
DBProjector : A Web-Based Tool for Querying,
Analysis and Visualization of Data

A thesis submitted
in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by
Swapnil Sopan Mahajan

Roll Number: 13111028

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR

May, 2016

iii

CERTIFICATE

It is certified that the work contained in the thesis titled DBProjector : A Web-

Based Tool for Querying, Analysis and Visualization of Data, by Swapnil

Sopan Mahajan, has been carried out under my supervision and that this work

has not been submitted elsewhere for a degree.

Dr. Arnab Bhattacharya

Department of Computer Science and Engineering

IIT Kanpur

Dr. Amey Karkare

Department of Computer Science and Engineering

IIT Kanpur

May, 2016

v

ABSTRACT

With the growing trend of data analytics, the needs for analysis and visualization of

data has become paramount. Data analytics involves examining data in ways that

reveal the relationships, patterns, trends, etc. that can be found within it. These

relationships, patterns, trends, etc. lead to accurate assessment in order to better

understand the actions and their impacts. However, it is difficult to make sense

out of raw data just by looking at in its natural form. Adding easy querying and

visualization capabilities makes it easily understandable to everyone.

Another emerging trend is the availablitiy of usage of large databases over the

web using the browser in both traditional and mobile forms.

In this thesis, we have designed and developed a web-based tool DBProjector

that acts as both data browser as well as data visualizer and helps in data analytics.

If a database is available over the web, the source URL can be plugged to the tool

to allow its querying, analysis and visualization. We have used this tool to perform

case studies on ITS (Intelligent Tutoring System) and NAQI (National Air Quality

Index) to showcase its usefulness.

Dedicated to all who inspire me

Acknowledgements

First and foremost of all I would like to express immense gratitude to Prof. Arnab

Bhattacharya and Prof. Amey Karkare, my guide and my co-guide for their constant

motivation, inspiration, guidance and support. Their expertise & experience in the

subject and their timely & accurate guidance are the only reason that I have been

able to complete my thesis work.

On every single day spent at IIT Kanpur, I felt lucky to be a part of this institute.

No amount of gratitude is enough and I will always be in debt to the professors of

IITK. Not to mention the world class state-of-art infrastructure provided by the

institute and maintained by the staff. I am grateful them.

Thanks to PhD scholars Tejas Gandhi and Shahbaz Khan for theirs suggestions.

I would also like to mention my friends who made me do things which I now feel

good of, who helped practice my sarcasm and have been constant motivation for the

same.

Contents

List of Figures xi

1 Introduction 1

2 Background and Related Work 3

2.1 Data querying tools . 3

2.1.1 MySQL Workbench . 3

2.1.2 Database Workbench . 3

2.2 Data visualization tools . 4

2.2.1 Data Driven Documents . 4

2.2.2 FusionCharts . 4

3 Case Studies 5

3.1 Case Study 1: Intelligent Tutoring System 5

3.1.1 Introduction . 5

3.1.2 Schema . 5

3.1.3 Data Visualization and Analytics 7

3.2 Case Study 2: National Air Quality Index 11

3.2.1 Introduction . 11

3.2.2 Data Visualization and Analytics 11

4 Design and Implementation 14

4.1 Components . 14

4.1.1 Session Management . 14

ix

4.1.2 Backend API Client . 15

4.1.3 Visualization Engine . 15

4.1.4 DB Connector . 15

4.1.5 Query Executor . 15

4.1.6 Schema Generator . 16

4.1.7 Error Handler . 16

4.2 Component Interaction Model . 17

4.3 Technology stack . 18

4.3.1 Frontend . 18

4.3.2 Backend . 19

5 Conclusions and Future Scope 20

5.1 Conclusions . 20

5.2 Future Work . 20

5.2.1 Support for different types of Databases 20

5.2.2 More visualization chart types 21

References 23

List of Figures

3.1 ITS Schema . 6

3.2 Compilation Table Relationships . 7

3.3 Successful vs Unsuccessful Compilations 8

3.4 Compilations per lab . 8

3.5 Evaluations per lab . 9

3.6 Failed evaluations per lab . 9

3.7 Marks distribution for Lab 07 . 10

3.8 Marks distribution for Lab 10 . 10

3.9 Average PM2.5 . 11

3.10 PM2.5 trend during a day . 12

3.11 PM2.5 during December and January 13

3.12 PM2.5 during days of January . 13

4.1 Components . 14

4.2 Sequence Diagram for DB Change Request 17

4.3 Sequence Diagram for Query Execution and Plot Chart Action 18

Chapter 1

Introduction

Analyzing the data has always offered great benefits to organizations of all sizes and

