student sees simple feedback

which they are able to understand it provides a motivation factor to learn. The

simpler the feedback, the easier it is for students to understand. Our idea behind

14

the feedback system is that we provide easy to understand messages with examples

so that the student reading them can proceed easily to correct his mistakes.

3.3.2 Selecting Errors

In the introductory programming course ESc101 there are a large amount of

compilation errors made by students throughout the duration of the course. During

the ESc101 course conducted at IIT Kanpur in the odd semester of 2015-16, there

was a lot of data collected by Prutor [Das15]. A part of this data is summarized in

Table 3.1 below:

Data Quantity

Students 421

TAs 37

Events (Lab + Exam) 14

Problems 106

Assignments 12,374

Compilation Errors 5,14,585

Table 3.1: Data Collected

There were two types of events during the course including twelve labs and two exams.

There were 106 different problem statements during these events. One assignment

corresponds to one problem done by one student. There were 12,374 assignments

which means that these many problems were solved by all the students during the

lab and exam events. During these events, the number of compilation errors made

by the students was 5,14,585. This shows us that there were a tremendous amount

of errors made and we want to reduce these errors.

15

Our goal is to help the students learn from their mistakes so that they do not repeat

them. It is not an easy task to give suggestions for every single compile-time error.

We decided that we would pick the most frequently made errors and give suggestions

for them. We combined the common errors among the 5,14,585 compile-time errors

and sorted them in decreasing order of frequency. We started to give suggestions

for errors which are most frequent. We finally gave suggestions for the top 55 most

frequent errors.

The errors 1 to 55 are listed below along with their frequency.

Sr.No. Error Type Count

1 Undeclared variable 79,347

2 Unused variable 47,467

3 Missing & in scanf

38,086
4 Wrong format specifier in scanf

5 Extra & in printf

6 Wrong format specifier in printf

7
Uninitialized variable OR Use of scanf after using

the variable
35,900

8 Return statement missing 19,899

9 Missing semicolon 18,942

10 Expression result unused 13,971

11 Expected braces to match this (printf statement)
10,124

12 Expected braces to match this (if or for,etc)

13 Missing header file 9,289

14 Integer to pointer conversion 9,243

15 Return datatype missing from function definition 8,340

16 Char type variable with multi character value 7,943

17 Expected } 7,432

16

Sr.No. Error Type Count

18 Implicit declaration of function ‘X’ is invalid 7,352

19 Use of ‘=’ instead of ‘==’ 6,977

20 Pointer to integer conversion 5,465

21 Extra brace / parenthesis 5,364

22 More ‘%’ conversions than data arguments 4,341

23 Declared as variable, not array / pointer 4,181

24 Invalid format specifier in scanf 3,879

25 Expected semicolon in for statement 3,863

26 Array index out of bounds 3,774

27 Empty body of if, for, while, switch 3,632

28 More data arguments than ‘%’ 3,535

29
Variable ‘X’ is used uninitialized whenever ‘Y’

loop exits
3,515

30 Incorrect spelling of declared variable 3,408

31 Invalid operands to binary expression 3,320

32
Use of . operator in place of → operator in refer-

ence type pointer variables
2,878

33 Redefinition of variable 2,430

34 Function definition is not allowed here 2,426

35 Use of ‘==’ instead of ‘=’ 2,416

36 Expression is not assignable 2,248

37 Size missing in declaring array 2,188

38 Too few arguments to function call 1,932

39 Missing terminating character (’ or ”) 1,930

40 Void function ‘X’ should not return a value 1879

17

Sr.No. Error Type Count

41
Implicit conversion from ‘X’ to ‘Y’ changes value

from A to B
1,731

42 Array subscript is not an integer 1,680

43 No member named ‘X’ in ‘Y’ 1,580

44 Expected ‘(’ after if/for/while/switch 1,354

45 ‘&&’ within ‘||’ 1,089

46 Cannot dereference non pointer variable 1,064

47
Use of → operator in place of . operator in non-

pointer variables
1,042

48 Array type ‘X’ is not assignable 1,005

49 Use of logical ‘||’ with constant operand 953

50
Invalid suffix ‘X’ on integer constant OR Invalid

digit ‘X’ in decimal constant
910

51 Assigning to ‘X’ from incompatible type ‘Y’ 871

52 Multiple unsequenced modifications to ‘X’ 818

53 Too many arguments to function call 574

54 Header file not found 553

55 Non-void function ‘X’ should return a value 341

56 Others < 300

Table 3.2: List of Selected Errors

X,Y,A,B are the actual variable name, function name, etc in the error statements.

The total count of errors for which we are giving suggestions is 4,04,848. This means

that we are giving suggestions for 78.67% of the total compilation errors made by

students.

18

100 1,000 10,000 100,000

Others

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

11,12

10

9

8

7

3,4,5,6

2

1

Error Frequency (Log Scale)

E
rr
or

T
y
p
e

Figure 3.1: Frequency of Different Types of Errors

19

The error numbers mentioned in Figure 3.1 correspond to the errors mentioned

in Table 3.2. We can see that these errors are more frequently occurring than the

others. Thus, we have chosen to give suggestions for these errors. It makes sense to

choose these errors as students can learn from these most common mistakes. Our

suggestions are simple statements which are easy to understand.

3.3.3 Feedback

Our tool gives simple suggestions for the most common compile-time errors. Our

suggestions are of the following format: First we rewrite the compiler error messages

into simple statements. Along with this we give examples of two types.

• Valid: to explain the error so the student can understand how to correct it.

• Invalid: to show what must not be done in cases similar to the error.

