
Automated Grading Tool for Introductory
Programming

A thesis submitted
in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by
Sagar Parihar

Roll Number: 13111055

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR

November, 2015





iii





v

ABSTRACT

Grading, especially for multiple computer programs, for an introductory computer

programming course, requires a considerable amount of human time and effort.

Consequently, a large number of teaching assistants (TAs) are assigned to manually

grade the programs each week. Since the instructions for grading are, by nature,

imprecise, there can exist a lot of variability between the grading of two TAs since

it is prone to unintentional bias. A more severe problem is the perception of bias

among the students whose programs are graded. The main motivation of this thesis

is to develop an automated grading tool that will address the above problems. The

thesis explores several factors that contribute to the final marks including number

of test cases passed, number of successful compilation attempts, etc. A regression

model is run to determine the weights of these factors. Results obtained from the

automated tool shows that the results are robust and has lesser variability from a

carefully graded solution than exhibited between two TAs. The tool is integrated to

the backend of the Intelligent Tutoring System (ITS) developed at Indian Institute

of Technology, Kanpur for handling introductory programming level courses. The

ITS system provides a unified frontend for students to write, compile and check their

codes.



Dedicated to my Parents and Family



Acknowledgements

First and foremost of all I would like to express immense gratitude to Prof. Arnab

Bhattacharya and Prof. Amey Karkare, my guide and my co-guide for their constant

motivation, inspiration, guidance and support. Their expertise & experience in the

subject and their timely & accurate guidance are the only reason that I have been

able to complete my thesis work.

Only after spending two year in IIT Kanpur I realised how lucky I was to learn

from renowned faculties of Computer Science & Engineering department. No amount

of gratitude is enough and I will always be in debt to the professors of IITK. Not

to mention the world class state-of-art infrastructure provided by the institute and

maintained by the staff. I am grateful them.

I am in lifelong debt to my mother Preeti Parihar and my father Sanjay Parihar

for their timeless unconditional love and support. Also, my younger brothers Shikhar

and Prithvi were a source of motivation. All along my uncles Rajay Parihar, Anupam

Chauhan and Anuj Chauhan and their families were source of great strength. I

would like to extend my sincere thanks to them.

Thanks to PhD scholars Tejas Gandhi and Shahbaz Khan for theirs suggestions.

I would also like to mention my batch mates not only for helping me throughout my

M.Tech. but also making my stay at IITK memorable. Among them are Rishabh,

Ayan, Abhra, Abdu, Mahajan, Purohit, Nayek, Chauhan, Bhoyar, Shail, Shashwat,

Hegde, Shiv, Modi, Sayantan, Mohit, Satyajeet, Ankit, Tiwari, Naman, Rajesh,

Rajdeep and Dhananjay. Without them life would have been extremely boring.



Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5

2.1 Platform and Related Concepts . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Intelligent Tutoring System . . . . . . . . . . . . . . . . . . . 5

2.1.2 Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Assignment Grades Dataset . . . . . . . . . . . . . . . . . . . 8

2.2.2 Exam Grades Dataset . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Linear Regression with Ordinary Least Squares . . . . . . . . . . . . 9

2.4 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Spearman’s Rank Correlation Coefficient (ρ) . . . . . . . . . . 11

2.4.2 Mean Average Precision (MAP) . . . . . . . . . . . . . . . . . 11

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Grading Model 16

3.1 Intuitive Idea and Feature Set . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Fraction of Test Cases Passed . . . . . . . . . . . . . . . . . . 17



ix

3.1.2 Time Taken to Solve . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Fraction of Successful Compilations . . . . . . . . . . . . . . . 20

3.2 Initial Grading Model . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Hard Grade Score Function . . . . . . . . . . . . . . . . . . . 21

3.2.2 Soft Grade Score Function . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Initial Grade Score Function . . . . . . . . . . . . . . . . . . . 25

3.3 Final Grading Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Significance and Motivation . . . . . . . . . . . . . . . . . . . 28

3.3.2 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Final Grade Score Function . . . . . . . . . . . . . . . . . . . 32

4 Learning Weight Parameters for Grading Model 35

4.1 Learning Technique and Training Dataset . . . . . . . . . . . . . . . 35

4.2 Learned Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Experiments and Results 40

5.1 Grade Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Rank Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Positive Rank Error . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.2 Negative Rank Error . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Spearman’s Rank Correlation Coefficient (ρ) . . . . . . . . . . . . . . 47

5.4 Mean Average Precision (MAP) . . . . . . . . . . . . . . . . . . . . . 49

5.4.1 Top-k Query MAP . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.2 Bottom-k Query MAP . . . . . . . . . . . . . . . . . . . . . . 51

5.4.3 Top-Bottom-k Query Mean MAP . . . . . . . . . . . . . . . . 52

6 Autograding ReST Server 54

6.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 System Environment and Interface . . . . . . . . . . . . . . . 55

6.1.2 Functional Requirements . . . . . . . . . . . . . . . . . . . . . 56

6.1.3 Request to Server . . . . . . . . . . . . . . . . . . . . . . . . . 57



x

6.1.4 Response from Server . . . . . . . . . . . . . . . . . . . . . . 57

6.1.5 Non-Functional Requirements . . . . . . . . . . . . . . . . . . 58

6.1.6 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusions and Future Scope 67

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2.1 Application of Autograding Server in ITS . . . . . . . . . . . 68

7.2.2 Scope of Improvement in Grading Model . . . . . . . . . . . . 69

7.2.3 Extending Grading Model . . . . . . . . . . . . . . . . . . . . 70

7.2.4 Scope of Improvement in the Autograding Server . . . . . . . 71

References 73



List of Tables

4.1 Estimated Weight Parameters for Final Grade Score Function . . . . 39

5.1 Avg. Grade Error Comparison - Grading Tool vs TAs . . . . . . . . . 42

5.2 Positive Rank Error - Grading Tool vs TAs . . . . . . . . . . . . . . . 46

5.3 Negative Rank Error - Grading Tool vs TAs . . . . . . . . . . . . . . 47

5.4 Spearman’s Rank Correlation Coefficient - Grading Tool vs TAs . . . 48

6.1 Use Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Use Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Response Times of Autograding Server . . . . . . . . . . . . . . . . . 66





List of Figures

5.1 Avg. Rank Error Comparison - Grading Tool vs TAs . . . . . . . . . 44

5.2 Mean MAP for Top-k Queries - Grading Tool vs TAs . . . . . . . . . 50

5.3 Mean MAP for Bottom-k Queries - Grading Tool vs TAs . . . . . . . 51

5.4 Mean MAP for Mean of Top-k & Bottom-k Queries - Tool vs TAs . . 53

6.1 Architecture of Autograding Server . . . . . . . . . . . . . . . . . . . 62





Chapter 1

Introduction

Since its advent, computer technology has seen tremendous growth and development.

It has now evolved to become an integral part of today’s world and will remain in

the future. Computers help different organisations, industries and service sectors to

scale up. Automating several processes have dramatically reduce human error as well

as their time requirement. These machines have also revolutionised communication.

Entertainment world have also benefited a lot. Basically, computers are omnipresent

in the present world.

With computers omnipresent, everyone spends significant duration of time inter-

acting with these machine or more precisely interaction with the programs running

on these machine. And so it important to have basic level knowledge about computer

and computer programs, at least for a professional. This can be inferred from the fact

that many universities programs have compulsory courses in introductory computer

programming.

Such introductory computer programming courses are generally run in computer

labs by assigning simple programming problems to students. The students code

solutions to these programming problems and submit them for grading. The students

then receive grades and feedback accordingly. Grading is not only responsible for

motivation and for providing direction learning to students but is also an implicit

feedback.

Maintaining timely and quality grading consumes lot of human resources. Teach-



2

ing assistants are post graduate students appointed to assist professors in course

work. The professors get assistance in monotonous work and teaching assistants

(TAs) get learning experience and some financial aid. Universities and academic

institutions appoint a number of teaching assistants for this purpose. These TAs

give a considerable amount of time and effort.

In spite of all the input, grading is not immune to human error and the turnaround

time is not as fast as required for optimal learning. Not to mention the inconsistency

among different teaching assistants (TAs) which causes variablity in grading. Unin-

tentional bias in judgement may also affect the grading. Moreover, manual grading

limits the number of students that can be enrolled in such introductory programming

courses.

Grading policies for such programming assignments are quite objectively defined.

We also have means to obtain various feature and characteristics for a solutions

submitted. It is an alluring idea, to utilize these fact and come up with an automated

grading system having performance comparable to that of the teaching assistants

(TAs). We are motivated by prospects of developing such a real-time automated

grading system that can mitigate the problems faced while grading large number

students. This system can be used to give students an estimate of grades as soon

as they submit a solution or assist TAs by giving recommendations when they are

grading. It can also be used to detect potential grading anomalies.

Intelligent Tutoring System (ITS) [Das15] is cloud based base web application

designed, developed and hosted at IIT Kanpur under the supervision of Prof. Amey

Karkare by the department of Computer Science and Engineering, to conduct

introductory programing course. ITS has been used successfully for two semester to

run introductory programming course named ESc101. It documents a wide range

of students’ activity and feature and characteristics of solutions submitted by the

students. Availability of such a rich data set to work on and platform to test,

strengthens our motivation further and gives a start point to our venture.



3

1.1 Objective

Firstly, we state the assumptions made for our problem. We have an online platform

on which students are assigned programming problems. Students are required to

solve each of these problems and submit code in a decided programming language as

solution. This platform is capable of compiling and running the code. The solution is

judged by comparing the test cases output of solution for fixed set of test cases against

corresponding correct answers. These test cases are set along with the problem.

The platform logs a wide variety of data relate to both students’ activities and

solution submissions. With access to the log database we can mine for the metadata

needed.

Our goal is to design and develop an automated grading model to grade or mark

solutions submitted for programming problems assigned to students. The model uses

the above discussed meta data or features to compute and output the grades. The

grades is a real number between zero and maximum marks for the problem.

1.2 Thesis Outline

The structure of the thesis is as follows.

Chapter 2, named Background and Related Work, aims to explain concepts,

methods and tools required to understand the work. These concepts have been

used or applied directly or indirectly in this thesis. Final section contains a brief

discussion on work done previously in the area we have worked.

Chapter 3, named Grading Model, presents the grading model designed and

developed in this thesis. Incremental development is explained along with the

intuitive ideas behind it.

Chapter 4, named Learning Weight Parameters for Grading Model, describes

what and how were the weights for the grading model were learned.

Chapter 5, named Experiments and Results, explains the experiments done to

evaluate the performance of our grading model/tool and presents the results.



4

Chapter 6 , named Autograding ReST Service, discusses about a backend server

developed to serve grades computed by the model/tool for submissions made on ITS.

The server is developed to be integrated to Intelligent Tutoring System (ITS).

Chapter 7, named Conclusions and Future Scope, presents some conclusions we

have derived from this thesis and discusses about potential future work.



Chapter 2

Background and Related Work

2.1 Platform and Related Concepts

We discuss about online education platforms and introduce a similar platform,

Intelligent Tutoring System, also known as ITS [Das15]. We also describe concepts

related to the platform as well as our work.

2.1.1 Intelligent Tutoring System

We have worked closely with Intelligent Tutoring System (ITS) for significant amount

of time. In fact it was because of ITS that we had access to such rich real world data

to carry out our analysis and conduct necessary experiments.

ITS is an web based education platform that conducts courses online. It was

developed by my colleague Rajdeep Das at IIT Kanpur as his M.Tech. thesis under

the supervision of Prof. Amey Karkare in the department of Computer Science

and Engineering. It aimed to provide enhanced introductory programming learning

experience to the masses by the means of technology and at the same time to be

used as a platform for data collection and analysis.

Computer aided education [Cin13] has provided access to quality education online

through various web based platforms. It has crossed geographic barriers to reach

to the masses, enabled community interaction and has provided means to manage



6

large scale courses. However, such online courses that run on these platforms on

massive scale lack effective problem solving experience and do not effectively cater to

requirements at individual level. And some courses like introductory programming

require problem solving for effective learning and in some cases need feedback at

individual level.

There are a few issues that makes this experience difficult to deliver for generic

online education platforms. These factors include requirement of a standard Linux

programming environment with configured build tools and students’ capability to

learn and effectively use these programming tools. Moreover, the students need not

learn Linux environment and its programming tools to learn computer programming.