across all industries. It involves examining data in ways that reveal the relationships,

patterns, trends, etc. that can be found within it. These relationships, patterns,

trends, etc. lead to accurate assessment in order to better understand the actions

and their impacts. It also leads to understanding the behavioral patterns of the

users which can help in decision making of different facets of the system including

architecture, deployment, etc.

But raw data is boring and it’s difficult to make sense out of it just by looking

at in its natural form. Adding visualization to it make easily understandable by

everyone. Visualization will also make it faster to make sense out of it and also

interesting patterns can be observed that would not be apparent from looking only

at the raw data.

There are great tools available to browse the data in the raw form. There are

also great charting libraries available to present the given data in best way possible

to make it easily understandable. The problem that we face here is that both these

areas have been addressed independently. Hence for one to extract data and plot it

in most comprehensible way, he has to write scripts to dump data from database

browsing applications and use charting libraries to plot it. Sometimes he does this

manually and he has to tweak the scripts to try out different ways of visualizing the

2

data to select the best one.

In this thesis we are trying to address this area and we have designed and

developed DBProjector which acts as both data browser as well as data visualizer.

First of all it is a web-based tool so requires no local installations and can be accessed

by anywhere. And the DB server to be analyzed need not to be on the same machine

where DBProjector is hosted as far as the DB server allows connections from that

machine. You can also save the queries so that other people who have access to the

DB can view results of queries and their respective charts.

Chapter 2

Background and Related Work

This section will present some of the tools available which can perform browsing of

the data or plotting charts of such data.

2.1 Data querying tools

2.1.1 MySQL Workbench

MySQL Workbench[1] is a visual tool distributed as desktop application. It includes

features like DB designing using the schema designer, performance dashboard to

track performance analytics of the DB and query tool for data browsing. This tool

supports operating systems: Windows, Linux and Mac OS X and is distributed under

the license GPL. It however does not have data visualization capabilities. This tool

mainly gives visual aid over MySQL CLI.

2.1.2 Database Workbench

Database Workbench[2] is a similar tool to the above one except this has few extra

features like debugging triggers and procedures, comparing data among different

databases, shared workspace for teams. This is a proprietary tool and is distributed

as desktop application supporting Windows, Linux and Mac OS X. This tool also

lacks the feature of visualizing the database.

4

2.2 Data visualization tools

2.2.1 Data Driven Documents

D3js[3] is the most popular visualization library. The reason of it being most popular

is that it provides very detailed and low level APIs to create SVGs. This makes it

possible to create any chart that one can think of. This is distributed under BSD

license. But it does not ship with pre-built charts out of the box. But there is nice

gallery which showcases what is possible with it. For common charts using this

library is a overkill. This is just charting library and requires data to be passed in

given format.

2.2.2 FusionCharts

FusionCharts[4] is again another javascript charting library but not open-source as

that of D3js. It comes with few pre-built charts among which some have advanced

features like zooming, linked charts, data filtering. Being a proprietary product this

library has well written API docs and examples which makes it easy to learn.

All the above applications/tools perform either of querying the data or visualizing

the tailored data. There has not been done more work on creating application mainly

web-based(so that it becomes OS independent) which does both the parts. This is

the main intention of this thesis.

Chapter 3

Case Studies

3.1 Case Study 1: Intelligent Tutoring System

Using the DBProjector , a case study has been performed on Intelligent Tutoring

System(ITS)[5] and the results of the study as presented in this section.

3.1.1 Introduction

ITS is an web based education platform that conducts courses online. It was

developed by my colleague Rajdeep Das at IIT Kanpur as his M.Tech. thesis under

the supervision of Prof. Amey Karkare in the department of Computer Science

and Engineering. It aimed to provide enhanced introductory programming learning

experience to the masses by the means of technology and at the same time to be

used as a platform for data collection and analysis.

