
 1

Timeboxing: A Process Model for Iterative Software
Development

Pankaj Jalote , Aveejeet Palit

Priya Kurien, V. T. Peethamber
Infosys Technologies Limited

Electronics City
Bangalore - 561 229; India

Fax: +91-512-590725/590413
Contact Address: jalote@iitk.ac.in

 P. Jalote’s current address: Dept of CSE; Indian Institute of Technology; Kanpur – 208016; India.

ABSTRACT: In today’s business where speed is of essence, an iterative development approach
that allows the functionality to be delivered in parts has become a necessity and an effective way to
manage risks. In this paper we propose the timeboxing model for iterative software development in
which each iteration is done in a time box of fixed duration, and the functionality to be built is
adjusted to fit the time box. By dividing the time box into stages, pipelining concepts are employed
to have multiple time boxes executing concurrently, leading to a reduction in the delivery time for
product releases. We illustrate the use of this process model through an example of a commercial
project that was successfully executed using the proposed model.

Keywords: Software process, life cycle process, process models, iterative development,
timeboxing, pipelining.

1 INTRODUCTION
Software projects utilize a process to enable execution of the engineering tasks to achieve the goal
of delivering a software product that satisfies the user requirements. Processes so utilized
frequently conform to a process model – a general process structure for the lifecycle of software
development. A process model generally specifies the set of stages in which a project should be
divided, the order in which the stages should be executed, and any other constraints and conditions
on the execution of stages.

The most influential and commonly used process model is the waterfall model, in which the
different phases of requirements specification, design, coding, and testing are performed in
sequence. This model was first proposed by Royce [16] to suggest that there should be many
distinct stages in a project execution. Though the waterfall model suggests a linear execution of
stages, Royce had in fact suggested that, in practice, there is a need for feedback from testing to

 2

design and from design to early stages of requirements. In any case, waterfall model as a linear
sequence of stages became the most influential process model – it was conceptually simple and was
contractually somewhat easier to administer (e.g. each stages can be defined as a milestone at
which some output is obtained and some payment is made.)

Waterfall model has some well known limitations [7]. The biggest drawback with the waterfall
model was that it assumes that requirements are stable and known at the start of the project.
Unchanging requirements, unfortunately, do not exist in reality, and requirements do change and
evolve. In order to accommodate requirement changes while executing the project in the waterfall
model, organizations typically define a change management process which handles the change
requests (an example of a change management process in an organization can be found in [13].)
Another key limitation is that it follows the “big bang” approach – the entire software is delivered
in one shot at the end. And till the end, no working system is delivered. This entails heavy risks, as
the users do not know till the very end what they are getting.

To alleviate these two key limitations, an iterative development model can be employed. In an
iterative development, software is built and delivered to the customer in iterations – each iteration
delivering a working software system that is generally an increment to the previous delivery.
Iterative enhancement [1] and spiral [6] are two well-known process models that support iterative
development. More recently, agile methods [10] and XP [4] also promote iterative development –
in fact small iterations is a key practice in the XP methodology.

With iterative development the release cycle becomes shorter, which reduces some of the risks
associated with the “big bang” approach. Requirements need not be completely understood and
specified at the start of the project – they can evolve over time and can be incorporated in the
system in any iteration. Incorporating change requests is also easy as any new requirements or
change requests can be simply passed on to a future iteration. Overall, iterative development is able
to handle some of the key shortcomings of the waterfall model, and is well suited for the rapidly
changing business world, despite having some of its own drawbacks. (E.g. it is hard to preserve the
simplicity and integrity of the architecture and the design.)

The commonly used iterative development approach is organized as a sequence of iterations, with
each of the iterations delivering parts of the functionality. Though the overall delivered
functionality is delivered in parts, the total development time is not reduced. (In fact, it can be
argued that if the requirements are known then for the same amount of functionality, iterative
development takes more time than a waterfall model.) If we wish to reduce the total development
time, a natural approach will be to employ parallelism between the different iterations. That is, a
new iteration commences before the system produced by the current iteration is released, and hence
development of a new release happens in parallel with the development of the current release. The
Rational Unified Process (RUP) uses this approach by suggesting that the final stages of an
iteration may overlap with the initial stages of the next [15].