ITS was developed to address these issues of providing effective problem solving

experience and to provide feedback at individual level, for introductory programming

courses, on an online platform. It attempts to tackle these issues from an architectural

angle. ITS is a cloud based web app with the only requirement of standard web

browser with connectivity. The app is login based which provides editor to write

and submit programs. The program is compiled and run on the cloud systems and

the results get displayed on the browser.

Since all the functionalists of writing, compiling and running the code are now on

the web app, it is no longer required for students to set up their local environment

and learn to use it. Also as the web app requires login, every activity can be tracked

and documented. This personalized information can be used to provide individual

feedback to students. In this manner ITS attempts to provides a solution to our

problems.

2.1.2 Grading

In any course it is a general practice to assign students with tasks or homework

or assignments and conduct examinations. These assignments help students to

practice and get a better understanding of the concepts and the examinations help

in evaluation.



7

The assignments and examinations are then judged and awarded score, i.e. grades

according to their degree of correctness. This process of judgement of correctness to

award grades or marks to a assignment is called grading or marking.

From a student’s perspective, who is undergoing a course, tracking her progress

is extremely important, as is, from a instructor’s perspective providing students

feedback. Grading serves a basic level of feedback to student and also as a basic level

measure to track performance of student. Thus, grading is of significant importance

to maintain the effectiveness and quality of programming courses for it is one of the

key factors that drive the motivation and control the direction of learning of the

students.

Many introductory programming courses grade manually by hand the programs

written by students. Universities use Teaching Assistants (TAs) for the purpose of

grading. TAs are generally post graduate students that assist professors. A significant

amount of effort and time is invested to maintain the quality of grading. This process

of grading may become a bottleneck when the course is scale to larger number of

students.

ITS also uses a similar system where students are assigned programming problems.

The students then submit solutions to these problems which are graded by TAs

manually by hand.

2.2 Datasets

All along we have worked with real world datasets collected by ITS. These datasets

have been collected for ESc101: Fundamentals of Computing, an introductory

programming course conducted in even semester of academic year of 2014-15 at IIT

Kanpur. C programming language was used for the entire course.

ESc101 conducted weekly labs of about 3 hours for enrolled students where

students were assigned programming problems. The students were required to code

solution to their assignments and submit it within the lab duration. The solution

were tested against a set of test cases (TCs). Finally the Teaching Assistants (TAs)



8

graded the submitted solutions by awarding them marks/grade. TAs judged the

submitted codes by manual inspection and by considering the number of TCs passed.

Lab exam was also conducted which carried much more weightage than the lab

assignments. Grading was done in similar manner but with a more robust grading

process to ensure precision.

We have used 2 variations of these data sets.

2.2.1 Assignment Grades Dataset

There were 2 types of events conducted, lab and exam. This dataset refers to the

data collected for lab events.

ITS logged various activities of each student. It also stored the submissions and

data related to these submission such result of test cases (TCs). Most importantly,

the final grades awarded by the teaching assistant we accurately recorded. A grade

for a submission or a assignment is a whole number upto maximum marks for the

assigned problem.

Assignment Grades Dataset consists of all the lab problem assignments of enrolled

students along with their submissions and data related these submissions with the

awarded grades.

This dataset consists of 64 sets of soultion submissions, each for a differnet

question in some scheduled lab. Each solution submission set consists of 99 to 101

student solution submissions. We have graded marks and maximum marks for each

lab schedule for each question along with logged data related to the submission.

2.2.2 Exam Grades Dataset

Out of the 2 types of events, lab and exam, this dataset refers to data collected for

exams.

Similar to assignment grade dataset, this dataset also contains logged student

activities and submission data including number of test cases passed. The grading

data for exam is bit different. Each solution submission in lab exam is graded by 2



9

different TAs. If the difference between the marks awarded was below a threshold

higher marks were awarded, else re-evaluation was done to award grades. These

grades are also whole numbers upto maximum marks for the assigned problem.

Exam Grades Dataset of consists all the exam problems of enrolled students

along with their submission and data related to these submission with 2 different

grades, final grade awarded and grade awarded by the alternate TA which were not

considered.

This dataset consists of 8 sets of solution submissions, each for a different question

in a scheduled lab exam. Each solution submission set consists of 201 students.

2.3 Linear Regression with Ordinary Least Squares

Liner Regression [MPV12] can be described as an approach to model relationship

between a dependent variable say y and set of explanatory variables say X.

As the name linear suggests this approach considers a linear function to describe

the relationship between the dependent variable and the explanatory variables.

This relationship can be described by the following expression, for ith data point,

assuming X consists of p variables, xi1, xi2, . . . xip and a constant xi0.

The constants, ∀i xi0, can be set to 0 or 1 depending on the underlying system

being modeled. Setting the constants to 1 implies that the model assumes that

y depends on a constant also whereas setting it to 0 assumes no dependence on

constant.

Linear regression model in the linear relationship also assumes an error variable

ε, which may be defined as an unobserved random variable.

yi = β0xi0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi

The above expression is only for a single ith data point. Extending the expression

for all n data points in vector form, we have.



10

y = Xβ + ε

where,

y =



y1

y2
...

yn


, X =



x10 x11 x12 . . . x1p

x20 x21 x22 . . . x2p

... ... ... . . . ...

xn0 xn1 xn2 . . . xnp


, β =



β0

β1

...

βp


, ε =



ε1

ε2
...

εn


This expression can be used to estimate the parameters β if both y and X are

known for a set of data points. There are various techniques to estimate parameters

β. One such simple and common estimator is Ordinary Least Squares [MPV12].

Ordinary Least Squares (OLS) is a technique that can be used estimate parameters

β over a linear regression model when both dependent variable y and explanatory

variables X are known for all data points in a data set. The estimation is done

by minimizing the sum of squared error/residuals. The closed-form expression to

estimate parameters β is as follows.

β̂ = (XTX)−1XTy

This closed-form expression can be conveniently used to estimate required pa-

rameters for any linear regression model.

2.4 Performance Measures

We briefly discuss some performance measures that are used to analyse and compare

performance of our grading model/tool.



11

2.4.1 Spearman’s Rank Correlation Coefficient (ρ)

Spearman’s Rank Correlation Coefficient [WM03], denoted by ρ or rs, is statistical

measurement of association strength between two ranked variables. It can be defined

as nonparametric measure of dependence among two variables.

Its value is a real number that ranges between −1 and +1. A value +1 or −1 for

two variables implies that each variable is a perfect monotone function of the other,

where as, 0 implies that there exist no association.

The positive and negative signs indicates direction of association. Positive sign

(+) indicates that the value of one variable tends to increase with increase in value of

other and negative sign (−) indicates that the value of one variable tends to decrease

with the increase in the value of other. The magnitude of ρ is closer to 1 when the

two variables are perfectly directly monotonically related.

Assuming the 2 variables can take n values and di is the difference in ranks in

the ith corresponding values of the two variables, we can calculate the Spearman’s

rank correlation coefficient as follows.

ρ = 1− 6
∑

d2i
n(n2 − 1)

Thus Spearman’s rank correlation coefficient can be used to understand the

ranking relation among two variables.

2.4.2 Mean Average Precision (MAP)

Information retrieval systems attempt to responds to queries with the most appro-

priate subset of items from the universe of items. Example of such query may be

top-k or bottom-k by some criteria.

Precision [MRS08] is an evaluation measure for models that can act as information

retrieval system. It measures the quality of retrieved set of items over a particular

query.

Precision, for a particular query, can be defined as following.



12

precision =
|{relevant items} ∩ {retrieved items}|

|{retrieved items}|

Where relevant items are the correct set of items that system should return for the

query and retrieved items are the set of items returned by the system as an response

to the query.

Precision serves as a measure when the result is in form of set. We need an

extended measure for systems that respond with ranked sequence of items. Average

Precision [MRS08] considers the order or rank of the sequence of items returned.

It can be defined as average of precisions at every position in the ranked sequence

of items. It is computed as follows.

AveP =

∑n
k=1[P (k)× rel(k)]

n

where,

n is the number of items queried for,

P (k) is the precision for top-k items,

rel(k) is an indicator function equal to 1 if item at rank k is relevant and 0 otherwise.

A system evaluation cannot be done on the bases of a single query. We need to

take multiple queries into account. Mean Average Precision (MAP) [MRS08] is a

measure that takes into account multiple queries. MAP may be defined as mean of

Average Precisions for a set of quires and is computed as following.

MAP =

∑Q
q=1 AveP(q)

Q

where,

Q is the number of queries under consideration,

AveP(q) is the Average Precision for qth query.

Thus, MAP can be used to measure correctness of a model which can act as a

information retrieval system.



13

2.5 Related Work

In this section we discuss some of the work done previously which is related to the

work done in this thesis. It is related to assessment or marking or evaluation or

testing or grading of programming problem solutions in an environment somewhat

similar to that of Introductory Programming courses. Discussion is not exhaustive

but limit to the study and survey done while working on this thesis.

BOSS by Luck and Joy [LJ99] in 1999 presented a system that managed code

submissions and was capable of semi-automated testing of student coursework. But

it could only return either 100% or 0%. So BOSS could act only as an assistant to

actual marker/grader.

CodeLab also know as WebToTeach by Arnow and Barshey [AB99] in 1999

develop a system which was web based which could accept submission via web client.

It also assessed solutions at binary level and focused on short answers. It also had

capability to cover a range of concepts by enforcing students to solve particular

problems before allowing them to move on.

RoboProf by Daly [Dal99] also in 1999 is a more wider system which is capable of

handling presentation of notes and exercises to students, accepts solution submissions

and test them against test data, provides feedback to the student and achieves the

results. Although the feed back is immediate but is very limited to binary comparison

of students’ output against the test data.

Automated Assessment and Experiences of Teaching Programming by C. A.

Higgins et al [Hig+05] in 2005 presented a more improved system with richer and

wider range of functionalities. It was capable of catering to different user profiles

namely Student, Tutor, Teacher, Administrator and Developer and had modules of

Submission Marking & Archiving, Courses, Account and Auditing, all with a good

interface. For marking the tool extracted a set of features and marked according a

customizable marking mechanism.

Some systems were developed that used static analysis to compare submitted



14

solutions against model programs provided forehand. Few such systems are ELP

by Truong, Roe & Bancroft in 2005 [TBR05], WAGS by Norshuhani et al in 2006

[Zam+06] and system proposed by Khirulnizam et al in 2007 [K+07]. These system

needs to be provided with different model solutions to cover the variety of student

solutions.

Many automated assessment systems implement dynamic testing of submissions

for Introductory Programming courses. Examples of such systems include Ala-Mutka

in 2005 [Ala05], TRY by Reek in 1989 [Ree89], Scheme-robo by Saikkonen [SMK01],

Malmi & Korhonen in 2001, Online Judge by Brenda, Andy, Andrew & Chong

in 2003 [Che+03], Quiver by Ellsworth, Fenwick & Kurtz in 2004 [EFK04] and

RoboProf by Daly & Horgan in 2004 [DH04].

The BOSS Online Submission and Assessment System by Mike Joy, Nathan

Griffiths & Russell Boyatt [JGB05] in 2005 developed an assessment mechanism for

solution of Introductory Programming course which along with dynamic testing of

test cases used JUnit tests for Java Programs.

Ability-training-oriented automated assessment in introductory programming

course introduced AutoLEP by Tiantian Wang, Xiaohong Su, Peijin Ma, Yuying

Wang, Kuanquan Wang [Wan+11] in 2010 introduced a system which provided

students feedback regarding syntactic and structural defects immediately at the time

of submission. Assessment is based on dynamic testing and system returns feedback

with test cases passed and failed by the submission. Also, a static analysis against

model solutions based semantic analysis feedback is generated.

Code Hunt: Experience with Coding Contests at Scale by Judith Bishop, R.

Nigel Horspool, Tao Xie & Nikolai Tillmann [Bis+15] in 2015 presented a platform

CodeHunt that hosts coding contests. The platform assigns skill rating and score

to the submissions. Due to nature of the contest, rating represented by an integer

value 1, 2 or 3, is determined on the succinctness of the submission. The smaller

the submitted code higher the score. Score of a submission is rating multiplied by

the problem’s difficulty. Problem difficulty is also an integer ranging from 1 to 5.



15

Participant score is accumulated total score.

We have studied all the discussed related worked to understand the problem we

address in this thesis. However, we have developed our own idea from intuition.