The database used for the analysis is from the semester July-November’2015.

3.1.2 Schema

Figure 3.1 represents a minified schema of the Intelligent Tutoring System (ITS). It

shows only the important columns from the tables. Figure 3.2 shows the expanded

view of the tables related to compilation table.

6

Figure 3.1: ITS Schema

Figure 3.2 shows that every compilation is associated with an assignment and

corresponding code. On every compilation, compilation errors, if any, are added to

the compilation_error table. The relationships with evaluation and execution table

suggests that on every evaluation and execution, compilation is first triggered for

respective code.

7

Figure 3.2: Compilation Table Relationships

3.1.3 Data Visualization and Analytics

Compilations

Figure 3.3 shows the comparison of successful vs unsuccessful compilations over all

labs. It shows that among all the compilations around 20% are unsuccessful and

resulted in compilation error.

8

Figure 3.3: Successful vs Unsuccessful Compilations

Figure 3.4 shows total compilations per lab. Total compilations seem to reduce

gradually after the second lab except seventh lab as the students get used to the

platform and get acquainted with coding and syntax. Reasons behind lab seven

having highest number of compilations could be tricky corner cases or difficult

problem statements.

Figure 3.4: Compilations per lab

9

Evaluations

Figure 3.5 and Figure 3.6 shows total evaluations and failed evaluations per lab.

Significantly higher number of evaluations in seventh lab supports our claim of having

tricky test cases.

Figure 3.5: Evaluations per lab

Figure 3.6: Failed evaluations per lab

10

Marks

Figure 3.7 and Figure 3.8 shows the marks distribution for lab 7 and lab 10 respectively.

In spite of many evaluations in Lab 07, many students have got full marks as compared

to that of Lab 10. While many have scored 0 in Lab 10 as compared to Lab 07.

Figure 3.7: Marks distribution for Lab 07

Figure 3.8: Marks distribution for Lab 10

11

3.2 Case Study 2: National Air Quality Index

In this section the results of the case study performed on National Air Quality Index

have been presented.

3.2.1 Introduction

National Air Quality Index[6] is air quality monitoring and dissemination system.

Awareness of daily levels of air pollution is important to the citizens, especially for

those who suffer from illnesses caused by exposure to air pollution. This system

helps such people by displaying the real time air quality statistics.

3.2.2 Data Visualization and Analytics

Stations

Figure 3.9 shows the average PM2.5[7] values at different stations in Delhi. It shows

that Anand Vihar ranks first while Shadipur and R. K. Puram stand second and

third when it comes to PM2.5. PM2.5 is the most prominent pollutant in Indian cities

mainly due to the weather and increasing pollution due to industries and vehicles.

Figure 3.9: Average PM2.5

12

PM2.5 trend

Figure 3.10 shows the trend of PM2.5 levels during a typical day. It shows that

the levels are high during 9AM to 12AM and after 6PM which is the usual time

of high traffic. Lower levels during 12AM to 5PM point towards the effect due to

temperature change and lower traffic.

Figure 3.10: PM2.5 trend during a day

Odd-Even Policy

Odd-Even policy was applied in Delhi during January 1 and January 15. Under this

policy vehicles with odd and even numbers were allowed only on odd and even dates

respectively. The intention of this policy was to reduce the number of vehicles on the

roads which in turn was supposed to reduce the PM2.5 levels. The analysis of the

data gathered just before and after this policy has been presented in Figures 3.11

and 3.12.

Figure 3.11 shows the average PM2.5 levels during last 15 days of December 2015

and first 15 days of January 2016. The levels are seen to be increased in January.

This change is due to the climate changes as the similar changes in the levels have

been seen in the first 15 and last 15 days of January in Figure 3.12.

Hence from these statistics the Odd-Even policy does not seem to have helped in

13

reducing the pollution.

Figure 3.11: PM2.5 during December 2015 and January 2016

Figure 3.12: PM2.5 during days of January 2016

Chapter 4

Design and Implementation

4.1 Components

This section represents the different components present in the system and their

relation with the rest of components.