Giving both valid and invalid examples makes it very easy for the student to

understand the error and correct it quickly. The idea of including invalid examples is

that the student can understand what are the other possible errors that can be made

related to the current error. Our feedback to the students is much simpler than the

default feedback from the compiler. It is displayed in Prutor [Das15] beside the code

in a very ideal position so that students can immediately see it without having to

navigate anywhere. They find it much easier to correct their compile-time errors

looking at the detailed suggestions provided by our Automated Feedback System as

compared to the compiler feedback.

Example 3.4 A few samples of our suggestions for the most frequent errors messages

are presented in Table 3.3.

20

Error Type: Undeclared Variable

Compiler Error Message:

use of undeclared identifier ‘a’

printf(“%d”,a);

∧
Suggestion:

You have not declared the variable ‘a’ that you have used on this line. Please

declare it before using it. All variables must be declared before you can use

them.

Eg:

Valid:

int a=3,b=6,count=0;

scanf(“%d”,&count);

count=a+b;

printf(“%d”,count);

Invalid:

int a=3,b=6;

scanf(“%d”,&count);

count=a+b;

printf(“%d”,count);

Here variable ‘count’ has not been declared. This is not allowed.

Error Type: Missing & in scanf

Compiler Error Message:

format specifies type ‘int *’ but the argument has type ‘int’ [-Wformat]

scanf(“%d”,b);

˜̃ ∧
Suggestion:

You have not put an & before ‘b’ in the scanf statement on this line. Whenever

you use scanf to input a value, you must put an & before the variable (except

for pointers and strings).

Eg:

Valid statements:

1. scanf(“%d”,&a);

2. char str[20];

scanf(“%s”,str);

Invalid statements:

1. scanf(“%d”,a);

2. char str[20];

scanf(“%s”,&str);

21

Error Type: Wrong format specifier in printf

Compiler Error Message:

format specifies type ‘double’ but the argument has type ‘int’ [-Wformat]

printf(“%f”,b);

˜̃ ∧
%d

Suggestion:

You have used an incorrect format specifier while printing the value of ‘b’.

Integer variables require %d

Float variables require %f

Char variables require %c, etc.

Eg:

Valid statements:

1. int a;

printf(“%d”,a);

2. float b;

printf(“%f”,b);

Invalid statements:

1. int a;

printf(“%f”,a);

2. float b;

printf(“%c”,b);

Error Type: Missing semicolon

Compiler Error Message:

expected ‘;’ after expression

printf(“%d”,a)

∧
Suggestion:

You are missing a semicolon(;) at the end of the statement on this line. All

statements in C must end with a semicolon.

Eg:

Valid statements:

1. int a;

2. scanf(“%d”,&a);

Invalid statements:

1. int a

2. scanf(“%d”,&a)

22

Error Type: Uninitialized variable / Use of scanf after the variable

Compiler Error Message:

variable ‘b’ is uninitialized when used here [-Wuninitialized]

printf(“%d”,b);

∧
Suggestion:

You have not initialized the variable ‘b’ before you are using it on this line. The

variable ‘b’ has been declared on Line 3. Please go and initialize the variable

there with something like ‘b=0;’. All variables must be initialized before they

can be used.

Eg:

Valid:

int n=0,sum;

sum=n+3;

Invalid:

int n,sum;

sum=n+3;

It is possible that you may have taken input from the user using scanf for this

variable after using it by mistake.

For example you are calculating the area of a rectangle as area=length * breadth

and after this you are asking the user to input the values of length and breath.

int l,b,area;

area=l*b;

scanf(“%d%d”,&l,&b);

The correct code would be:

int l,b,area;

scanf(“%d%d”,&l,&b);

area=l*b;

Table 3.3: Some Frequent Errors

Chapter 4

Grading Model

Grading is the key aspect of evaluating a student’s performance in any course. In

an introductory programming course like ESc101, there are around 40 TAs who are

given the job of manually grading students’ weekly programming assignments. This

may bring about some inconsistencies in the grading as some TAs may deduct one

mark for a certain mistake while some may deduct two to three marks for the same

mistake.

Further, there may be some biased grading as well. Biased grading means that

some TA may tend to give a particular student extra marks in spite of his code

being incorrect or lesser marks in spite of his code being correct. To overcome this,

we have created an auto grading tool that will evaluate the students assignments

according to certain common features that follow the instructor’s grading policies.

According to the grading policy of the instructor, we have chosen features that will

enable our tool to perform like an actual human TA.

The features are enlisted and explained below.

1) Number of test cases passed

During the introductory programming course, we noticed that the instructor

gives a lot of weightage to passing of test cases while grading a program. Thus,

a test case is one of the most important features of any programming grading

task. If a program passes few or all test cases it means that the student is doing

24

something correct while a program which does not pass any test cases means

that the student is making a mistake. Passing test cases is the most basic way of

deciding if a particular problem is correct or not.

In Prutor [Das15] there are two types of test cases in every programming assign-

ment namely Hidden and Visible. The instructor normally gives extra importance

to passing of hidden test cases as compared to passing of visible test cases. We

have followed this grading policy and our tool has different weightage for hidden

test cases and visible test cases.

i) Visible Test Cases

These normally cover the basic and simple cases of any program. We have

given these slightly less weightage than the hidden test cases.

ii) Hidden Test Cases

These are mostly the boundary cases of a program. They are kept hidden

from students so that they can think about solving the problem as a whole

without looking at the test cases. Passing these test cases shows that the

student has understood the problem and thus we have given higher weightage

to these type of test cases.