Chapter 3

Grading Model

This chapter presents the grading model developed in this thesis, the core of our

work. We explain the theoretical idea in an incremental fashion to help readers

empathise with the development derivation of the grading model for our grading

tool. Initially, the intuitive idea is discussed and the feature set used is listed. Our

primitive grading model, namely initial grading model, which consist of multiple

steps follows. Finally, we present a simplified single step model, final grading model,

which is similar to the initial multiple step model but is more elegant and is better

suited for analysis, experimentation and implementation.

3.1 Intuitive Idea and Feature Set

For grading programming assignments of introductory programming courses, uni-

versities deploy teaching assistants (TAs). TAs are postgraduate students that help

the instructors with courses by taking up tasks such as grading of assignments. TAs

follow a set grading policy. This grading policy is quite objectively defined, at least

for courses like introductory programming.

Using the fact that programming assignments have objective grading policies we

attempt to capture these policies and develop a grading model that performs similar

the TAs. We try to identify the major factors involved in grading policies.

A close look at the grading policies guideline reveals the following factors at play



17

for a programming problem solution submission.

• grades ∝ fraction of test cases (TCs) passed

• grades ∝ 1/time taken to solve

• grades ∝ fraction of successful compilations

• grades ∝ 1/program run-time

• grades ∝ 1/program memory requirement

• grades ∝ 1/global and unused variables

• grades ∝ indentation precision

• grades ∝ relevant comments

We have used the first 3 factor in our model. Other factors are not currently used.

The reason for not using these factors directly is that they have minimal impact

on grades and they are indirectly correlated with the first 3 factors. Feature set

extraction of first 3 factors is more efficiently plausible than the other factors. We

now discuss the application of these first 3 factors and introduce the feature score

functions associated with each feature.

3.1.1 Fraction of Test Cases Passed

The primary and most important factor to determine the correctness of a solution

program is the number of test cases it passed out of all the set test cases.

Each problem on the introductory programming course web platform consists of

a set of test cases. These test cases are preset by the problem setter. Each test case

consists of an input and the corresponding correct output. So, if a code submission,

for the test case input produces output equal to the corresponding correct test case

output it is said that the code submission has passed this test case, else it is said to

have failed or not passed.



18

Now, we attempt to understand the grading policy on the number of test cases

passed. If a submission passed all the test cases it is considered a correct solution

and all but few marks are awarded depending upon other guidelines. If there exists

a failed test case the solution is considered incorrect and partial marks are awarded

proportional to the number of test cases passed.

We attempt to apply both the guidelines to our grading model. We present score

functions for each grading guideline. These functions will use the number of test

cases passed and total number of test cases to compute a score, which is a real

number in the range 0 to 1, both inclusive.

Firstly, we present the score function for a complete solution having k test cases

passed out of n test cases, fc(k, n). We define the complete solution score function

as an indicator function.

fc ∈R {0, 1}

fc(k, n) =

{
1 if k = n

0 otherwise

The complete solution score function, for submission passing k out of n test cases,

can also be defined as follows.

fc(k, n) =

⌊
k

n

⌋

The above function, complete solution score function is used to apply complete

solution grading guideline.

Secondly, we present the partial solution score function to capture the partial

solution cases. Cases when not all test cases pass for a submission are captured by

this function. Partial solution sore function, fp(k, n) is a simple linear function of

number of test cases passed k and total number of test cases n for a submission. It

evaluates to a real number and ranges from 0 to 1.



19

fp ∈R [0, 1]

fp(k, n) =

(
1−

⌊
k

n

⌋)
× k

n

We use partial solution score function to apply the partial solution grading

guideline.

Hence, using these two score function we attempt to capture the feature of number

of test cases passed for a submission.

3.1.2 Time Taken to Solve

Another significant factor to distinguish a proficient programmer from a novice one

is on the basis of time take to solve the problem. Clearly, a better programmer will

require much less time time to solve than a beginner.

Programming problems are assigned to student in a scheduled course programming

lab. This scheduled lab has a fixed duration of few hours. The solutions assigned in

labs have to submitted within the schedule of respective labs.

While grading, TAs give benefit of some marks to solutions submitted earlier

over other solution submissions. The earlier the submission made the higher the

marks obtained. So, we establish a inverse relation between grades and submission

timestamp. A solution submission timestamp refers to unix timestamp of the time

of submission.

Time score function is an attempt to capture the grading policy regarding time

of submission. We define this function as a linear function on submission timestamp,

start timestamp and end timestamp of the submission’s lab. For submission made at

unix timestamp ts and if lab start timestamp and end timestamp are tstart and tend

respectively, the time score function, ft may be defined as follows.

ft ∈R [0, 1]

ft(ts, tstart, tend) =
(tend − ts)

(tend − tstart)



20

We use this time score function to apply the submission time based grading policy

and use the feature of time taken to solve.

3.1.3 Fraction of Successful Compilations

Experienced programmers commit relatively less compilation errors as compared

to beginners. They write elegant code in more organised manner. More organised

manner includes proper indentation and relevant comments. TAs take into account

indentation and comments directly. Using this feature of fraction of compilation

errors or fraction of compilation successes, we attempt to capture the effect of

indentation and comments on grades indirectly.

The lower the compilation errors the higher the grades. We introduce the

compilation score function to apply the grading policy on indentation, comments

and compilation errors. Whenever a students attempts to submit or evaluate/test

their solution code on the online platform, the code is compiled and run against the

test cases. The result of compilation is recorded which is success or fail. We extract

compilation data and use it in our compilation score function.

For a submission having es compilation errors and etot being the total number of

compilation attempts we define the compilation score function, fe as follows.

fe ∈R [0, 1]

fe(es, etot) =

{
1− es

etot
if etot > 0

0 otherwise

We rely on this compilation score function to directly imply grading policy over

fraction of successful compilations. Indirectly we attempt to apply grading policy on

comments and indentation.



21

3.2 Initial Grading Model

In this section we describe our initial approach to the grading model. This approach

is more inclined towards the intuitive idea. It is primitive and lays the foundation

for our final grading model.

This model utilizes the feature set and the score functions introduced in previous

section. We present initial grade score function on feature score functions. This is a

multiple step approach.

The idea is to define a grade score function which is a weighted function of the

feature score functions. The weights provide an implementation of flexible grading

policy. Through this function we attempt to capture the intuitive idea behind the

manual grading of programming assignments of the TAs.

The approach is as follows. We present 2 intermediate grade score functions,

Hard Grade Score Function gH and Soft Grade Score Function gS. Finally we present

the primitive function Initial Grade Score Function g0, which combines both the

intermediate hard and soft grade score function.

3.2.1 Hard Grade Score Function

As the name suggests hard grade score function, gH , is over features that have

relatively higher degree of objectivity and are easy to quantify. Also these features

directly affect the grades awarded to submissions. It can be said that these features

have less or no grey area for TAs to judge manually as compared to features that we

will cover in soft grade score function.

Hard Grade Score Function is a weighted function over a subset of features of

the feature set mentioned in previous section. We use the following feature grade

functions in the hard grade score function. This function score is directly proportional

to the grades awarded to the solution. It is a measure of correctness.

• Complete solution score function over fraction of TCs passed, fc.



22

• Partial solution score function over fraction of TCs passed, fp.

The hard grade score function is a linear weighted function of the 2 feature score

functions listed above. The weights are real numbers in the range 0 to 1 inclusive.

We know that the feature score functions also have a range of real numbers between

0 and 1 inclusive. The hard grade score function will also evaluate in the range of

real number between 0 and 1 inclusive.

The hard grade score function for a submission/solution S is defined as.

gH(S) = fc(S) + wp × fp(S)

where,

gH(S) ∈R [0, 1], is the hard grade score for submission S.

fc(S) ∈ {0, 1}, is the complete solution score function, for submission S.

fp(S) ∈R [0, 1], is the partial solution score function, for submission S.

wp ∈R [0, 1], is the weightage of partial solution.

Let us try to understand the intuition behind this function. Since complete

score function fc is an indicator function only one expression of the two sumed

expression evaluates to non-zero value and other will evaluate to zero. Complete

solution submissions are given full marks and the partial solution are given partial

marks according to the partial solution weightage wp. Since all the functions and

weights have value between 0 and 1 inclusive, it is clear that the hard score function

also lies between 0 and 1 inclusive.

Now, this hard grading score function can be written with full function domain

variables.

gH(k, n) = fc(k, n) + wp × fp(k, n)

where,

k ∈ Z≥0, is the number of test cases passed for the submission.

n ∈ Z≥0, is the total number of test cases for the submission.

Replacing the function with their expression we have.



23

gH(k, n) =

⌊
k

n

⌋
+

[(
1−

⌊
k

n

⌋)
× wp ×

k

n

]
This is the hard grade score function which will be used in our initial grade score

function.

3.2.2 Soft Grade Score Function

Soft Grade Score Function, gS is the counterpart of hard grade score function. It

covers the remaining features that have relatively lower degree of objectivity and

are relatively difficult to quantify. These features have higher manual TA judgement

dependency because these features have more grey area.

Soft grade score function is also a weighted function over the remaining subset

of features mentioned in previous section. It is also directly proportional to the

grades and acts as a measure of programing soft skills. Following are the two features

covered by soft grade score function.

• Time score function over time taken to solve, ft

• Compilation score function over fraction of successful compilations, fe

The soft grade score function is again an linear weighted function of the 2 feature

score functions mentioned above. Similar to the hard grade score function, in this

case also, the weights are real numbers with value between 0 and 1 inclusive. We

know that the feature score function also evaluate in the real range between 0 and

1 inclusive. And we have designed the soft grade score function to evaluate in the

range of 0 and 1 inclusive. For this we put an extra constraint on the weights of

having sum equal to 1.

We define the soft grade score function for a submission/solution S as.

gS(S) = wt × ft(S) + (1− wt)× fe(S)

where,



24

gS(S) ∈R [0, 1], is the soft grade score for submission S.

ft(S) ∈R [0, 1], is the time score for submission S.

fe(S) ∈R [0, 1], is the compilation score for submission S.

wt ∈R [0, 1], is the weightage of time score.

we = 1− wt, is the weightage of compilation score.

The intuition behind this function is that we are just dividing the weightage

among the two feature score functions. Since, these weightage values are variable

the function can be customised for flexible grading policy. Since all the functions

and variables evaluate to a value between 0 and 1 inclusive and we have a constraint

of weightage values to have sum equal to 1, the soft grade score function is just

a weighed average to feature score function. And since the feature score function

have a evaluation range between 0 and 1 inclusive, the weighted average will also be

between 0 and 1 inclusive. Hence, we also maintain the range of soft grade function

between 0 and 1 inclusive.

Now, we rewrite the soft grade score function with full domain variables.

gS(ts, tstart, tend, es, etot) = wt × ft(ts, tstart, tend) + (1− wt)× fe(es, etot)

where,

gS(S) ∈R [0, 1], is the soft grade score for submission S.

ts ∈ Z≥0, is the unix timestamp for the submission time.

tstart ∈ Z≥0, is the unix timestamp for the start time of lab/submission-window.

tend ∈ Z≥0, is the unix timestamp for the end time of lab/submission-window.

es ∈ Z≥0, is the number of compilation errors made for the problem.

etot ∈ Z≥0, is the total number of compilation attempts made for the problem.

we = 1− wt, is a restriction imposed on the weights.

Now rewriting the above expression with expanded function definitions.

gS(ts, tstart, tend, es, emax) = wt ×
(tend − ts)

(tend − tstart)
+ we ×

(
1− es

etot

)



25

This definition of soft grade score function will be used to compute initial grade score

function.

3.2.3 Initial Grade Score Function

We have discussed the two independent intermediate steps in our grading model in

the form of hard and soft grade score functions. Combining the two grade functions,

soft grade score function and hard grade score function, we present initial grade

score function g0. This function is the final step in our initial grading model.

Initial grade score function, g0, aims to capture all the intended features that

affects grades of a solution submission. It relies on the two intermediate grade score

functions, hard and soft, which together capture all the features and grading policies

followed by the TAs over these features. As both the score functions are directly

proportional to grades, so is the initial grade score function. g0 uses the following

two functions.

• Hard grade score function, gH .

• Soft grade score function, gS.

The initial grade score function is also a linear function. More specifically, it is

simply a weighted average of the two above grade score functions. We know that

both the grading functions evaluate to a real number between 0 and 1 inclusive. We

also restrict the weights wH and wS, real numbers in range 0 and 1 inclusive, to have

sum equal to 1 as the function is weighted average. Hence this initial grade score

function also evaluates to a real number between 0 and 1 inclusive.

We define the initial grading policy as follows for a submission S.

g0(S) = wH × gH(S) + (1− wH)× gS(S)

where,

g0(S) ∈R [0, 1], is the initial grade score function for solution S.