This system is developed using Client-Server architecture. Hence there are mainly

three components in it viz. Frontend, Backend and External DB server

Figure 4.1: Components

4.1.1 Session Management

This module is responsible for holding the information needed for a session such as

DB host, DB user, DB password, etc. Once a new connection is made, this module

store the above said information. The information stored is in the scope of tab

which is open. Once the tab/browser is closed, this information is lost and a new

15

connection is made if user tries to revisit the same web page.

4.1.2 Backend API Client

There is a clear separation of frontend and backend functionality. Backend provides

the RESTful[8] APIs so that anyone can build their own frontend or can directly

consume the data without having any frontend.

This module is responsible for converting the requests in such a format that the

backend can understand. It also knows about the type of response backend is going

to generate. It parses the backend response, adds new fields to it if needed(e.g in

case of errors) and then passes the response to callback function provided.

4.1.3 Visualization Engine

This module is responsible for plotting the charts. It takes data, chart type and axes

as the input for plotting these charts. Once the chart type and axes are selected,

this modules extracts the relevant information from the data in the form of list for

the axes and the passes it to a chart drawing library.

4.1.4 DB Connector

This module is responsible selecting the right driver for the specified database

connection and then connecting to that DB for further communication. Frontend

calls the API exposed by this module to check if the database parameters such as

host, user, password, database name are correct and the user has read access to the

DB.

4.1.5 Query Executor

This module is responsible for invoking the DB connector module and passing the

query in right format to for execution. After execution it takes the result set and

parses it. This parsing involves extracting the column names from the result set

16

which can later be used by the Visualization Engine as candidate columns for the

axes of charts.

4.1.6 Schema Generator

This module is responsible for invoking the external tool SchemaSpy[9] for retrieving

the schema of database and storing it HTML pages which can later be viewed by the

user. Once the DB connector module passes the DB credential check, this module is

invoked.

4.1.7 Error Handler

Both frontend and backend have their respective error handlers which take care of

capturing the error and presenting it to the user/api caller in more unified way.

The backend error handler capture errors like connection failures, invalid query

syntax, external tool invocation errors, etc. While fronend error handler deals with

capturing the backend connection failures, backend api failures and then presents

these problems to user with required information at relevant places.

17

4.2 Component Interaction Model

Figure 4.2: Sequence Diagram for DB Change Request

The above diagram represents the flow of database connection change request by the

user. The DB connection parameters are first saved in a temporary scope. Then

Backend API client method is invoked by passing the connection parameters and

callback functions for successful and unsuccessful scenarios. Then API call is made

to the backend which tries to create a connection with the external DB server. On

correct connection parameters, external DB server returns a connection. After this

successful call the DB connector returns response with status as success.

Once the connection parameters are verified to be correct, session management

module transfers the parameters stored in temporary scope to main scope and triggers

schema retrieval API. The API client sends a well-formatted http request to schema

generator. Schema generator then reads the schema from external DB server using

the credentials and stores this schema in files in html format which can later be

served on demand. Once the html files are created, schema generator returns the

directory where the schema files are stored to the API client which passes it to session

management module. Session management module stores the schema location in

main scope for the current session.

18

Figure 4.3: Sequence Diagram for Query Execution and Plot Chart Action

The above diagram represents the flow of custom query being executed and the

data being plotted in the form of chart selected. The session management module

sends the locally stored database connection parameters to backend API along with

the query to be executed. Query executor then creates connection with the external

DB server and executes the query. The resultset is then fetched from DB server.

Query executor then extracts the columns from the query and attaches those to

the response along with the resultset. Once the data and keys are available, session

management module sends this information to the visualization engine along with

the type of chart and the axes selected by the user. This is an asynchronous call.

Visualization engine then creates a canvas and plots the chart with given data.

4.3 Technology stack

4.3.1 Frontend

AngularJS[10]

The base of the frontend component is mainly AngularJS. Because of the two-way

data binding feature of AngularJS, it has reduced a lot code else needed to display

and read data from html elements into javascript respectively.