2) Comments

When a student writes comments in his program it becomes easier for the TA

grading it to understand what the student has done in his code. Comments are

used to explain non trivial parts of code. On revisiting the code later in the

course, comments will help the student remember what he has done in his code.

All instructors insist on the students writing comments.

3) Indentation

The third feature is the indentation of the code. Every student is expected to

indent his code. Indentation makes a program readable and easier to understand.

It also makes it easier for TAs to read the students’ submissions and also makes it

25

easier for a student to read his code later during the course. Also, when preparing

for exams a properly indented code will help the student to go through it quickly.

4) Time to Solve

The time taken by the student to solve the problem is inversely proportional to

the marks the student is awarded. If a student spends less time he may be given

more marks than a student spending more time to solve the problem.

5) Successful Compilations

The number of successful compilations out of the total compilation attempts is

directly proportional to the marks given to the student. If a student makes less

compilation errors it would mean that he has understood concepts better and he

may be rewarded for it as opposed to a student making many compilation errors.

6) Program Run-time

The time taken by a program to evaluate is also something that can be considered

while awarding marks to students. If a student has written an optimal code taking

less execution time he may be rewarded for it accordingly.

7) Memory Requirement

The memory requirement of a program similarly can be considered where a

student’s program which takes less memory will be awarded higher marks than a

program which requires more memory.

We have chosen the following three features as the basis of our grading tool:

• Number of Test Cases Passed.

• Number of Comments

• Indentation

26

The reason for choosing these features and not others is that they are directly

related to the instructor’s grading policy. The other features are appropriate in

programming competitions but in an introductory course, the instructors do not

grade according to the time taken by a student, successful compilations, memory

requirement, program run-time, etc.

We have chosen weights according to the most common grading policy chosen

by the instructor. We also give the instructor full freedom to change these weights

according to the problem statement. This makes the tool more efficient and flexible

to use.

4.1 Features for Grading

4.1.1 Number of Test Cases Passed

We evaluate the program on the test cases given by the instructor. The test cases

consist of input and expected output. On evaluating the program on these test cases,

we determine if the output generated by the student’s program matches the expected

output. If yes then we say that the program has passed the corresponding test case

and if not, then we say that the program has not passed the test case. We find the

total number of test cases that are passing out of the total number of test cases

provided by the instructor. We calculate two values here:

• Tv indicating the number of visible test cases passing out of the total number

of visible test cases available.

Tv =
Total no.of visible test cases passing

Total no.of visible test cases

• Th indicating the number of hidden test cases passing out of the total number

27

of hidden test cases available.

Th =
Total no.of hidden test cases passing

Total no.of hidden test cases

Values of Tv and Th lie between 0 and 1 both inclusive.

4.1.2 Number of Comments

We captured the number of words used in comments by a student relative to the

total size of the program. We did not check the content of the comments and their

meaning. However, this captured the main idea behind expecting a student to write

comments in his code. We calculated the comment score (CS) as follows

CS =
No.of words in comments

No.of words in program including comments

Value of CS lies between 0 and 1 both inclusive.

We used crowdsourcing to find out different thresholds and assigned marks accord-

ingly. We had a few TAs manually grade problems for comments and calculated CS

for each of these problems. This activity was very helpful as it allowed us to find

very accurate thresholds. According to the marks given by TAs we found out the

final marks for comments (C) that our auto grading tool should award.

C =





0 if 0 <= CS < 0.14

0.5 if 0.14 <= CS < 0.22

1 otherwise

C=1 means that the student should be awarded full marks for comments, C=0.5

means half the marks should be awarded and C=0 means no marks for comments

should be awarded to the student.

28

4.1.3 Indentation

To check if a student has properly indented his code we checked a few parameters.

Firstly, we counted the number of blocks (functions, loops, conditions, etc) that

are present in the program. Secondly, we calculated the number of mistakes in

indentation made by the student (IS). The mistakes consist of any cases where the

student is deviating from the normal indentation guidelines followed.

IS =
Mistakes made

No.of blocks

If No.of blocks = 0 it implies that there is no code, so we are setting IS = 1.

Using the value IS calculated above and a similar crowdsourcing activity as in the

case of comments, we decided the marks that the student should get for indentation

(I) as follows:

I =





1 if 0 <= IS < 0.5

0.5 if 0.5 <= IS < 0.75

0 otherwise

I=1 means that the student should be awarded full marks for indentation, I=0.5

means half the marks should be awarded and I=0 means no marks for indentation

should be awarded to the student.

The four values Tv, Th, C, I are used in calculating the final grade.

4.2 Additional Checks by Auto Grading Tool

We have carried out a few additional checks on the students programming assignments

to improve the results of our auto grading tool.

4.2.1 Hardcoded Solutions

Many times some students hard code certain programs which have binary output

i.e. the output of the program is either YES or NO. In such cases, if a student prints

29

YES for all inputs, he may pass around 50% of the test cases and similarly if he

prints NO for all inputs, he may pass around 50% of the test cases. This will lead to

him getting 50% of the marks that are awarded for passing of test cases.

To prevent this, we have performed an additional check on the output of the

student’s program in which we are checking if the output is the same for all inputs.

If the student is always printing the same output (say YES) for all the inputs, then

we are flagging this as a hardcoded case. In such a situation, the student will be

awarded zero marks. This check prevents some students from being given marks

when it is not deserved. A person hardcoding his solution should not be given more

marks than a person who has made an honest attempt but failed to pass any test

cases.