26

gH(S) ∈R [0, 1], is the hard grade score function for solution S.

gS(S) ∈R [0, 1], is the soft grade score function for solution S.

wH ∈R [0, 1], is the weightage of gH .

wS = 1− wH , is the weightage of gS.

The intuition is that we are just dividing the variable weightage of the initial

grade score function among the hard grade score function and soft grade score

function. This provides provisions for flexible grading policy with customizable

weight distribution over hard features and soft features. Since, the 2 intermediate

score functions represent different type of features, the degree of impact of each type

of feature set can be controlled. This granularity helps us to implement the grading

policy similar to that implemented manually by the TAs.

Now, rewriting the function with all the domain variables.

g0(k, n, ts, tstart, tend, es, etot) = wH × gH(k, n) + wS × gS(ts, tstart, tend, es, etot)

where,

g0 ∈R [0, 1], is the initial grade score function.

gH ∈R [0, 1], is the hard grade score function.

gS ∈R [0, 1], is the soft grade score function.

wH ∈R [0, 1], is the weightage of gH .

wS ∈R [0, 1], is the weightage of gS.

wS = 1− wH , is a restriction imposed on the weights.

k ∈ Z≥0, is the number of test cases passed for the submission.

n ∈ Z≥0, is the total number of test cases for the submission.

ts ∈ Z≥0, is the unix timestamp for the submission time.

tstart ∈ Z≥0, is the unix timestamp for the start time of lab/submission-window.

tend ∈ Z≥0, is the unix timestamp for the end time of lab/submission-window.

es ∈ Z≥0, is the number of compilation errors made for the problem assigned.

etot ∈ Z≥0, is the total number of compilation attempts made for the problem



27

assigned.

Thus we have derived our Initial Grade Score Function. This function attempts

to capture different grading policies depending upon the weights.

The initial grade score will compute a real number value between 0 and 1 inclusive

when provided the required features of a submission. This initial grade score for

a submission is directly proportional to the grades awarded by our model. Higher

the initial grade score, g0, higher the grades/marks awarded by our grading model.

If for a submission S, g0 is 1.0 the grades/marks awarded by our grading model it

equal to the maximum marks, mm, and if g0 is 0.0 then the grades/marks is equal

to minimum marks, i.e., 0, in many grading systems.

For a submission S we have all the required features extracted, we know the

procedure to compute its initial grade score function g0(S), we also know the

maximum marks for the problem set. Then we can use the following relation to get

the grades/marks awarded to submission S by our initial grading model.

marks(S) = g0(S)×mm(S)

where,

marks(S) ∈R [0,mm(S)], is the marks/grades awarded by our initial grading model

to solution S.

g0(S) ∈R [0, 1] is the initial grade score computed by the function for submission S.

mm(S) ∈ Z≥0, is the maximum marks set for the problem for submission S.

Thus, we have a model/tool namely initial grading model for solution submissions

for problems assigned in an introductory programming course.

3.3 Final Grading Model

In this section we finally present the Final Grading Model which is similar to and is

an extension of Initial Grading Model. Basically, it is a refinement of Initial Grading

Model.



28

We first discuss the significance and motivation for extending the initial grading

model to final grading model. Following it we intuitively introduce the final grade

score function. Lastly we summarise the final grading model and its usage. This

wraps up the core theory of the thesis.

3.3.1 Significance and Motivation

Initial grading model consists of multiple steps and 5 weight variables. g0 is directly

motivated by the grading policies set in the introductory programming course and by

TAs’ judgement. It can be said that the initial grading model follows the approach

more aligned to intuition and could be simplified further.

Final grading model aims to simplify the initial grading model. Through the

final grading model we attempt to reduce number of steps and number of weightage

variables. It need not be intuitive.

Reducing the model to a simpler form has various advantages. Less number

of steps allows easier computation and implementation of the model, making it

more analysis friendly. Less number of weightage variable reduces the complexity

of determining the correct values for these variables. Evolution of simplified model

is more efficient as compared to a complex one. These little advantages prove very

significant for our work when we try to improve the model or develop a variant of it

and also help when we try to analyse the performance of our model or try to find

most appropriate values for the weightage variables.

3.3.2 Intuition

Now we present the final grading model and final grade score function and intuition

behind it. We explain the changes made to initial grade function that refines it to

final grade score function.

There are two major modifications in the new grade function.

1. First modification is on partial solution grade score. We have removed the

indicator part of the function. The new definition of partial grade score function



29

is as follows.

fp(k, n) =
k

n

where,

k ∈ Z≥0, is the number of test cases passed for the submission.

n ∈ Z≥0, is the total number of test cases for the submission.

The intuitive purpose is to make the function simpler. It does not change the

grading model. By simple adjustment of the weights the former model can be

retained.

2. Second modification is on compilation grade score function. The new function

is also a linear function with slight difference in its definition. One of the param-

eters has also changed. Total number of compile attempts by the attempting

student, etot, gets replaced by maximum number of compilation failures by any

student attempting the same problem, emax. Number of compilation failures

made by the student for the submission, es, will remain of use. Now, the

compilation grade score function is inversely proportional to ratio of es to emax.

Initally the score was inversly proportional to the ratio of es to etot. The new

definition of compilation grade score function is as follows.

fe(es, emax) =

{
1− es

emax

if emax > 0

0 otherwise

where,

es ∈ Z≥0, is the number of compilation errors made.

emax ∈ Z≥0 is the maximum number of compilation errors made by any student

for the same problem.

The previous/former compilation score function is unfair to students having

low number of compilation attempts and is independent of other students. We

need a function which can relatively distinguish students’ solution submissions

on the basis of compilation results.



30

Consider three students A, B and C that attempted a common problem. The

compilation attempts and compilation failures for A are 2 and 1 respectively.

For B these values are 10 and 4 respectively and for C it’s 20 and 0 respectively.

So if former compilation grade score function is used to compare the students

we have, B > A > C. Higher score is better and so B outscores A. But A had

only 1 compilation failure and B had 6 compilation failures. More over the

scores of A and B are independent of compilation results of C.

If the new compilation grade score function is use to compare then we have,

A > B > C. This relative score is more intuitive as A has made lower number

of compilation errors as compared to B. Also these scores are relative to

a common student C, that made maximum number of compilation failures

attempting the same problem.

We will completely expand the initial grade score function according to the above

new intermediate feature functions. Then we will reduce it to a mathematically

simpler form. Finally we restructure and rename variables for simplicity, to present

the final grade score function.

The initial grade score function is as follows.

g0(k, n, ts, tstart, tend, es, emax) = wH ×gH(k, n)+(1−wH)×gS(ts, tstart, tend, es, emax)

where,

g0 ∈R [0, 1], is the initial grade score function.

gH ∈R [0, 1], is the hard grade score function.

gS ∈R [0, 1], is the soft grade score function.

wH ∈R [0, 1], is the weightage of gH .

wS = 1− wH , is the weightage of gS.

k ∈ Z≥0, is the number of test cases passed for the submission.

n ∈ Z≥0, is the total number of test cases for the submission.

ts ∈ Z≥0, is the unix timestamp for the submission time.



31

tstart ∈ Z≥0, is the unix timestamp for the start time of lab/submission-window.

tend ∈ Z≥0, is the unix timestamp for the end time of lab/submission-window.

es ∈ Z≥0, is the number of compilation errors made for the problem assigned.

emax ∈ Z≥0, is the maximum number of compilation error made by any student

attempting the same problem.

g0(k, n, ts, tstart, tend, es, emax) = wH × gH(k, n) + wS × gS(ts, tstart, tend, es, emax)

We know that,

gH(k, n) =
⌊
k
n

⌋
+ wp × k

n

gS(ts, tstart, tend, es, emax) = wt × (tend−ts)
(tend−tstart)

+ we ×
(
1− es

emax

)
Substituting the above function definitions in the expression of g0, we have,

= wH ×

[⌊
k

n

⌋
+ wp ×

k

n

]
+ wS ×

[
wt ×

(tend − ts)

(tend − tstart)
+ we ×

(
1− es

emax

)]

= wH

⌊
k

n

⌋
+ wHwp

k

n
+ wSwt

(tend − ts)

(tend − tstart)
+ wSwe

(
1− es

emax

)
Now renaming the constant variables without loss of generality as per following.

wH = wc,

wH × wp = wp,

wS × wt = wt,

wS × we = we

Renaming is done for simplicity and to keep the same weight parameter names.

We have derived a new function over same set of input parameters except for etot. etot

has been replaced by emax. A constraints on weight parameters, wc+wp+wt+we = 1,



32

is imposed to fulfil the weight parameter constraints on inital grade score fucntion.

= wc

⌊
k

n

⌋
+ wp

k

n
+ wt

(tend − ts)

(tend − tstart)
+ we

(
1− es

emax

)

Hence we have derived a new grade score function from initial grade score function

named final grade score function.

3.3.3 Final Grade Score Function

In the previous section we have derived and presented the final grade score function

g which now uses modified feature functions and weightage variables. We again state

the final grade score function clearly.

The final grade score function is a single step grade score function. It takes in

7 feature variables as input to computes a score which is real number in the range

0 and 1 inclusive. We impose the restriction on the weight to have sum equal to

1. This restriction allows us to maintain the range of scores to lie between 0 and 1,

both inclusive.

g(S) = wc × fc(S) + wp × fp(S) + wt × ft(S) + we × fe(S)

where,

g(S) ∈R [0, 1], is the final grade score function for solution S.

fc(S) ∈R [0, 1], is the complete solution score function for solution S.

fp(S) ∈R [0, 1], is the partial solution score function for solution S.

ft(S) ∈R [0, 1], is the time feature score function for solution S.

fe(S) ∈R [0, 1], is the compilation feature score function for solution S.

wc ∈R [0, 1], is the weightage variable for complete score.

wp ∈R [0, 1], is the weightage variable for partial score.

wt ∈R [0, 1], is the weightage variable for time score.

we ∈R [0, 1], is the weightage variable for compilation score.

wc + wp + wt + we = 1, is restriction on the weights to have sum equal to 1.



33

Now, writing the function with its domain variables or input parameters which

are the features for a submission.

g(k, n, ts, tstart, tend, es, emax) = wcfc(k, n)+wpfp(k, n)+wtft(ts, tstart, tend)+wefe(es, emax)

where,

k ∈ Z≥0, is the number of test cases passed for the submission.

n ∈ Z≥0, is the total number of test cases for the submission.

ts ∈ Z≥0, is the unix timestamp for the submission time.

tstart ∈ Z≥0, is the unix timestamp for the start time of lab/submission-window.

tend ∈ Z≥0, is the unix timestamp for the end time of lab/submission-window.

es ∈ Z≥0, is the number of compilation errors made for the problem assigned.

emax ∈ Z≥0, is the maximum number of compilation error made by any student

attempting the same problem.

Replacing the functions with their definitions we have.

g(k, n, ts, tstart, tend, es, emax) = wc

⌊
k

n

⌋
+ wp

k

n
+ wt

(tend − ts)

(tend − tstart)
+ we

(
1− es

emax

)

The function is again a weighted average of all the feature score function but in a

single step in this case. All the weights are restricted to have a value between 0 and

1 inclusive and all the feature score functions evaluate to a value between 0 and 1

inclusive. As the function is a weighted average we restrict the weights to have a sum

of 1.Thus, the function also evaluates to a real number between 0 and 1 inclusive.

The final function like the initial function also uses 4 feature functions but 4

weight parameters instead of 5. The new grade score function provides a single step

grading model. Although there might be some difference in the granularity of policies

applied through these weights but this function is easier to analyse and work with

weights.

Obtaining marks form the final grade score is pretty straightforward and similar

to that of initial grade score function. Since the final grade score function evaluates



34

between 0 and 1 inclusive we just take the product of final score and maximum

marks set for the problem. The relation is as follows.

marks(S) = g(S)×mm(S)

where,

marks(S) ∈R [0,mm(S)], is the marks/grades awarded by the final grading model

to solution S.

g(S) ∈R [0, 1], is the final grade score computed by the function for submission S.

mm(S) ∈ Z≥0, is the maximum marks set for the problem being attempted in

submission S.

Hence, we have derived a function and a grading model described above. For

any solution submission if the features are availabe it can be graded according to

grading policy set by weight parameter values. This model can be used with weights

to implement a wide variety of grading policy to estimate grades for programming

problem solution submission is a introductory programming course.