19

Angular Material[11]

Angular Material has been used as the UI framework. It provides simpler syntax

and boilerplate to create UI elements which are compliant with Google’s Material

Design guidelines. It provides uniform experience over different sized devices likes

desktops, phones, etc.

ChartJS[12]

ChartJS is the javascript library used for plotting the charts. This library uses the

newer HTML5 canvas APIs to draw charts instead of using the old fashioned SVGs,

which makes if faster and compatible with most of the devices. ChartsJS library also

has it’s angular adapter available which makes it even easier to integrate it with the

data. It is as easy as assigning the values to variables and ChartJS will automatically

plot the chart for you.

4.3.2 Backend

Flask[13]

Flask webframework(often described as micro framework) has been used for the

backend. As the frontend is a single page angular app, the backend needed only to

provide the RESTful APIs. Hence we have chosen this lightweight webframework.

SchemaSpy

SchemaSpy is a java based tool which analyses the metadata of the schema in a

database and generates a visual representation of it in a browser-displayable format.

The system provides it the connection parameters so that it can pull the metadata

of the external DB server.

Chapter 5

Conclusions and Future Scope

5.1 Conclusions

In this thesis we have designed and developed a web-based system to query, visualize

and analyze from any database server accessible from the deployment machine. We

have tried to keep the interface simplistic and intuitive for ease of use.

Instructors can use this system to analyze the trends and patterns in examina-

tions. Students can use this system to analyze data they have to extract out useful

information from it. Even the system administrators can analyze their system based

on the logged data they have.

5.2 Future Work

5.2.1 Support for different types of Databases

Currently DBProjector supports only MySQL compliant databases. We can add

support for other relational as well as NoSQL databases. This will make it a one

stop solution for all types of DB data analysis.

21

5.2.2 More visualization chart types

Addition of more visualization chart types like map chart, scatter chart will make

the system more usable and apt for certain datasets. Addition of such charts will

also result in more dimensions.

References

[1] MySQL. MySQL Workbench. url: https://www.mysql.com/products/

workbench/.
[2] Upcene. Database Workbench. url: http://www.upscene.com/database_

workbench/.
[3] Mike Bostock. Data Driven Documents. url: https://d3js.org/.
[4] InfoSoft Global. FusionCharts. url: http://www.fusioncharts.com/.
[5] Rajdeep Das. “A Platform for Data Analysis and Tutoring For Introductory

Programming”. M.Tech. thesis. India: Indian Institute of Technology Kanpur,
2015.

[6] CPCB. National Air Quality Index. url: http://164.100.160.234:9000/.
[7] Wikipedia. Particulates. url: https://en.wikipedia.org/wiki/Particulates.
[8] Representational state transfer. url: https://en.wikipedia.org/wiki/

Representational_state_transfer.
[9] SchemaSpy. url: http://schemaspy.sourceforge.net/.

[10] AngularJS. url: https://angularjs.org/.
[11] Angular Material. url: https://material.angularjs.org/.
[12] ChartJS. url: http://www.chartjs.org/.
[13] Flask. url: http://flask.pocoo.org/.

https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
http://www.upscene.com/database_workbench/
http://www.upscene.com/database_workbench/
https://d3js.org/
http://www.fusioncharts.com/
http://164.100.160.234:9000/
https://en.wikipedia.org/wiki/Particulates
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
http://schemaspy.sourceforge.net/
https://angularjs.org/
https://material.angularjs.org/
http://www.chartjs.org/
http://flask.pocoo.org/

	List of Figures
	Introduction
	Background and Related Work
	Data querying tools
	MySQL Workbench
	Database Workbench

	Data visualization tools
	Data Driven Documents
	FusionCharts

	Case Studies
	Case Study 1: Intelligent Tutoring System
	Introduction
	Schema
	Data Visualization and Analytics

	Case Study 2: National Air Quality Index
	Introduction
	Data Visualization and Analytics

	Design and Implementation
	Components
	Session Management
	Backend API Client
	Visualization Engine
	DB Connector
	Query Executor
	Schema Generator
	Error Handler

	Component Interaction Model
	Technology stack
	Frontend
	Backend

	Conclusions and Future Scope
	Conclusions
	Future Work
	Support for different types of Databases
	More visualization chart types

	References