4.2.2 Relaxed Output

It is also quite common for some students to solve the problem correctly but while

printing the output they may print some extra characters along with the expected

output. The actual output may be close to the output expected by the instructor.

For example, the expected output for a particular input is “25.65” and the student

prints “The average is 25.65”. Such cases can be considered and the student should

be awarded some marks for this.

We have given the instructor the option to choose whether he wants to give

students marks in such cases. There are a few cases of relaxed output which we have

taken into consideration.

• Case Insensitive

If the output of the student’s program and the output expected by the instructor

are same on ignoring case then we can award him marks for the corresponding

test case.

30

Example 4.1 If expected output is “YES” but student is printing “yes” or

“Yes” or something which is only different in the case then we are ignoring case

and indicating that the student has passed the corresponding test case.

• Order Independent

If the student has to print a list of values but the order in which he has printed

them is different from the order expected by the instructor.

Example 4.2 i) Expected output is a set of all prime numbers from 1 to

100 in sorted order but the actual output of the student is a set of prime

numbers from 1 to 100 in a random order, we are ignoring this and the

student is awarded marks for the corresponding test case.

ii) Expected output is a set of all substrings of a string that are palindromes

and they should be in a particular order (say increasing length) but the

student has printed them in any order, the student will be awarded marks

for the corresponding test case.

• Intermediate Values

It may happen that the student is asked to print the nth term of a series but

he is printing all terms leading up to the nth term as well. This is something

we are considering and awarding corresponding marks to the student.

Example 4.3 Expected output is the 5th term of the Fibonacci series, i.e. “3”

but the student prints “0 1 1 2 3”.

• Extra Characters

In case the student prints extra characters in his output in addition to the

expected output, we are considering this as a simple mistake and awarding

marks for the corresponding test case.

Example 4.4 If the output is “23” and the actual output of the student is

“The result is 23”.

31

• Duplicate Values

Sometimes the student prints the same value twice in his output. It may be

that he has called a function to calculate a value and he is printing it on

returning from the function in the calling function as well as in the function

itself leading to the output being printed twice. This is also a mistake that

can be overlooked and the student can be awarded marks.

Example 4.5 Output expected is “2” but the student prints “2 2”

4.3 Idea for Grading System

The main idea behind choosing these features for grading students programming

submissions is that in an introductory programming course the main goal is for the

student to learn basic programming. The course does not try to make students expert

programmers. At the end of the course it is expected that when given a problem

statement of easy/moderate difficulty, the student can derive the logic and code it.

The time taken and complexity are not as important. As long as the student finishes

the assignment/exam during the lab/exam hours, it is considered as correct. We are

not giving marks to a student if he finishes faster than another student. Similarly,

the number of successful compilations, program run time, memory requirement, etc

have not been considered. However, these are excellent features for programming

competitions.

Thus, number of test cases passed is our most important feature. Passing of test

cases is an indication that the student is heading towards the correct answer. If a

student passes all test cases it means that his code is correct and if he passes no test

cases, it means that his code is incorrect. Partial passing of test cases could mean

that he is heading towards the right solution and thus, he will be awarded partial

marks.

Comments are very essential especially in introductory programming courses as they

32

allow the student to explain his code. This helps the TAs grading the solution and

also can be helpful to the students when they revisit their code before exams.

Indentation is a must for any programmer. An indented code is nice to look at,

simple to read and easier to understand.

TAs normally look at these features when grading any solution. Also, instructors

specify these features in the grading policy. However, the weight for each of these

features can be different according to the problem difficulty or whether the program

is part of a lab or exam. We have made provision for the instructor to set these

weights for our auto grading tool so that it can work just like a human TA. Marks

for comments and indentation are only awarded if the student’s code passes a certain

number of test cases because the student shouldn’t be given marks for comments or

indentation unless his code is at least partially correct. This value can be set by the

instructor.

4.4 Final Score Calculation

After we calculated the feature scores on which we are grading the student, we

used a simple weighted formula to calculate the final score (FS).

FS = Tv ∗ wv + Th ∗ wh + C ∗ wc + I ∗ wi

where,

Tv, Th, C and I are the feature scores for number of visible test cases passed, number

of hidden test cases passed, number of comments and indentation respectively.

wv, wh, wc and wi are the weights for the parameters: number of visible test cases

passed, number of hidden test cases passed, number of comments and indentation

respectively.

33

Marks for comments and indentation are only awarded if the student’s code passes a

certain number of test cases (threshold). Thus, our new final score function becomes:

If Total no.of test cases passed > θ

FS = Tv ∗ wv + Th ∗ wh + C ∗ wc + I ∗ wi

else

FS = Tv ∗ wv + Th ∗ wh

where,

θ is the threshold mentioned above.

The value of FS lies between 0 and 1. When multiplied with the maximum marks

of the problem statement, we will get the final marks that is awarded to the student.

The weights mentioned above (wv, wh, wc and wi) can be set by the instructor

according to the problem difficulty or whether the problem is a lab or exam question.

Chapter 5

System Overview

5.1 Automated Feedback System Overview

The automated feedback system is fully integrated with Prutor [Das15]. When

students are programming in Prutor and they hit Compile, they are presented with

a message. This says that the compilation is either successful or that there are

errors/warnings in the program. If there are compilation errors it is up to the student

to correct his program and continue. The normal form of feedback from Prutor is

through compiler messages.

The compiler messages consist of the following details:

• Line number

This is the line number on which the error has occurred.

• Column number

This is the position of the error on the line number mentioned above.

• Type

This states whether the message is an error or warning, etc.

• Message

This is the actual error message given by the compiler.