Chapter 4

Learning Weight Parameters for

Grading Model

So far we have introduced our work, helped develop the background required to

understand it and briefly mentioned related work. The last chapter explained the

grading model and its theoretical foundations. The final grading function and grading

model are implemented through out the remaining part of this thesis.

However, the final grade score function cannot be implemented without assigning

values to the weightage variables/parameters. This chapter describes the attempt to

solves this problem of assigning values to the weight parameters.

In this chapter we explain the supervised training performed to set the values of

the weight parameters of the final grade function. The learned weights are presented.

These weight values are used in the remainder part of our thesis.

4.1 Learning Technique and Training Dataset

We have developed a function, final grade function, which is a linear function. And

we need to assign values to the weight parameters. Our strategy is to learn these

weights from the grading done by the teaching assistants (TAs).

The training data is Exam Grades Dataset described in Section 2.2.2. The dataset

is briefly but completely described for convinience as follows.



36

The dataset was collect by ITS for ESc101, an introductory programming course

at IIT Kanpur in 2014-15 even semester. It consists of sets of 201 solution submissions

each. There are 8 such sets and each set is for different question. We have the final

awarded grades in the dataset and the features required by the final grade score

function can be extracted. This data is our training dataset as the grades have

awarded with extreme caution and cross checked multiple times. Thus, it can be

said that our training dataset has, n = 1608, data points to perform a supervised

learning.

Since final grade function is a linear function the training technique used is Linear

Regression with Ordinary Least Squares [MPV12] introduced in section 2.3. Details

are discussed in this section.

Now, we need a linear regression model on our linear final grade function with

the exam grade dataset. We present the linear regression model in the remainder of

this section.

Consider the final grade score function.

g(k, n, ts, tstart, tend, es, emax) = wcfc(k, n)+wpfp(k, n)+wtft(ts, tstart, tend)+wefe(es, emax)

The definitions have been described in previous chapter more than once. More over

the functions may be treated just as a black box for our purpose. The aim is to learn

over the training dataset to estimate the values of wc, wp, wt and we.

The technique we intend to use is Linear Regression with Ordinary Least Squares

which can estimate these 4 weight parameters wc, wp, wt and we if fc, fp, ft and fe

are known for all the data points. And g can be obtained by dividing the grades

awarded by maximum marks. The feature function fc, fp, ft and fe can be evaluated

if all the 7 features for each data point are known namely k, n, ts, tstart, tend, es and

emax.

We had access to all the logged data and python scripts were written to mine the

values of these features. We also have the grades awarded to all these submissions

and the maximum marks for these submissions’ problems.



37

We have successfully described a linear regression model for our and also have

fulfilled all the requirements for learning the weights. Hence, we are set to run linear

regression with ordinary least squares over our gold standard data set to estimate

the values of weight variables.

4.2 Learned Weights

In this section we present the results of training performed as explained in the

previous section and state the learned weightage parameter. Since, we have describe

the linear regression model we need to fill in the details and run the ordinary least

squares method to get an estimate of weights.

For each of the 1608 data points, i.e. submissions in our data set we have mined

the following 7 features from the database containing the detailed logs of lab exam

data set.

1. ki, number of testcases passed for ith submission.

2. ni, total number of testcases for the problem for ith submission.

3. tis, submission timestamp for ith submission.

4. tistart, start timestamp of lab exam for ith submission.

5. tiend, end timestamp of lab exam for ith submission.

6. eis, number of compilation fails for ith submission.

7. eimax, maximum number of compilation fails for any submission attempting the

problem for ith submission.

8. marksi, grades/marks awarded to the ith submission.

9. mmi, maximum marks for ith submission’s problem.

Using these mined features we can calculate the following 4 feature function

scores for all the 1608 data points.



38

1. f i
c(k

i, ni), complete solution score function.

2. f i
p(k

i, ni), partial solution score function.

3. f i
t (t

i
s, t

i
start, t

i
end), time score function.

4. f i
e(e

i
s, e

i
max), compilation score function.

Now, the final grade score g for each corresponding data point can simply be

obtained by dividing the grades awarded by TAs marksi by the maximum marks

mmi of the problem of the submission.

gi(k, n, ts, tstart, tend, es, emax) =
marksi

mmi

where,

gi is the score for ith data point. marksi is the grades awarded by the TAs for ith

data point in our exam grades dataset. mmi is the maximum marks for ith data

point’s problem in the exam grades dataset.

So, the direct closed form expression to estimate the weightage parameters is.

β̂ = (XTX)−1XTy

So, now we just need to define the matrices to get the weightage parameters. The

matrices are as follows.

y =



g1

g2

...

gn


, β̂ =



ŵc

ŵp

ŵt

ŵe


, X =



f 1
c f 1

p f 1
t f 1

e

f 2
c f 2

p f 2
t f 2

e

... ... ... ...

fn
c fn

p fn
t fn

e





39

After evaluating we have,

β̂ =



0.04663081

0.78131624

0.05072156

0.15732873



Parameter Value

ŵc 0.04663081

ŵp 0.78131624

ŵt 0.05072156

ŵe 0.15732873

Table 4.1: Estimated Weight Parameters for Final Grade Score Function

Thus we have estimated a set of values for the weightage parameters for final

grade score function. We will use these parameter values through out the remainder

of our thesis unless stated otherwise.

The grading model imposes an restriction on the sum of the weight parameters

to be 1. However, the sum of estimated parameters is 1.03599734, 0.04 higher. This

does not indicate any error or inconsistency in the estimation of these parameters.

The parameter estimation technique does not take into account any such restrictions.

For the purpose of grading all final grade scores above 1 will be considered as 1.



Chapter 5

Experiments and Results

The final grading model along with the learned weights is a grading model ready for

application. But the correctness and accuracy is yet to understood.

Understanding correctness and accuracy needs a scale of measurement, something

to compare with. We have used the teaching assistant (TA) Grade Data Set. This

dataset had 2 grades for each assignment by different teaching assistants (TAs), one

finally awarded to the submission and one discarded or alternate TA grade. We

have compared the alternate TA grades against our grading model grades. These

comparisons are done keeping the final grades as benchmark.

Once we have a scale we need a gauge to quantify and compare, some metrics

that are appropriate for its intended purpose. We have considered the fact that

most important aspect of grading it that it brings order, a means to rank. We have

experimented with metrics that compare the ranking with the benchmark ranking to

quantify performance on different basis. There are multiple solution submission sets

as per programming question/problem with 201 submissions in each TA submission

set and 99 to 101 submissions in each grading tool submission set.

Using the quantified measurements we present the observations and compare the

performance of alternate TA grades against grading model tool grades various graph

plots and tables.

The datasets used for experiments are described in Section 2.2. Analysis of our

autograding tool is done with the dataset explained in section 2.2.1, assignment



41

grades dataset and analysis of grading by TAs is done with dataset explained in

section 2.2.2, exam grades dataset. These datasets are briefly mentioned again.

Both the datasets, exam grades and assignment grades datasets, were documented

during ESc101 course, an introductory programming course, at IIT Kanpur held in

even semester of academic year 2014-2015.

Exam grades dataset consist of solution submissions for 8 programming ques-

tions/problems. Each question has 201 corresponding submissions, forming 8 solution

submission sets each consisting of 201 solution submissions. Each solution submis-

sion has been graded by 2 different TAs. One of them is finally awarded and other

has been discarded as alternate TA grade. The alternate TA grades are analysed

by keeping the awarded grades as true benchmark grades. Please note that these

awarded grades are also used for learning weight parameters.

Assignment grades dataset consist of solution submissions for 64 programming

questions/problems. Each question has 99 to 101 corresponding submissions, forming

64 solution submission sets each consisting of 99 to 101 solution submissions. Each

solution submission has been graded by a TA and our autograding tool. The grades

by TAs are the finally awarded grades to these soultion submissions. Our autograding

tool grades are analysed by keeping the awarded grades as true benchmark grades.

5.1 Grade Error

The Absolute Mean Error [Inca] and Root Mean Squared Error [Incb] gives us some

basic level idea of performance comparison.

Absolute Mean Error (Abs Mean Err) is the mean of absolute errors for all

predicted/estimated values. Root Mean Square Error (RMSE) is the root of mean of

squared errors for all predicted/estimated values. They may be defined as.

Abs Mean Err = 1

n

n∑
i=1

|predicted-valuei − true-valuei|



42

RMSE =

√√√√ 1

n

n∑
i=1

(predicted-valuei − true-valuei)2

where,

n, is the total number of sample points.

predicted-valuei, is the value predicted/estimated by the model for ith sample point.

true-valuei, is the actual value for ith data point.

These error calculations for the model/tool use the final grade score as the

predicted-value and normalised awarded grades as the true-value. The normalised

marks by alternate TA is used as predicted-value and normalised awarded marks as

true-value for TA error calcualtion.

Table below compares Grading Model/Tool normalised grades versus Alternate

TA normalised grades on bases of Absolute Mean Error (Abs Mean Err) and Root

Mean Squared Error (RMSE) against awarded grades. These errors are calculated

for normalised grades, grades scaled to real number in range 0 and 1, both inclusive.

For each question there is a submissions set. For each submission set both absolute

mean and root mean squared errors are calculated on normalised grades. For these

values average, standard deviation, minimum and maximum are mention in the table

below.

Grading Model/Tool Alternate TA

Avg. S.D. Min. Max. Avg. S.D. Min. Max.

Abs Mean Err 0.0700 0.0635 0.0110 0.3960 0.1554 0.0864 0.0872 0.2920

RMSE 0.1291 0.0900 0.0305 0.5775 0.2540 0.1281 0.1521 0.4373

Table 5.1: Avg. Grade Error Comparison - Grading Tool vs TAs

The numbers suggests that Grading Model/Tool performs comparable to TAs in

terms or errors. In almost all comparisons in the table Grading Model/Tool displays

marginally lower errors.



43

5.2 Rank Error

Rank for a solution submission si is defined as its position in its corresponding

solution set D sorted in descending order by grades/marks. True rank ranktrue(si),

tool rank ranktool(si) and TA rank rankTA(si) of a submissions correspond to rank

when sorting is done by true marks markstrue(si), tool marks markstool(si) and TA

marks marksTA(si), respectively.

If there are submissions in the solution set D having grades/marks equal to a

ranked submission si then the ranked submission has a bucket/set of ranks b-rank(si)

containing ranks of all these submissions.

b-ranktrue(si) = {ranktrue(sj) | markstrue(si) = markstrue(sj); and sj ∈ D}

b-ranktool(si) = {ranktool(sj) | markstool(si) = markstool(sj); and sj ∈ D}

b-rankTA(si) = {rankTA(sj) | marksTA(si) = marksTA(sj); and sj ∈ D}

Rank error rank-error(si) for a solution submissions si is definied as minimum

absolute difference between its true ranks and tool or TA ranks. Please note that a

submissions will either have tool ranks or TA ranks since the datasets are disjoint.

rank-error tool(si) = min
rtool∈b-ranktool(si) , rtrue∈b-ranktrue(si)

(|rtool − rtrue|)

rank-errorTA(si) = min
rTA∈b-rankTA(si)

, rtrue∈b-ranktrue(si)
(|rTA − rtrue|)

Number of rank errors num-rank-error-ss(D, j) for a submission set D with rank

displacement less than equal to r is defined as.

num-rank-error-sstool(D, r) = | {si | rank-errortool(si) ≤ r; and si ∈ D} |

num-rank-error-ssTA(D, r) = | {si | rank-errorTA(si) ≤ r; and si ∈ D} |



44

The following graph on y-axis, number of rank errors num-rank-error(r), denotes

the average number of submissions across all the solution sets having rank error less

than or equal to the x-axis rank r. Let mtool be total number of tool submission sets

available and let mTA be the total number of TA submission sets available.

num-rank-errortool(r) =
1

mtool

mtool∑
i=1

num-of-rank-error-sstool(Di, r)

num-rank-errorTA(r) =
1

mTA

mTA∑
i=1

num-of-rank-error-ssTA(Di, r)

Figure 5.1: Avg. Rank Error Comparison - Grading Tool vs TAs

Although a single submission set for a question consists of 201 submissions for

TA data set and 99 to 101 submissions for tool dataset our autograding tool exhibits

lower rank errors as compared to TAs.

Welch’s t-test [Rum07] is statistical test for the null hypothesis that 2 independent

samples have identical average (expected) values. On performing t-test for average



45

number of rank errors comparing means of tool and TAs, the p-value = 0.0002258064.