In this paper, we propose the timeboxing process model that takes the concept of parallelism
between different iterations further and employs the pipelining concepts [12] to reduce cycle time.
In this model, iterative development is done in a set of fixed duration time boxes. That is, in each
iteration, functionality developed is what can be “fit” into the time box. Each time box is divided
into stages of approximately equal duration, and the work of each stage is done by a dedicated
team. Multiple iterations are executed concurrently by employing pipelining – as the first stage of

 3

the first time box completes, the team for that stage starts its activities for the next time box, while
the team for the next stage carries on with the execution of the first time box. This model ensures
that deliveries are made with a much greater frequency than once every time box, thereby
substantially reducing the cycle time for each delivery. How execution of a project proceeds when
using the waterfall, iterative, or the timeboxing process model proceed is shown in Figure 1.

Figure 1: Waterfall, Iterative, Timeboxing Models

The concept of using time boxes for iterations has been discussed informally among developers for
quite some time (for example, one of the reviewers of the paper indicated that he has been using it
for years.) A key contribution of the paper is that we have formalized this concept and provided a
conceptual framework that is grounded in the pipelining concepts developed to speed up execution
of instructions in processors. We have also employed this process model successfully for executing
real-life, commercial projects.

We believe that the process model is a viable approach for executing projects when there is a
strong business need to deliver working systems quickly. Due to the constraints the model imposes,
this model is likely to work well for medium sized projects which have a stable architecture and
have a lot of feature requirements that are not fully known and which evolve and change with time.
Application of the model is eased if there is flexibility in grouping the requirements for the purpose
of delivering meaningful systems that provide value to the users. The model is not likely to work

Waterfall:

Complete System
Delivered

Iterative:

Partial System Delivered

Complete System
Delivered

Partial System Delivered

Iterative Time
boxing: Partial System Delivered

Complete System
Delivered

Requirements Design Build Test

Requirements Design Build Test

Requirements Design Build Test

Requirements Design Build Test

Partial System Delivered

Requirements Design Build Test

Requirements Design Build Test

Requirements Design Build Test

 4

well for projects where flexible grouping of requirements for the purpose of delivery is not
possible. It is also not likely to work well where development within an iteration cannot be easily
divided into clearly defined stages, each of which ending with some work product that form the
main basis for the next stage.

The paper is organized as follows. In the next section we discuss the basic timeboxing model,
execution of a project using this process model, and issues like team size and impact of unequal
stages or exceptions on the execution. In section 3, we discuss some aspects of applying the
process model on projects – the nature of projects for which this is suitable, how changes are
handled, project management issues, etc. In section 4 we discuss a real commercial project in
which we applied this model, and discuss how we dealt with some of the constraints that the
project presented. The paper ends with conclusions.

2 THE TIMEBOXING MODEL
In timeboxing, as in other iterative development approaches, some software is developed and a
working system is delivered after each iteration. In timeboxing, each iteration is of equal duration,
which is the length of the time box. In this section we discuss the various conceptual issues relating
to this process model.

2.1 A Time box and Stages
In the timeboxing process model, the basic unit of development is a time box, which is of fixed
duration. Within this time box all activities that need to be performed to successfully release the
next version are executed. Since the duration is fixed, a key factor in selecting the requirements or
features to be built in a time box is what can be “fit” into the time box.

Each time box is divided into a sequence of stages, like in the waterfall model. Each stage performs
some clearly defined task of the iteration and produces a clearly defined output. The output from
one stage is the only input from this stage to the next stage. Furthermore, the model requires that
the duration of each stage, that is, the time it takes to complete the task of that stage, is
approximately the same. (Impact of exceptions to this are discussed later.)

There is a dedicated team for each stage. That is, the team for a stage performs only tasks of that
stage – tasks for other stages are performed by their respective teams. This is quite different from
many other models where the implicit assumption is that the same team (by and large) performs all
the different tasks of the project or the iteration.

As pipelining is to be employed, the stages must be carefully chosen. Each stage performs some
logical activity which may be communication intensive – that is, the team performing the task of
that stage need to communicate and meet regularly. However, the stage should be such that its
output is all that is needed from this stage by the team performing the task of the next stage. In
other words, the output should be such that it can be passed to the team for next stage, and the team
needs to communicate minimally with the previous stage team for performing their task. Note that
it does not mean that the team for a stage cannot seek clarifications with teams of earlier stages –
all it means is that the communication needs between teams of different stages are so low that their
communication has no significant effect on the work of any of the teams.

 5

2.2 Pipelined Execution
With fixed duration for execution of an iteration, the model renders itself to pipelining (the reader
is referred to [12] for concepts on pipelining in hardware.) Each iteration can be viewed like one
instruction whose execution is divided into a sequence of fixed duration stages, a stage being
executed after the completion of the previous stage. In general, let us consider a time box with
duration T and consisting of n stages – S1, S2, …, Sn. As stated above, each stage Si is executed by
a dedicated team (similar to having dedicated hardware for executing a stage in an instruction). Let
the size of the team dedicated for stage Si be Ri, representing the number of resources assigned to
this stage.