35

If the compilation of a student’s code is not successful, a list of errors is presented

in the above form. These are not very easy to understand for beginners.

Figure 5.1: Automated Feedback System

Our feedback system comes into play at this time. The list of errors serves as the input

to our system. It is then traversed and simple detailed suggestions with examples

are created for each error in the list. Our suggestions consist of the following:

• Line number

This is the line number on which the error has occurred.

• Explanation of Error

This is a simple explanation of the error made by the student.

• Examples

There are two types of examples given.

– Valid statements:

These are examples consisting of the correct way to write the statement

36

in which the error was made and some other correct ways to write similar

statements.

– Invalid statements:

These are examples of similar errors that a student may make related to

the error made.

After the list of errors is exhausted and we have our suggestions for all the errors,

these suggestions are put into a list. This list is the output of our system. The output

is sent to Prutor where it is displayed to the students as feedback. The suggestions

are displayed beside the code and the students don’t need to click any button to

access them.

5.2 Automated Grading System Overview

Our Automated Grading System has been fully integrated with Prutor [Das15].

When students finish their program in Prutor, they are expected to submit the code.

Once the code is submitted only then it is graded by the TA. If a student does not

submit his code, he will be given zero marks for the corresponding problem. Every

problem has a list of test cases associated with it. These consist of input to the

program and corresponding expected output.

Once the student submits his code, we take this submitted code along with the list

of test cases from Prutor. Our first task is to compile the code. We then get a message

saying if the compilation was successful or not. If it failed, our automated grading

system exits and zero marks are awarded to the student or marks for comments and

indentation are given depending on the instructor. If the compilation is successful,

we evaluate the code on the given test cases. This means that we run the code on

the inputs mentioned in the test cases and see if the output of the code matches the

expected output mentioned in the test cases.

37

After evaluating the code, we calculate the test case score, i.e. the total number

of test cases passing out of the total number of test cases given by the instructor as

explained in Section 4.1.1. We then calculate the comment score, i.e. the number

of comments in the program as explained in Section 4.1.2. Finally we calculate the

indentation score as explained in Section 4.1.3.

Figure 5.2: Automated Grading System

We now perform a few additional checks on the code. First, we check if the

student has hardcoded his solution as explained in Section 4.2.1. Then we also allow

for some relaxed output for the student’s code as explained in Section 4.2.2.

Once we get the above scores, we calculate the final marks that is to be awarded

to the student as explained in Section 4.4. Once this score is calculated it is sent

to Prutor where the instructor can access it. It can also be shown to the student

immediately after he submits his code if the instructor wishes to allow it.

38

5.3 Configuration Parameters

The page in Figure 5.3 has been made for the instructor where he can set certain

key values that correspond to the parameters used by our system.

Figure 5.3: Configuration Parameters Web Page

The parameters are:

1) Weight Parameters

Here the instructor can set the different weightages he wants to give for each of

the below features. They must all sum to 1.

i) Number of Visible Test Cases Passed

39

ii) Number of Hidden Test Cases Passed

iii) Number of Comments

iv) Indentation

2) Minimum Test Cases Required

The marks for comments and indentation can be awarded to a student if his

code passes a certain number of test cases only. The instructor can set this value

accordingly. If this value is zero, then the student will be awarded marks for

comments and indentation irrespective of how many test cases have passed.

3) Relaxed Output

The following cases of relaxed output can be allowed by the instructor. They are

enlisted below and explained in detail in Section 4.2.2.

i) Exact Match

ii) Case Insensitive

iii) Order Independent (int or string)

iv) Intermediate Values

v) Extra Characters

vi) Duplicate Values

Chapter 6

Experiments and Results

All our experiments have been carried out on real world data that we received

from the introductory programming course ESc101 conducted in the odd semester

of 2015-16 at IIT Kanpur. C programming language is used for the whole course.

Labs of around 3 hours are conducted every week by ESc101 for enrolled students

who are assigned programming problems. These students are given few problem

statements to code and their task is to submit solutions to their assignments within

the specified period. The students are allowed to take help from the TAs during

the labs regarding issues with the system and sometimes with trivial errors in the

code. The submitted solutions are then tested against a set of test cases. Finally

the Teaching Assistants (TAs) manually inspect the codes and after considering the

number of test cases passed, judge and grade the submitted solutions by awarding

them marks. Exams carrying much more weightage than the lab assignments are

conducted. The students are not allowed any help from TAs during the lab exams.

Prutor [Das15] gave us access to a large amount of data related to the course in-

cluding assignments, submissions, marks, problem statements, test cases, compilation

errors, grading tasks, etc.

41

6.1 Rating of Suggestions

We did not have access to a live lab to test our feedback system. Thus, we

conducted a crowd sourcing activity with some TAs who had a lot of experience

with helping students during the labs. These TAs have seen students struggling with

simple compiler errors. Most of the times students need to resort to asking the TAs

for help in correcting the errors. Due to this we thought that in the absence of a live

lab, they would be the most suitable to rate the suggestions given by our system.

We created a web page for this purpose. It consisted of the students code, our

system feedback and compiler feedback. The TA can see the code along with the

corresponding compiler errors and our feedback and rate our suggestions on a scale of

0 to 3 depending on how much easier it is to understand the suggestions compared to

the compiler feedback. There is a text field for the TA to enter his rating. Each code

was rated by only one TA. We selected student’s codes that have some compilation

errors as successfully compiled code will not help us in rating our system suggestions.