The low p-value implies that the null hypothesis of tool and TA having identical means

may be rejected. Hence, the differences in rank errors are statistically significant.

Following two sections helps us to understand the performance in terms of

ranking at a little more finer level of granularity. Some statistics for positive rank

displacement, improvement in rank with respect to its rank according to awarded

grades and for negative rank displacement, deterioration in rank with respect to its

rank according to awarded grades.

5.2.1 Positive Rank Error

Taken into consideration here are rank errors only for submissions that exibited

improvement in their ranks, i.e., TA or tool ranks are better than true ranks.

Following is a table with few such statistics comparing our autograding tool and

TAs.

• Avg. Number of Errors: Denotes the average number of solutions exhibiting

positive rank error. It is calculated by taking average of, number of submissions

exhibiting improvement in rank for a submission set, across all the submission

sets.

• Average Rank Error: Denotes the average magnitude of positive rank error,

in ranks. It is calculated by taking average of, average magnitude of rank

improvements in a submissions set, across all the submission sets.

• Maximum Rank Error: Denotes the maximum magnitude of positive rank error,

in ranks. It is calculated by taking the average of, maximum improvement in

rank in a submissions set, across all the submission sets.

• S.D. of Rank Error: Denotes the standard deviation of magnitude of positive

rank error, in ranks. It is calculated by taking the average of, standard

deviations of magnitude of improvement in rank for a submission set, across

all the submission sets.



46

Grading Tool TAs

Avg. Number of Errors 9.73 44.12

Average Rank Error 18.04 31.17

Maximum Rank Error 35.10 83.25

S.D. of Rank Error 10.60 21.94

Table 5.2: Positive Rank Error - Grading Tool vs TAs

Even considering that TA dataset has 201 submissions for each question and Tool

data set has about 99 to 101 solutions for each question, the errors for tool are lower

or equal to the TAs.

Welch’s t-test [Rum07] is statistical test for the null hypothesis that 2 independent

samples have identical average (expected) values. On performing t-test for average

number of positive rank errors comparing means of tool and TAs, the p-value

= 0.0013670157. The low p-value implies that the null hypothesis of tool and TA

having identical means may be rejected. Hence, the differences in positive rank errors

are statistically significant.

5.2.2 Negative Rank Error

Now, considering rank errors only for submissions that exibited deterioration in their

ranks, i.e., TA or tool ranks are worse than true ranks. Following is a table with few

such statistics comparing our autograding tool and TAs.

• Avg. Number of Errors: Denotes the average number of solutions exhibiting

negative rank error. It is calculated by taking average of, number of submissions

exhibiting deterioration in rank for a submission set, across all the submission

sets.

• Average Rank Error: Denotes the average magnitude of negative rank error,

in ranks. It is calculated by taking average of, average magnitude of rank

deteriorations in a submissions set, across all the submission sets.



47

• Maximum Rank Error: Denotes the maximum magnitude of negative rank

error, in ranks. It is calculated by taking the average of, maximum deterioration

in rank in a submissions set, across all the submission sets.

• S.D. of Rank Error: Denotes the standard deviation of magnitude of negative

rank error, in ranks. It is calculated by taking the average of, standard

deviations of magnitude of deterioration in rank for a submission set, across

all the submission sets.

Grading Tool TAs

Avg. Number of Errors 10.35 41

Average Rank Error 5.51 22.90

Maximum Rank Error 13.73 61.25

S.D. of Rank Error 3.68 15.29

Table 5.3: Negative Rank Error - Grading Tool vs TAs

Grading tool displays much lower rank errors as compared to the TAs.

As we have mentioned Welch’s t-test [Rum07], which is a statistical test for the

null hypothesis that 2 independent samples have identical average (expected) values.

Again, performing t-test for average number of negative rank errors comparing means

for tool and TAs, the p-value = 0.000792847. The p-value is again quite low. Since it

implies that the null hypothesis of identical may be rejected. Hence, these differences

are also statistically significant.

5.3 Spearman’s Rank Correlation Coefficient (ρ)

Performance in terms of ranking can be measured by calculating the Spearman’s

Rank Correlation Coefficient (ρ) [WM03].

Spearman’s rank correlation coefficient is a measure of similarity of order or

sequence between two different arrangements by two different variables on a common

set of items. It is calculated by the following formula.



48

ρ = 1− 6
∑

d2i
n(n2 − 1)

where,

n, is the number of items.

di, is the difference in rank/position of ith item in two different arrangements by the

two variables.

Spearman’s rank correlation coefficients for ordering by both autograding tool

and TAs are calculated with respect to the ordering by their corresponding true

grades.

A table comparing autograding tool and TAs on different statistics of Spearman’s

Rank Correlation Coefficient (ρ) is presented. Spearman’s rank correlation coefficient

is calculated for every submission set. Then for these values average, minimum,

maximum and standard deviation are calculated.

Grading Tool TAs

Average 0.9559 0.9163

Maximum 1.0000 0.9900

Minimum 0.6930 0.8280

Standard Deviation 0.0502 0.5416

Table 5.4: Spearman’s Rank Correlation Coefficient - Grading Tool vs TAs

ρ has a real number range from −1 to +1. The higher the value of ρ the more

similarity with the ranking by awarded grades. The autograding tool outperformances

the TAs in all measures except for minimum value of ρ. Since, standard deviation is

lower and average is higher it cannot be concluded that tool is inferior to TAs.

As we have mentioned t-test [Rum07], which is a statistical test for the null

hypothesis that 2 independent samples have identical average (expected) values.

Again, performing t-test for the ρ values of tool and TAs, the p-value = 0.1005588579.

This p-value is low to a statistical significance degree of 10%. So, the null hypothesis

of identical means may be rejected. Hence, the differences are statistically significant



49

for ρ also.

5.4 Mean Average Precision (MAP)

Precision [MRS08] measures accuracy for queries that are responded with a set of

item. It is defined as follows.

precision =
|{relevant-items} ∩ {retrieved-items}|

|{retrieved-items}|

where,

relevant-items, are the expected items.

retrieved-items, are the items returned by the model.

Average Precision (AveP) [MRS08] for a query of n items is defined as follows.

AveP =

∑n
k=1[P (k)× rel(k)]

n

where,

n is the number of items queried for,

P (k) is the precision for k items,

rel(k) is an indicator function equal to 1 if item at rank k is relevant and 0 otherwise.

Mean Average Precision (MAP) [MRS08] extends AveP for multiple queries and

is defined as follows.

MAP =

∑Q
q=1 AveP(q)

Q

where,

Q is the number of queries under consideration,

AveP(q) is the Average Precision for qth query.

Precision uses tool grades and TAs grades for retrieved-items and true grades

for relevant-items. Items for our purpose are submissions. Mean Average Precision

(MAP) is calculated for two types of queries, retrieving top-k ranked and retrieving

bottom-k ranked submissions in a submission set. MAP is calcualted for queries for



50

each submission set. The graph plots have k on x-axis and calculated MAP for top-k

or bottom-k queries on y-axis.

5.4.1 Top-k Query MAP

For top-k queries the plot k versus MAP values follows.

Figure 5.2: Mean MAP for Top-k Queries - Grading Tool vs TAs

Tool’s performance is better in terms of MAP.

As we have mentioned t-test [Rum07], which is a statistical test for the null

hypothesis that 2 independent samples have identical average (expected) values.

Again here, performing t-test for the top-k query MAP values averaged over all

submission sets of tool and TAs, the p-value = 1.75644954760514 × 10−41. This

extremely low p-value implies that the null hypothesis can be rejected. Hence, the

differences in top-k MAP values are statistically significant.



51

5.4.2 Bottom-k Query MAP

For query to retrieve bottom-k ranked submissions the graph plot K versus MAP

values follows.

Figure 5.3: Mean MAP for Bottom-k Queries - Grading Tool vs TAs

Our autograding tool performs poorly in terms of MAP for bottom-k queries. It

is because autograding tool exhibits lower precision for bottom most submissions.

Upon close manual inspection it was observed that there exist a significant number

of submissions which pass only a few or no testcases but have been awarded decent

grades. Since, the submission has failed on almost all the testcases our autograding

tool has graded these solution with very low marks. Now, these submissions are

among the bottom most for the tool but at a better rank by the true grades. This

is the major reason for low MAP values of out tool. The true grades are not high

enough to affect top-k queries.

One possible reason for these submission being awarded good grades despite



52

testcase failures is the manual judgement. These solution submissions have miss the

details to pass testcases but the outline or logic or comments are good enough to be

manually judged for decent marks.

Our tool is not capable of manual inspection of code, let alone undertanding the

logic in comments or idea through the outline.

As we have mentioned t-test [Rum07] multiple times, which is a statistical test

for the null hypothesis that 2 independent samples have identical average (expected)

values. Again here, performing t-test for the bottom-k query MAP values averaged

over all submission sets of tool and TAs, the p-value = 1.25025727023226× 10−26.

The extremely low p-value clearly implies that the null hypothesis can be rejected.

Hence, the differences in bottom-k MAP values are statistically significant.

5.4.3 Top-Bottom-k Query Mean MAP

The plot for mean of both top-k and bottom-k ranked submissions retrieval. MAP

on y-axis for every k on x-axis is the mean of top-k MAP and bottom-k MAP, as in

previous two sections.



53

Figure 5.4: Mean MAP for Mean of Top-k & Bottom-k Queries - Tool vs TAs

The tool performs lower for high ranks due to bad performance in bottom-k

queries but gradually preforms comparable for higher rank queries. The pattern is

just a result for mean of top-k MAP and bottom-k MAP.

As we have mentioned t-test [Rum07] multiple times, which is a statistical

test for the null hypothesis that 2 independent samples have identical average

(expected) values. Again here, performing t-test for the mean of top-k and bottom-k

query MAP values averaged over all submission sets of tool and TAs, the p-value

= 0.563984354989546. The p-value in this case is comparatively quite high. But the

two values that are averaged to obtain these values have very low p-values. This

p-value implies that the null hypothesis of identical average scores cannot be rejected.

Hence, the differences in this case are statistically insignificant.



Chapter 6

Autograding ReST Server

We have developed this parametrised grading model for a flexible grading policy.

Then we have also trained the grade score function to estimate a set of values for

its weight parameters which implement the grading policy followed by teaching

assistants (TAs) in introductory programming course for 2015 even semester at IIT

Kanpur.

In this chapter we discuss the application of our grading model/tool. We have

worked with database and data collected by ITS [Das15]. ITS is also used as

programming platform for introductory programming course at IIT Kanpur. So,

since implemention and integration is possible, it was decided to implement and use

this grading model on ITS and add to its features.

So, we aim to provide ReST [Elk] based grading service APIs for ITS using the

database of ITS. The backend server is developed with only single html page at

frontend for testing server health and the rest of the GUI implementation is left to

ITS. The server is capable of running on an independent Docker [Incc] and designed

to be integrated into ITS. The server is written in Python [Fou] and runs on Flask

[Ron] and uses python module MySQLdb [Dus] for ITS MySQL database [Das15]

connectivity.



55

6.1 Specifications

The purpose of the autograding server is to automatically award grades by implement-

ing the final grade model to solution submitted for assigned programming problems

in labs conducted on ITS using ITS database. We discuss the different types of

requirements and system configurations in this section.

6.1.1 System Environment and Interface

The key system environment features of the machine on which the server is to be

hosted are as follows. This is the assumed set of system configuration for the server

hosting environment. The autograding server assumes and needs this environment

setup to run.

1. Operating System: Linux based operating system.

2. Server Platform: The server is written in Python 2.7.x and the host system

environment is capable of executing .py executable files.

3. Dependencies: Apart from Python 2.7.x the following software packages are

installed and available for use on host system:

• python module flask

• python module MySQLdb

4. Environment Variables: Following environment variable are defined on host

system and are accessible to autograding server:

• DB_HOST: ITS database MySQL server’s IP address.

• DB_USER: ITS database MySQL’s login username.

• DB_PASS: ITS database MySQL’s login username’s password.

• DB_NAME: ITS database MySQL’s database name.



56

Since the final grading model is implemented only as backend service, interaction

and communication with the autograding server will only be through the exposed

APIs. These APIs follow Representational State Transfer (ReST) based client-server

architecture and interface guidelines. Some important characteristics of autograding

server interface are as follows.

1. The server will only communicate in reactive manner, i.e. the server will

respond to requests and will never proactively communicate.

2. The only purpose of communication to server will be to request grades and

from server it will be to respond with grades.

3. All requests to server will be in form of HTTP requests and response will be a

JSON object.