The team of each stage has T/n time available to finish their task for a time box, that is, the
duration of each stage is T/n. When the team of a stage i completes the tasks for that stage for a
time box k, it then passes the output of the time box to the team executing the stage i+1, and then
starts executing its stage for the next time box k+1. Using the output given by the team for Si, the
team for Si+1 starts its activity for this time box. By the time the first time box is nearing
completion, there are n-1 different time boxes in different stages of execution. And though the first
output comes after time T, each subsequent delivery happens after T/n time interval, delivering
software that has been developed in time T.

 As an example, consider a time box consisting of three stages: requirement specification, build,
and deployment. The requirement stage is executed by its team of analysts and ends with a
prioritized list of requirements to be built in this iteration. The requirements document is the main
input for the build team, which develops the code for implementing these requirements, and
performs the testing. The tested code is then handed over to the deployment team, which performs
pre-deployment tests, and then installs the system for production use.

These three stages are such that in a typical short-cycle development, they can be of equal duration
(though the effort consumed is not the same, as the manpower deployed in the different stages is
different.) Also, as the boundary between these stages is somewhat soft (e.g. high level design can
be made a part of the first stage or the second), the duration of the different stages can be made
approximately equal by suitably distributing the activities that lie at the boundary of two adjacent
stages.
With a time box of three stages, the project proceeds as follows. When the requirement team has
finished requirements for timebox-1, the requirements are given to the build-team for building the
software. Meanwhile, the requirement team goes on and starts preparing the requirements for
timebox-2. When the build for the timebox-1 is completed, the code is handed over to the
deployment team, and the build team moves on to build code for requirements for timebox-2, and
the requirements team moves on to doing requirements for timebox-3. This pipelined execution of
the timeboxing process is shown in Figure 2.

 6

Figure 2: Executing the timeboxing process model

With a three-stage time box, at most three iterations can be concurrently in progress. If the time
box is of size T days, then the first software delivery will occur after T days. The subsequent
deliveries, however, will take place after every T/3 days.

2.3 Time, Effort and Team Size
It should be clear that though the duration of each iteration has not been reduced, the delivery time
to the end client (after the first iteration) reduces by a factor of n with a n-stage time box. That is,
the speedup (the reduction in the average completing time of an iteration) is n times. We can also
view it in terms of throughput – the amount of output per unit time. We can clearly see that in
steady state, the throughput of a project using timeboxing is n times that of if serial iterations were
employed. In other words, n times more functionality is being delivered per unit time.

If the size of the team executing the stage Si is Ri, then the effort spent in the stage Si is

E (Si) = Ri * T/n.

Note that the model only requires that the duration of the stages be approximately the same, which
is T/n in this case. It does not imply that the amount of effort spent in a stage is same. The effort
consumed in a stage Si also depends on Ri, the size of the team for that stage. And there is no
constraint from the model that the different Ris should be the same.

The total effort consumed in an iteration, i.e. in a time box, is

E (TB) = ∑
=

n

i 1
E(Si).

 Software

Requirements Build Deploy

TB1

TB2 Requirements Build Deploy
TB2

Requirements Build Deploy
TB3

Requirements Build Deploy
TB4

 7

This effort is no different than if the iterations were executed serially – the total effort for an
iteration is the sum of the effort for its stages. In other words, the total effort for an iteration
remains the same in timeboxing as in serial execution of iterations.

If the same effort is spent in each iteration, what is the cost of reducing the delivery time? The real
cost of this increased throughput is in the resources used in this model. The total team size for the
project, in which multiple time boxes may be running in parallel, is

Project Team Size = ∑
=

n

i 1
Ri.

Let us compare the team size of a project using timeboxing with another project that executes
iterations serially. In a serial execution of iterations, it is implicitly assumed that the same team
performs all the activities of the iteration, that is, they perform all the stages of the iteration. For
sake of illustration, let us assume that the team size is fixed throughout the iteration, and that the
team has R resources. So, the same R people perform the different stages – first they perform the
tasks of stage 1, then of stage 2, and so on.

With timeboxing, there are different teams for different stages. Assuming that even with dedicated
resources for a stage, the same number of resources are required for a stage as in the linear
execution of stages, the team size for each stage will be R. Consequently, the total project team size
when the time box has n stages is n*R. That is, the team size in timeboxing is n times the size of
the team in serial execution of iterations.