Figure 6.1: A Web Page to Rate Suggestions

42

We had 8 TAs performing this task and a total of 1,000 submissions which did

not compile successfully were inspected. The TAs rated our suggestions comparing

them to compiler feedback as either 0,1,2 or 3 where

• 0 → wrong/bad suggestions

• 1 → no suggestions

• 2 → some good suggestions and no suggestions for some

• 3 → very good suggestions.

0 1 2 3

0

150

300

450

600

Rating Given by TA

N
o
.o
f
S
u
b
m

is
si
o
n
s

Figure 6.2: Ratings Given to Submissions

The plot in Figure 6.2 shows the number of submissions where the suggestions

were given a rating of 0,1,2 and 3 respectively. We took the average of the rating

given by all TAs and found that the average rating given to our feedback system

was 2.426. This shows that students can benefit a lot from our feedback. This will

help them save time in correcting compiler errors and enable them to correct their

mistakes with little or no help from TAs.

43

6.2 Response Time of Grading System

The response time [Wikb] of a system is the time taken by it to respond / react to

a certain input or request. It should be as fast as possible so that people will want

to use the system. We conducted a few experiments to determine the time taken by

our grading system to grade assignments. During the course, there were twelve lab

events and two exams conducted.

Our system can grade the following events:

1) A single submission

Our grading system takes anything between 56 milliseconds and 309 milliseconds

to grade a single lab submission. This range is due to the fact that some pro-

grams require more computational resources [Wika] than others. Computational

resources include computation time, memory space required, number of steps

required to solve the problem, source lines of code [Wikc], etc. If the source lines

of code are more, then the computational resources may increase thus increasing

the total response time of the grading system. For a single exam submission the

average response time is between 282 milliseconds and 455 milliseconds. This

is slightly higher because exams usually consist of problems which require more

computational resources.

2) All submissions of a particular lab

The time taken to grade each lab differs from each other due to the above

mentioned reasons. We found that it takes 52 seconds to grade lab 2 which

consists of 927 submissions and 4 minutes 7 seconds to grade lab 7 which consists

of 798 submissions. Even though lab 7 has lesser number of submissions, the time

taken to grade is more because the problem statements in lab 7 require more

computational resources than problem statements in lab 2.

3) All submissions of all labs

When run on all labs, the grading system takes 25 minutes 25 seconds to grade

44

submissions of all labs.

4) All submissions of all exams

When run on the exams, the grading system takes 17 minutes 35 seconds to grade

all exam submissions.

Sr.No. Event Time Taken

1 One Submission (Lab) 56 ms - 309 ms

2 One Submission (Exam) 282 ms - 455 ms

3 A complete Lab 52 sec - 4 min 7 sec

4 All Labs 25 min 25 sec

5 Exam 1 12 min 3 sec

6 Exam 2 5 min 32 sec

Table 6.1: Response Time of Grading System

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

100

200

300

400

500

Event

R
e
sp

o
n
se

T
im

e
(m

s)

Event 1-6 : Lab Events
Event 7 : Exam 1 (Mid Semester)
Event 8-13 : Lab Events
Event 14 : Exam 2 (End Semester)

Figure 6.3: Performance of Autograder Over Events in ESc101

45

Figure 6.3 shows how the response time varies from event to event. Some events

in which the problems require students to use data structures like pointers, structures,

etc. require more computational resources and may take longer to grade than others

which require less computational resources. The graph rises substantially during

Exam 1. This could be due to many reasons. The number of test cases during Exam

1 are more than the normal labs so testing on them will take longer time. Also, due

to the lack of help from TAs and friends during the exam, students tend to make

more mistakes / compile-time errors. Thus, a submission which has errors or which

requires a long time to execute, will take a longer time to grade.

6.3 Automated Grading vs Human TA

The main goal of our automated grading system is to make it perform like a human

TA. We want the marks given by our grading system to be comparable to that of a

TA. We conducted the following experiment to compare our results with a TA.

We graded all submissions that compiled from all lab events and recorded some

useful data. There were 6,021 such submissions. The reason for choosing only the

compiled submissions is that our tool does not work well with submissions that do

not compile. Some of the data recorded included:

• Assignment ID

• Max Marks

• TA Score

• Autograder Tool Score

• Difference between TA and Tool Score

The difference ranges from negative of the maximum marks to the maximum

marks for the problem.

We found the number of submissions / assignments for each of the values in this

range of differences and created a plot as shown in Figure 6.4. We noticed that the

46

−20 −15 −10 −5 5 10 15 20

550

1,100

1,650

2,200

Tool Marks - TA Marks

No.of Submissions

Figure 6.4: Difference Between TA Marks and Tool Marks

number of submissions where the difference is zero is the most (2,125). The average

marks given by TA over these 2,125 submissions is 18.5 and the average marks given

by our tool is also 18.5. This shows that our tool gives marks very close to the TA

in such cases where the submission is passing almost all test cases. This decreases

as the difference increases. The plot shows that most of the submissions are in the

difference range -5 to 3 and very few submissions are in the range -20 to -6 and 4

to 20. The ideal case would be to have all submissions in the difference 0 category

but this is very difficult to achieve. There can be many reasons for this difference in

marks between TA and Tool. We analysed this and found two main causes for the

difference.

• Inconsistency in TA Grading

• Mismatch in Output

6.3.1 Inconsistency in TA Grading

Inconsistent grading is very common due to a large number of TAs grading

student’s assignments. Different students having similar solutions will be awarded

47

similar marks by our system but this cannot be guaranteed by human TAs. One

TA may deduct more marks than another for the same error, thus bringing about

inconsistencies. This is not fair to the student who gets lesser marks. In spite of the

instructor’s grading policy being given, this inconsistency occurs. It is very difficult

for the instructor to catch such inconsistencies as he will need to manually inspect

each problem which defeats the purpose of having TAs grading assignments. Our

tool can help the instructor to catch these inconsistencies.