4. The server will provide ReSTful web service with following ReST client-server

architecture features:

• Client-Server: Implies separation of concern among client and server.

Client is not concerned with the internal working of the server and server

is not concerned with UI/UX of the client.

• Stateless: Server does not maintain any state for client.

6.1.2 Functional Requirements

The purpose of this server is to provide autograding service to ITS. So the only

functionality to be addressed by the autograding server is to award grades to ITS

submissions according to the final grade model. This service is to be provided by the

means of ReSTful APIs so only the backed is required and no frontend is needed.

As discussed in the previous section the only mode of communication for grading

with server will be via HTTP requests and response. So, we describe the format for

requesting autograding server to award grades and the format in which the server

will respond.



57

The server has a frontend HTML page to test its health. <ip>:<port>/test

will render a HTML page which denotes that the server is up and running, where

<ip> is the Internet Protocol address of the server and <port> is the listening port

configured in the dockerfile.

6.1.3 Request to Server

The request to the server for the grades is to be made as a HTTP POST request

on <ip>:<port>/score/assignment with only one POST request body parameter,

where <ip> is the Internet Protocol address of the server and <port> is the port

open for listening set in dockerfile.

• ’assignment-id’: Integer value denoting the assignment id for which the grades

is to be awarded. Assignment id is the id that uniquely identifies a problem

assigned to a enrolled student as a question for a lab event in the ITS MySQL

database.

6.1.4 Response from Server

Response from server will be JavaScript Object Notation (JSON) object with following

fields.

• ’status’: denotes the status of response. It can be either ’SUCCESS’ or ’FAIL’

– If ’status’ is ’SUCCESS’ then:

1. ’status’: ’SUCCESS’

2. ’assignment_id’: assignment-id for which the request was made

3. ’score’: float value denoting score between 0.0 and 1.0 inclusive

4. ’max_marks’: maximum marks set for the problem assigned

5. ’marks’: positive integer value denoting grades/marks awarded by

the grading model out of maximum marks



58

6. ’marks_lower’: positive integer value denoting lower grades/marks

for estimated range, 15% of ’max_marks’ less than ’marks’

7. ’marks_upper’: positive integer value denoting upper grades/marks

for estimated range, 15% of ’max_marks’ more than ’marks’

– If ’status’ is ’FAIL’ the:

1. ’status’: ’FAIL’

2. ’errors’: array of following error codes:

* REQUEST_PARAMETER_NOT_FOUND: Denotes that the

POST request is missing the ’assignment-id’ parameter.

* INVALID_REQUEST_PARAMETER_VALUE: Denotes that

’assignment-id’ parameter value is not and integer.

* NO_ASSIGNMENT_FOUND: Denotes that the request ’assignment-

id’ is not found in the database.

* NO_SCHEDULE_FOUND: Denotes that no lab schedule found

for request ’assignment-id’.

6.1.5 Non-Functional Requirements

Non-functional requirements are desirable in every good software. Following are a

few non-functional requirements and brief information on the attempted to deliver

them.

• Performance: Performance here is in terms of response time. We have tried to

optimise the SQL queries to extract all the 7 required features for computing

final grade score. Moreover we have added indexes to the SQL tables. One such

index is on ’section’ field in ’account’ table. It can be found in the ’readme’

file in server’s root directory of the code base.

• Reliability: Proper exception handling is implemented to prevent unexpected

behaviour. Such exceptions are reverted back with error codes mentioned in

previous section.



59

• Security: The only input accepted by the server is by HTTP post request with

only 1 request parameter. This request parameter is sanitized by allowing only

integer values.

• Portability: Dockerfile is present along with the code which enable easy server

setup in any linux based system with docker’s virtual environment.

6.1.6 Use Cases

As we have mentioned all along that the autograding server has a very specific

function, below are the 2 user cases with their basic and alternate flows.



60

Use Case Number 1

Use Case Name Check Server Health

Actor System Administrator

Description System Administrator checks server health.

Precondition Server must be successfully running and system admin-

istrator must have access to network on which server is

hosted.

Trigger/Event System administrator enter <server-ip>:<port>/test in

the web browser address bar.

Basic Flow 1. Actor enter <server-ip>:<port>/test in the address

bar of a web browser.

2. The server returns a page with heading denoting that

the server is running.

3. The actor gets the confirmation of the server’s health.

Alternate Flow 1 1. Actor enter incorrect address.

2. 404 Page not found error returned.

Alternate Flow 2 1. The server is down.

2. Browser returns webpage not available or equivalent

error.

Table 6.1: Use Case 1



61

Use Case Number 2

Use Case Name Fetch Grades from Server

Actor Client Consuming autograding APIs

Description Client attempts to get grades for an assignment-id.

Precondition Server must be successfully running and the actor must have the

assignment-id to be graded.

Trigger/Event Client consuming autograding APIs makes post request to

<ip>:<port>/score/assignment with parameter ’assignment-id’.

Basic Flow 1. Actor makes a post request with body parameter ’assignment-id’

as the integer denoting the assignment id.

2. The server returns a JSON object with the grades/marks.

3. The actor obtains the grades awarded by the autograde server

form the JSON response object.

Alternate Flow 1 1. The server is down.

2. Browser returns web page not available or equivalent error.

Alternate Flow 2 1. Actor uses incorrect address to make post request.

2. 404 Page not found error returned.

Alternate Flow 3 1. Actor missed parameter ’assignment-id’ in post request.

2. Error code REQUEST_PARAMETER_NOT_FOUND returned

in JSON object.

Alternate Flow 4 1. The value of post parameter ’assignment-id’ is not integer.

2. Error code INVALID_REQUEST_PARAMETER_VALUE re-

turned in JSON object.

Alternate Flow 5 1. The value of post parameter ’assignment-id’ is not found for

assignment id in the data base.

2. Error code NO_ASSIGNMENT_FOUND returned in JSON.

Alternate Flow 6 1. The value of post parameter ’assignment-id’ does not have any

lab scheduled in the data base.

2. Error code NO_SCHEDULE_FOUND returned in JSON.

Table 6.2: Use Case 2



62

6.2 Architecture

This section presents the architecture of the autograding server. The architecture is

not complex as there are only few straightforward requirements.

Below is the component/module/process based architecture diagram of the auto-

grading server.

Figure 6.1: Architecture of Autograding Server

The components and their responsibilities are:

1. Auto Grade Server: Represents the whole software.

2. Test Listener: Listens to <ip>:<port>/test get requests and communicates

with HTML Renderer to render the server status page.

3. HTML Renderer: Renders the test html page holding the server status.

4. Score Listener: Listens to <ip>:<port>/score/assignment post requests and is

responsible to interact with Grades Computer to compute the score & grades

and then finally return the score and grades in JSON object.



63

5. Weight Params Setter: The root component Score Listener depends on this com-

ponent for setting the final grade score weight parameters. These parameters

are stored in file ’config.ini’ in the server root folder.

6. DB Params Setter: Called by root component Score Listener, this component

sets the server’s database parameters by fetching the database parameters from

environment variables containing database configuration. These DB parameters

are used by all the miner components to access the ITS MySQL database.

7. Grades Computer: It is responsible for computing the final grade function

score and return it to the Score Listener. It uses the miner components to

fetch all the features from the ITS database. Then simply computes the final

grade score using the weightage parameters and features.

8. Max Marks Miner: One of the miner components. Uses the database parameters

to mine ITS database for maximum marks set for the problem assignment.

9. Lab Start End Timestamp Miner: Mines the start time and end time unix

timestamps of the lab scheduled for the assignment.

10. Submission Timestamp Testcases Miner: Fetches the solution submission’s

time’s unix timestamp and number of testcases it passed from the ITS database.

11. Total Testcases Miner: Fetches the total number of test cases set for the

problem assigned.

12. Submission Compiler Error Miner: Mines the number of compile attempt fails

for the assignment.

13. Submission Compiler Attempts Miner: Fetches the total number of compilation

attempts for the assignment.

14. Problem Max Compiler Error Miner: Mines the ITS database for the maximum

number of compiler attempts fails among all the students attempting the same



64

problem in same lab schedule as the assignment. It is the most expensive miner

amoung all above.

The architecture diagram depicts the logical view of autograding server system.

Since the server has small size of source code the process view and development view

follow almost the same architecture.

The deployment view can be stated as, the server docker image runs in a docker

container and the ITS database rests in another docker container. Both the docker

containers may or may not be on the same physical server but both the docker are

in a common intranet and the ITS database docker container is accessible to the

autograding server using the database environment variables of the autograding

server’s host system.

6.3 Technology

Again, an advantage of simple straightforward requirements, only a single framework

to develop the server is sufficient.

Since the experimentation scripts are written in python, most of the mining code

in the server can be derived from the scripts used to conduct experiments with the

grading models. So, a python programming language based web framework with

BSD License was the best option.

Out of many available python web frameworks that fulfill our needs Flask is

optimised for small projects and fast development. Hence, it was chosen and the

autograding server is written in python that runs on the Flask web framework. Flask

is a microframework for Python based on Werkzeug and Jinja2. Our server also

needs python module name MySQLdb to connect to the ITS MySQL database.

Apart from Flask and python only a single HTML page is written for displaying

server running status. The page is written only using HTML and no Javascript nor

CSS is required.



65

6.4 Performance

Since the autograding server is to be used to add functionality to ITS, the performance

load on the server is not expected to surpass the load on ITS. This server is very

thin as compared to ITS and hence can easily sustain the load comparable to that

on ITS.

The autograding server is dependent on ITS database running on MySQL server.

For a single request there are multiple miner components of autograding server

that run complex SQL queries on ITS MySQL database. So, we have observed an

bottleneck on the MySQL Server.

Therefore, efforts have been made to optimise the miner components and the

SQL queries. To provide some flexibility to the server we have added a parameter

in the ’config.ini’ file in the server root folder. This parameter can be used to turn

on/off the most expensive miner component and improve the performance drastically

in terms of response time. This provides the system administrator a way control

tradeoff between performance and accuracy.

The most expensive miner component is the problem max compiler error miner.

It is responsible for extracting the maximum number of compilation failures/errors

by any student assigned the given problem, emax. This feature is in turn used to

compute the compilation grade score function, fe. If this feature is turned off then

the grade score function is set to fe = 0.5 for all grading requests and the grades are

calculated accordingly.

The range of average response times for sets of successful grading request on

a test machine is mentioned in the table below. The response time may change

depending on the host machine but this comparison helps to understand the difference

in response time with and without the heavy component.



66

Problem Max Compiler Error Miner Response (milliseconds)

On 400ms to 800ms

Off 40ms to 100ms

Table 6.3: Response Times of Autograding Server

6.5 Integration

ITS is web app developed for scalability and has high modularity. One of the key

reasons that enable high modularity at high level is the use of Dockers.

Docker (Software) is linux package that automates the deployment of projects

within an operating-system-level virtual environment called containers. It provides

an layer of abstraction over OS allowing easy automation of deployment. It is very

light wight as compared to virtual machine.

Following the technology, the server is Docker capable. The server code consists

of a file named ’Dockerfile’ in the parent directory of the server root directory. The

Dockerfile contains the Docker configurations sufficient for a linux system with Docker

to setup container running the docker image of auto grading server. One the server’s

docker image is built and run in docker container the autograding service APIs are

available for use.

This deployment model makes the integration of auograding server simple. Also,

we have mentioned these details again in ’readme’ file in the server root folder.



Chapter 7

Conclusions and Future Scope

This section concludes the thesis. Our own interpretations of conclusion on entire

work and this thesis is presented and some ideas of extending and deriving applicable

work are discussed.

7.1 Conclusions

At the beginning of this thesis, aim was to come up with a grading model for

introductory programming courses and develop a tool implementing the grading

model. Most appropriate implementation of the grading model would be to serve

ITS [Das15] through a server exposing ReSTful [Elk] API service.

We have presented the final grading model which was designed during the course

of this thesis. It servers as the grading model for the autograding server, a backend

ReST based service to grade submission on ITS.

The working grading model successfully runs on the autograding server. The

server is designed to work with docker software making it compatible with ITS. The

simple integration of the server into to ITS allows it use the ITS MySQL database.

Then the ReST APIs can be used as desired.

After performing various experiments and judging our grading model on factors

that are more related to the purpose of grading it would be safe to say that model’s

performance is comparable to that of the teaching assistants. For these experiments



68

the weight parameter were learned which implicitly set a grading policy. These

weight with different values can implement a variety of grading policies. Results and

statistics show that the grading scheme/model/tool marginally outperforms or is

comparable to the teaching assistants (TAs) in terms of correctness & accuracy for

most of the experiments and shows inferior performance in one of the experiments.