Hence, in a sense, the timeboxing provides an approach for utilizing additional manpower to
reduce the delivery time. It is well known that with standard methods of executing projects, we
cannot compress the cycle time of a project substantially by adding more manpower [8]. This
principle holds here also within a time box – we cannot reduce the size of a time box by more
manpower. However, through the timeboxing model, we have been able to use more manpower in
a manner such that by parallel execution of different stages we are able to deliver software quicker.

2.4 Unequal Stages and Exceptions
Clearly, the reality will rarely present itself in such a clean manner such that iterations can be fit in
a time box and can be broken into stages of equal duration. There will be scenarios where these
requirements will not hold. What happens when such exceptions present themselves?

First situation which is likely to occur is that the stages are of unequal duration. As the pipelining
concepts from hardware tell us [12], in such a situation the output is determined by the slowest
stage, that is, the stage that takes the longest time. With unequal stages, each stage effectively
becomes equal to the longest stage and therefore the frequency of output is once every time period
of the slowest stage. Note that even with this, a considerable speedup is possible. For example, let
us consider a 3-stage pipeline of the type discussed above in which the different stages are 2 weeks,
4 weeks, and 3 weeks – that is, the duration of the time box is 9 weeks. In a serial iterative
development, software will be delivered every 9 weeks. With timeboxing, the slowest stage will
determine the speed of execution, and hence the deliveries will be done every 4 weeks. This
delivery time is less than half the delivery time of serial iterations.

However, there is a cost if the stages are unequal. As the longest stage determines the speed, each
stage effectively becomes equal to the slowest stage. In the example given above, it means that the

 8

first and third stages will also get 4 weeks each, even though their work requires only 2 and 3
weeks. In other words, it will result in “slack time” for the teams for the first and third stage,
resulting in under utilization of resources. So, the resource utilization, which is 100% when all the
stages are of equal duration, will reduce resulting in underutilization of resources. Of course, this
wastage can easily be reduced by reducing the size of the teams for the slower stages to a level that
they take the same time as the slowest stage. Note that elongating the cycle time by reducing
manpower is generally possible (even though the reverse is not possible.)

Another special situation can easily arise – an exceptional condition arises during the execution of
a stage of some time box, due to which the stage is not able to finish in its allotted time. We do not
need to worry about the nature of the exception – except that the net effect of the exception is that
it elongates that stage by ∆T. Clearly, if such an exception occurs, the execution of the later stages
will be delayed resulting in the output being delivered late by ∆T. Similarly, due to this delay, the
output of earlier stages in later time boxes cannot be consumed in time, resulting in the teams of
these stages “waiting” for their output to be consumed. The net result of this is that, one delivery
gets delayed by ∆T, with a corresponding slack time for each team for one time box. After that, all
future deliveries will come after every T/n time units (for a n-stage time box of T duration.)

3 APPLYING THE MODEL
Effective use of the timeboxing model, as in any other process model, will require many practical
issues to be addressed. The first obvious issue is how many stages should be there in a time box.
The answer to this will clearly depend on the nature of the project. However, as too many parallel
executions can make it difficult to manage the project, it is most likely that the model will be used
with a few stages, perhaps between two and four. It may be pointed out that substantial benefit
accrues even with two stages – the delivery time (after the first delivery) is reduced by half. In the
rest of this section we discuss some other issues relating to deploying the model on projects.

3.1 Scope of Applicability
Like any other process model, the timeboxing model will be suitable only for some types of
projects and some business contexts. The first clear requirement is that the business context should
be such that there is a strong need for delivering a large number of features within a relatively short
span of time. In other words, time to deliver is very important and is sought even if it implies that
the team size will be large and there may be some wastage of manpower (due to slack times that
may come in different situations.)

As for any iterative development approach, the model should be applied for projects where the
requirements are such that some initial wish list is known to the users/clients, but there are many
aspects that are dynamic and change with the competitive and business landscape. (If all
requirements are clearly known in the start then the waterfall model will be most suitable and
economic.)

Timeboxing is well suited for projects that require a large number of features to be developed in a
short time around a stable architecture using stable technologies. These features should be such that
there is some flexibility in grouping them for building a meaningful system that provides value to
the users. Such a situation is frequently present in many commercial projects where a system
already exists and the purpose of the project is to augment the existing system with new features

 9

for it. Another example of projects that satisfy this are many web-site development projects –
generally some architecture is fixed early, and then the set of features to be added iteratively is
decided depending on what the competition is providing and the perceived needs of the customer
(which change with time).

To apply timeboxing, there should be a good feature-based estimation method, such as the bottom-
up estimation technique described in [13]. With a good estimation model, which set of features can
be built in an iteration can be decided. (Technology churn and unstable architecture make it harder
to do feature-based estimation as technology and architecture changes impact effort requirement.)