Example 6.1 Consider the following two submissions made by different students

for the same problem. Both are similar and deserve the same amount of marks.

Problem Statement: Write a program to determine if the year given as input is a

leap year or not.

Student 1

1 #include<stdio.h>

2

3 int main()

4 {

5 int a,b;

6 scanf ("%d",&a);

7

8 b=(a%4) ;

9

10 if (b==0) {

11 printf ("Leap Year");

12 }

13 else {

14 printf ("Not Leap Year");

15 }

16 return 0;

17 }

Student 2

1 #include<stdio.h>

2

3 int main()

4 {

5 int y;

6 scanf("%d",&y);

7 if(y%4==0)

8 {

9 printf("Leap Year");

10 }

11 else{

12 printf("Not Leap Year");

13 }

14 return 0;

15 }

[Both submissions were commented well but we have not shown the comments.]

The maximum marks for the problem is 20. When graded by a human TA, student 1

was given 19 marks and student 2 was given 5 marks. On looking at the submissions

in Example 6.1 above we can see that the submissions are exactly same and both

48

students should be given the same marks. This inconsistency is very unfair to student

2 and biased towards student 1. This sort of grading is not acceptable. Our grading

system gives 12 marks to both students. Not only does our system grade fairly but

also can help in catching such inconsistencies made by human TAs.

Due to the above mentioned inconsistency, we began to analyse further. We

selected 10 problem statements from all labs and created 10 sets corresponding to

the problem statements. Within each problem set we selected a group of solutions

which are similar and deserve similar marks. The number of submissions selected in

each set was between 10 and 20. We then found the standard deviation of our tool

and standard deviation of TA and plotted the results in Figure 6.5 below.

1 2 3 4 5 6 7 8 9 10

0

1.5

3

4.5

6

Problem ID

S
ta

n
d
a
rd

D
e
v
ia
ti
o
n

Tool

TA

Problem 1-10 : Problem Sets Chosen from Different Labs

Figure 6.5: Inconsistencies in TA Grading Compared to Autograding

Problem IDs 1 to 10 correspond to the different problem statements that were

selected from all labs. The plot in Figure 6.5 above captures the inconsistencies in

TA grading. It can be seen that in each of the problem sets, the standard deviation

of TA grading is much more than that of our grading system. As the solutions in

each set are similar, the standard deviation should be lower. This shows that the

49

inconsistency in TA grading is high. The instructor can use this data to identify

such TAs and thus make the grading process fairer.

6.3.2 Mismatch in Output

Our system is allowing for certain relaxation in the output as explained in Section

4.2.2. However, there are still a few cases of relaxed output which we have not

considered. These are little difficult to identify for an automated system and they

may lead to identifying an incorrect solution as correct. However, human TAs can

identify such cases and give marks after deducting a small penalty for the mistake.

Example 6.2 Consider the following program in which the student has to calculate

the distance between two points.

1 #include<stdio.h>

2 #include<math.h>

3

4 int main(){

5 float x1,x2,y1,y2,distance;

6 scanf("%f",&x1);

7 scanf("%f",&x2);

8 scanf("%f",&y1);

9 scanf("%f",&y2);

10 distance=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));

11 printf("The distance between (%.3f,%.3f) and

12 (%.3f,%.3f) is\n%.3f.",x1,x2,y1,y2,distance);

13 return 0;

14 }

Consider the input to the program as “-1 -2 -1.2222 -3.2222”. The output of this

program is expected to be in the format “The distance between (-1.000,-1.222)

and (-2.000,-3.222) is 2.236.” but the output of this code is “The distance between

(-1.000,-2.000) and (-1.222,-3.222) is 2.236.”. It can be seen that the student has

interchanged the values -1.222 and -2.000. He has also put an unnecessary new line

character before printing the final value. Such a difference in the outputs is difficult

to capture. In these cases, our tool will award much lower marks than the TA leading

to an increase in the absolute difference of marks between TA and Tool.

Chapter 7

Conclusions and Future Scope

7.1 Conclusions

This is the final chapter of our thesis. We have achieved our aim of designing

and developing an Automated Feedback and Grading System that is fully integrated

with Prutor [Das15] and can be used during introductory programming courses like

ESc101 conducted at IIT Kanpur.

After performing our experiments the results show that our grading system works

comparable to TAs. It helps to catch inconsistencies in TA grading as well. In

situations where the actual and expected output do not match or when the submission

does not compile, our grading system does not work very well. From Section 6.1,

we see that our suggestions, given as feedback, when a student tries to compile

his program are very helpful as they clearly explain any compilation error that the

student may have made.

Prutor is also used to conduct programming examinations for PhD and M.Tech.

admissions at IIT Kanpur. During these exams the grading policy is normally

completely based on passing of test cases. Our system would be perfect for grading

such exams and there would be no need for human TAs. We can set the weights

for comments and indentation to be zero so that the system grades only based on

passing of test cases.

51

7.1.1 Applications

There are several ways in which our Automated Feedback and Grading System

can be useful and add functionality to Prutor [Das15].

1) The instructor can grade a particular assignment by simply clicking a button on

the grading page.

2) There is a web page for the instructor as shown in Figure 5.3 where he may

change parameters for different labs / exams according to the difficulty of the

problems or according to his needs. There is another option to grade all labs or

all exams together or grade all submissions for a particular lab.