There may be various applications of the grading model and autograding server

but few have been listed below.

1. Grades awarded by the model/server can be used as recommendations to help

the TAs while grading.

2. During the lab every solution submission can be followed by the grades awarded

by the model/server as feedback to students.

3. Final awarded grades having high difference with the grades given by the

model/server can be reported to instructors as potential inconsistencies.

7.2 Future Scope

While working on this thesis some ideas came across. Few such ideas follow.

7.2.1 Application of Autograding Server in ITS

The grading model developed in this thesis is implemented in the autograding server.

The autograding server has been developed to be integrated into ITS.

The autograding server provides only a ReST based service. It is an backend

server which only serves grades for solution submissions. It contains no presentation

layer or frontend.

There are various ways the autograding server can be used to add features and

functionalities to ITS. But any such usage or applications of autograding server in

ITS would require appropriate modifications and development in ITS frontend and



69

logic middleware. Few such application suggested by Dr. Arnab Bhattacharya and

Dr. Amey Karkare, my thesis guide and co-guide are as follows.

1. For Instructors:

(a) On the grading page, a button to evaluate particular submission. The

output will be a range of marks (fuzzy score).

(b) On dashboard, a way to evaluate all submissions for an lab event. The

tool marks/grades can be shown along side the TA marks/grades.

(c) A way to generate report for a set of events. Events can be presented in

a checkbox list to select.

2. For Students:

• A button to self-evaluate only practice problems. Tool output in this case

should be mapped to either star rating, or a progress-bar. Absolute or

fuzzy numeric scores are not shown to students. For example, 0 stars for

<20%, 1 star for 21-40%, 2 stars for 41-60% and so on. The button will

be disabled for all students when lab/exam event is in progress.

Addition of these features will require considerable work on ITS frontend and

logic middleware. This should be the next logical step in our work.

7.2.2 Scope of Improvement in Grading Model

The grading model is simply a weighted function of various features. More features

can be taken into consideration in the grading model. Adding new feature will

enhance accuracy and correctness and also add more flexibility. Extracting these

features might need some post processing after mining the database.

1. Degree of indentation, accuracy of indentation.

2. Comments used, location and length of comments and some keywords may be

searched for.



70

More experiments can be done with grading score function and feature score

functions. Currently these functions is just weightage linear functions. Instead of a

linear function, different distributions can be tried in form of parametrised functions.

A scope of improvement also exists in training the weights. Better training golden

dataset can be used to train with advanced machine learning techniques.

7.2.3 Extending Grading Model

Currently we have developed a model capable of awarding grades to introductory

programming solutions. We can extend the model’s capabilities.

1. Lab Score: A scoring mechanism to extend students’ problem score to lab score.

Lab consists of multiple problems. A simple approach might be to again take

weighted average of the problems score. Weights proportional to problem’s

maximum marks.

2. Cumulative Score: A scoring mechanism to compute students’ cumulative score

for multiple labs. The score should represent student’s programming proficiency

focusing on recent performance. One approach is again take weighted average

over lab scores with weight proportional to recency of the labs.

3. Problem Difficulty Score: A score to represent perceived problem difficulty.

This score should be inversely proportional to student’s solution score and

directly proportional to student’s cumulative score.

4. Concept Score: For a student it should represent the score for particular concept

or skill such as loops, conditions, etc. Simple annotation of problems with

concept tags is the first requirement. Then again a weighted score of problems

with the tag score should contribute to a tag score. The score should be

proportional to problem difficulty and also proportional to student’s problem

score.



71

7.2.4 Scope of Improvement in the Autograding Server

The server just implements the grading model, so major functional enhancements

depend entirely on the grading model. Since the server uses the ITS MySQL database

scalability in terms of load on the ITS MySQL database and response time is critical.

Hence, the feature mining components can be improved to reduce load on the

ITS MySQL server and decrease the response time of the autograding server. The

SQL queries can be optimised. Further, some tables may be added to the database

and these tables may be updated using triggers to maintain the set of features for

solution in least expensive manner.

Application improvements may include adding API services such as potential

outliers detection. For a question in a lab we have a set of submissions. A service

that reports submissions in a set having high rank/grades difference in grading by

the grading model tool and by the TAs.





References

[Das15] Rajdeep Das. “A Platform for Data Analysis and Tutoring For Introduc-
tory Programming”. M.Tech. thesis. India: Indian Institute of Technology
Kanpur, 2015.

[Cin13] Can Cemal Cingi. “Computer Aided Education”. In: Procedia-Social and
Behavioral Sciences 103 (2013), pp. 220–229.

[MPV12] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.
Introduction to linear regression analysis. Vol. 821. John Wiley & Sons,
2012.

[WM03] A.D. Well and J.L. Myers. Research Design & Statistical Analysis. Taylor
& Francis, 2003. isbn: 9781135641085. url: https://books.google.
co.in/books?id=56EcG4noROkC.

[MRS08] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to Informa-
tion Retrieval. An Introduction to Information Retrieval. Cambridge
University Press, 2008. isbn: 9780521865715. url: https://books.
google.co.in/books?id=GNvtngEACAAJ.

[LJ99] M Luck and M Joy. “Computer-based submission and assessment in
BOSS”. In: Interactions Online Journal 6 (1999).

[AB99] Arnow and Barshey. “WebToTeach: An interactive focused programming
exercise system”. In: IEEE Frontiers in Education Conference (FIE)
(1999).

[Dal99] Charlie Daly. “RoboProf and an Introductory Computer Programming
Course”. In: SIGCSE Bull. (1999), pp. 155–158. issn: 0097-8418. doi:
10.1145/384267.305904. url: http://doi.acm.org/10.1145/
384267.305904.

[Hig+05] Colin A. Higgins et al. “Automated Assessment and Experiences of
Teaching Programming”. In: J. Educ. Resour. Comput. (2005).

[TBR05] Nghi Truong, Peter Bancroft, and Paul Roe. “Learning to program
through the web”. In: ACM SIGCSE Bulletin 37.3 (2005), pp. 9–13.

[Zam+06] Norshuhani Zamin et al. “WAGS: A Web-Based Automated Grad-
ing System For Programming Assignments From Users’ Perspectives”.
In: Proceed-ings of International Conference on Programming Classes
Communica-tion of Science & Technology, Malaysia. 2006.

[K+07] AR Khirulnizam, Che WSBCWA MDJN, et al. “Development of an
Automated Assessment for C Programming Exercises Using Pseudoeodes
Comparison Teehnique”. In: Conference on Information Tech-nology
Research and Applications, Selangor Malaysia. 2007.

https://books.google.co.in/books?id=56EcG4noROkC
https://books.google.co.in/books?id=56EcG4noROkC
https://books.google.co.in/books?id=GNvtngEACAAJ
https://books.google.co.in/books?id=GNvtngEACAAJ
http://dx.doi.org/10.1145/384267.305904
http://doi.acm.org/10.1145/384267.305904
http://doi.acm.org/10.1145/384267.305904


74

[Ala05] Kirsti M Ala-Mutka. “A survey of automated assessment approaches for
programming assignments”. In: Computer science education 15.2 (2005),
pp. 83–102.

[Ree89] Kenneth A Reek. “The TRY system-or-how to avoid testing student
programs”. In: ACM SIGCSE Bulletin. Vol. 21. 1. ACM. 1989, pp. 112–
116.

[SMK01] Riku Saikkonen, Lauri Malmi, and Ari Korhonen. “Fully automatic
assessment of programming exercises”. In: ACM Sigcse Bulletin. Vol. 33.
3. ACM. 2001, pp. 133–136.

[Che+03] Brenda Cheang et al. “On Automated Grading of Programming Assign-
ments in an Academic Institution”. In: Comput. Educ. 41.2 (Sept. 2003),
pp. 121–131. issn: 0360-1315. doi: 10.1016/S0360-1315(03)00030-7.
url: http://dx.doi.org/10.1016/S0360-1315(03)00030-7.

[EFK04] Christopher C Ellsworth, James B Fenwick Jr, and Barry L Kurtz. “The
quiver system”. In: ACM SIGCSE Bulletin. Vol. 36. 1. ACM. 2004,
pp. 205–209.

[DH04] Charlie Daly and Jane M Horgan. “An automated learning system for
Java programming”. In: Education, IEEE Transactions on 47.1 (2004),
pp. 10–17.

[JGB05] Mike Joy, Nathan Griffiths, and Russell Boyatt. “The boss online sub-
mission and assessment system”. In: Journal on Educational Resources
in Computing (JERIC) 5.3 (2005), p. 2.

[Wan+11] Tiantian Wang et al. “Ability-training-oriented automated assessment
in introductory programming course”. In: Computers & Education 56.1
(2011), pp. 220–226.

[Bis+15] Judith Bishop et al. “Code Hunt: Experience with coding contests at
scale”. In: Proc. ICSE, JSEET (2015).

[Inca] Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Average
absolute deviation. url: https://en.wikipedia.org/wiki/Average_
absolute_deviation.

[Incb] Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Root-
mean-square deviation. url: https://en.wikipedia.org/wiki/Root-
mean-square_deviation.

[Rum07] D.J. Rumsey. Intermediate Statistics For Dummies. –For dummies. Wiley,
2007. isbn: 9780470147740. url: https://books.google.co.in/
books?id=jwmdUe0dDSAC.

[Elk] Dr. M. Elkstein. Learn REST: A Tutorial. url: http://rest.elkstein.
org/.

[Incc] Docker Inc. Get Started with Docker for Linux. url: http://docs.
docker.com/linux/started/.

[Fou] Python Software Foundation. Python 2.7.10 documentation. url: https:
//docs.python.org/2.7/.

[Ron] Armin Ronacher. Welcome to Flask. url: http://flask.pocoo.org/
docs/0.9/.

http://dx.doi.org/10.1016/S0360-1315(03)00030-7
http://dx.doi.org/10.1016/S0360-1315(03)00030-7
https://en.wikipedia.org/wiki/Average_absolute_deviation
https://en.wikipedia.org/wiki/Average_absolute_deviation
https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://books.google.co.in/books?id=jwmdUe0dDSAC
https://books.google.co.in/books?id=jwmdUe0dDSAC
http://rest.elkstein.org/
http://rest.elkstein.org/
http://docs.docker.com/linux/started/
http://docs.docker.com/linux/started/
https://docs.python.org/2.7/
https://docs.python.org/2.7/
http://flask.pocoo.org/docs/0.9/
http://flask.pocoo.org/docs/0.9/


75

[Dus] Andy Dustman. MySQLdb User’s Guide. url: http://mysql-python.
sourceforge.net/MySQLdb.html.

http://mysql-python.sourceforge.net/MySQLdb.html
http://mysql-python.sourceforge.net/MySQLdb.html

	List of Tables
	List of Figures
	Introduction
	Objective
	Thesis Outline

	Background and Related Work
	Platform and Related Concepts
	Intelligent Tutoring System
	Grading

	Datasets
	Assignment Grades Dataset
	Exam Grades Dataset

	Linear Regression with Ordinary Least Squares
	Performance Measures
	Spearman's Rank Correlation Coefficient ()
	Mean Average Precision (MAP)

	Related Work

	Grading Model
	Intuitive Idea and Feature Set
	Fraction of Test Cases Passed
	Time Taken to Solve
	Fraction of Successful Compilations

	Initial Grading Model
	Hard Grade Score Function
	Soft Grade Score Function
	Initial Grade Score Function

	Final Grading Model
	Significance and Motivation
	Intuition
	Final Grade Score Function


	Learning Weight Parameters for Grading Model
	Learning Technique and Training Dataset
	Learned Weights

	Experiments and Results
	Grade Error
	Rank Error
	Positive Rank Error
	Negative Rank Error

	Spearman's Rank Correlation Coefficient ()
	Mean Average Precision (MAP)
	Top-k Query MAP
	Bottom-k Query MAP
	Top-Bottom-k Query Mean MAP


	Autograding ReST Server
	Specifications
	System Environment and Interface
	Functional Requirements
	Request to Server
	Response from Server
	Non-Functional Requirements
	Use Cases

	Architecture
	Technology
	Performance
	Integration

	Conclusions and Future Scope
	Conclusions
	Future Scope
	Application of Autograding Server in ITS
	Scope of Improvement in Grading Model
	Extending Grading Model
	Scope of Improvement in the Autograding Server


	References