3) The details of the grading can be used by the instructor to inspect the grading of

TAs and find inconsistencies therein.

4) The marks given by the tool can be used as suggestions to the TA while grading.

5) The marks can be shown to the students during the labs, as immediate feedback

once the code is submitted. As opposed to giving the actual marks, we can show

a performance rating, i.e. a score on a scale of 1 to 5 where 1 indicates a wrong

solution and 5 indicates a correct solution.

We have integrated all the above features with Prutor. They can easily be turned on

or off according to the instructor’s need.

7.2 Future Scope

We will discuss the points that have strong potential for future work.

7.2.1 Improvements to Grading

At the moment our grading model is looking at test cases, comments and in-

dentation to decide the marks to be awarded to the student. These are the most

52

appropriate features to consider while grading programs in introductory programming

courses as most instructors specify these parameters in their grading policies. We

also check for hardcoded outputs and allow for a certain amount of relaxation in the

actual output of the student.

There is still scope to improve the performance and accuracy of the automated

grading system.

1) In addition to the number of comments written by a student, we can check for

meaningful comments while awarding marks for comments.

2) Sometimes the instructor may specify in the problem statement that it is com-

pulsory to use a certain data structure or program construct. If the student has

not followed this instruction, few or zero marks will be awarded. There can be

a check for this so that if a student has not used the required data structure or

construct, he would be penalized.

3) There are certain times when the instructor specifies that certain header files

must not be included in the program. A check for this can be done and a penalty

can be imposed according to the instructor.

4) The number of test cases per problem can by increased to catch students attempt-

ing to hardcode their solutions. If the student is passing 3 out of 6 test cases

by hardcoding the output he will get 50% of the marks for passing test cases

feature. But if we increase the test cases to around 50 - 100, then the fraction of

the passing test cases will reduce tremendously and thus the marks awarded to

the student will be significantly reduced.

5) There are certain situations in which the student’s output is correct but it is not

exactly matching with the output expected by the instructor. These relaxations

in output can be added.

6) If a student’s submission does not compile, our system gives zero marks or a

few marks for comments and indentation depending on the instructor. We can

53

implement a tool that corrects these compilation errors and then tries to grade

the submission.

7.2.2 Automated Repair

Our automated grading system faces a challenge when programs do not compile

successfully. It awards zero marks to the student or a few marks for comments

and indentation in such cases depending on the instructor. In an introductory

programming course this might not be a good method as a student might be solving

the logic to the problem correctly but it is not compiling and if so zero marks is

not a fair grade. A student should get better marks for a submission that does not

compile but is close to the correct solution as opposed to a student’s submission

which is far from the correct solution but compiles.

Consider the situation where a student has made one or more compilation errors

in his code, which on correcting results in the passing of some or all test cases. In

such a case, the TA grading would deduct a small penalty for the mistake and grade

on the logic of the program. If the system took care of this, the marks given would

be more appropriate and closer to a human TA.

We have implemented such an Automated Repair System [Sin16] which corrects the

student’s compilation errors and then tries to automatically grade their submissions.

It will give a small penalty for these corrections according to the instructor’s needs.

This is a complementary system to our Automated Grading System.

References

[BS16] Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors

in programming assignments using recurrent neural networks. CoRR,

abs/1603.06129, 2016.

[CKLO03] Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. On au-

tomated grading of programming assignments in an academic institution.

Computers and Education, 41(2):121 – 131, 2003.

[Cla] Clang. A c language family frontend for llvm.

URL: http://clang.llvm.org/.

[Das15] Rajdeep Das. A platform for data analysis and tutoring for introductory

programming. M.tech. thesis, Indian Institute of Technology Kanpur,

India, 2015.

[GCC] GCC. The gnu compiler collection.

URL: https://gcc.gnu.org/.

[GRZ14] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. Feedback generation

for performance problems in introductory programming assignments.

CoRR, abs/1403.4064, 2014.

[GRZ16] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. Automated clustering

and program repair for introductory programming assignments. CoRR,

abs/1603.03165, 2016.

55

[NPM08] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. Com-

piler error messages: What can help novices? SIGCSE Bull., 40(1):168–

172, March 2008.

[Par15] Sagar Parihar. Automated grading tool for introductory programming.

M.tech. thesis, Indian Institute of Technology Kanpur, India, 2015.

[SBL+13] Mark Sherman, Sarita Bassil, Derrell Lipman, Nat Tuck, and Fred Martin.

Impact of auto-grading on an introductory computing course. J. Comput.

Sci. Coll., 28(6):69–75, June 2013.

[SGSL13] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Auto-

mated feedback generation for introductory programming assignments.

SIGPLAN Not., 48(6):15–26, June 2013.

[Sin16] Praveen Kumar Singh. Automated repair of programs in introductory

programming courses. M.tech. thesis, Indian Institute of Technology

Kanpur, India, 2016.

[Tra10] V. Javier Traver. On compiler error messages: What they say and what

they mean. Adv. in Hum.-Comp. Int., 2010:3:1–3:26, January 2010.

[Wika] Wikipedia. Computational resource.

URL: https://en.wikipedia.org/w/index.php?title=

Computational_resource&oldid=702911944.

[Wikb] Wikipedia. Response time (technology).

URL: https://en.wikipedia.org/w/index.php?title=Response_

time_(technology)&oldid=694600918.

[Wikc] Wikipedia. Source lines of code.

URL: https://en.wikipedia.org/w/index.php?title=Source_

lines_of_code&oldid=721803500.