The team size and composition is another critical parameter for a project using timeboxing. Clearly
the overall project team should be large enough that it can be divided into sub-teams that are
dedicated for performing the tasks of the different stages. However, to keep the management
complexity under control, it is desirable that the team be not so large that coordination between
different sub-teams and different time boxes become too hard to manage.

The model is not suitable for projects where it is difficult to partition the overall development into
multiple iterations of approximately equal duration. It is also not suitable for projects where
different iterations may require different stages, and for projects whose features are such that there
is no flexibility to combine them into meaningful deliveries. Such a situation may arise, for
example, if only a few features are to be built, one (or a couple) in each iteration, each tied to some
business need. In this case, as there is only one feature to be built in an iteration, that feature will
determine the duration of the iteration.

3.2 Handling Changes
We know that requirements change and that such changes can be quite disruptive [5, 14]. Most
development processes add a change management process for accepting a change request,
analyzing it, and then implementing it, if approved (an example of such a process can be found in
[13].) With timeboxing, requirement change requests can be handled in a somewhat different
manner – unless a request is extremely critical, the change request is passed on to the next possible
time box. That is, the change request comes as a new requirement in a future time box. Since the
time boxes are likely to be relatively short, deferring the requirement change request to the next
time box does not cause inordinate delay.

The same can be done for the defects that are found after deployment. Such defects are viewed as
change requests. If the defect is such that it is hurting the business of the organization and whose
repair cannot be delayed, then it is fixed as soon as possible. Otherwise, its fixing is treated like a
change request and is fixed in the next possible iteration.

3.3 Localized Adjustments in Time Boxes
We have been assuming that the team for each stage is fixed. However, the basic requirement for
the model to operate smoothly is that each stage should finish in its allotted time. If the number of
resources in the sub-team of a stage changes across time boxes, there is no problem as far as the
model is concerned (though the resource management may become harder.) Clearly then, for some
time boxes, additional resources can be added in some stages, if desired. This type of adjustment
might be considered when, for example, the system “core” is to be developed, or some large feature
is to be developed that requires more work than what a time box can provide, etc.

Similarly, if some time box has lesser work to be done, some resources can be freed for that time

 10

box. However, in practice, if the work is lesser, the chances are that the team composition will not
be changed for temporary changes in work (it is very hard to find temporary work in other
projects), and the adjustment will be made by putting in more or less hours.

Local adjustment of stages is also possible. For example, in some time box, the team of a stage can
finish its work in lesser time and “contribute” the remaining time towards the next stage,
effectively shortening one stage and correspondingly lengthening the other one. This local
adjustment also has no impact on the functioning of the model and may be used to handle special
iterations where the work in some stages is lesser.

3.4 Refactoring
Any iterative development, due to the fact that design develops incrementally, can eventually lead
to systems whose architecture and designs are more complex than necessary. This problem can be
handled by refactoring, during which the design of the system is simplified and redundancies
removed [4]. An iteratively developed system should undergo some refactoring otherwise it may
become too complex to easily enhance in future. Some methodologies, like the XP, explicitly plan
for refactoring. In XP, for example, refactoring can be done at any time.

In the timeboxing model, most natural way to perform refactoring will be to consider it as the goal
of one of the time boxes. That is, in some time box, the basic objective is to refactor and not to add
new features (or minimal features). In this time box, refactoring undergoes the same process as
developing new features – i.e. through its stages. So, if the pipeline has the three stages given
earlier, then in the time box in which refactoring is done, first the requirements for refactoring will
be decided. The team for requirements will analyze the system to decide what part of the system
can and should be refactored, their priorities, and what parts of the system will be refactored in this
time box, etc. In the build stage, the refactoring will actually be done and tested, and in the last
stage, the new system will be deployed. So, for all practical purposes, refactoring is just another
iteration being done in a time box, except that at the end of this iteration no new (or very little)
functionality is delivered – the system that is delivered has the same functionality but is simpler
(and perhaps smaller.)

3.5 Project Management
Managing a project which employs timeboxing is clearly going to be more complex than a serial
iterative development. There are a few clear reasons for it. First, as discussed above, the team size
has become larger and the division of resources stricter. This makes resource management within
the project harder. There are other issues also relating to project resources – for example the HR
impact of having one team performing the same type of activity continuously.

Second, monitoring is now more intense as multiple iterations are concurrently active, each having
some internal milestones (at the very least, completion of each stage will be a milestone.)
Generally, milestones are important points for monitoring the health of a project (for some example
of analysis at milestones, the user is referred to [13].) In a timeboxing project, the frequency of
milestones is more and hence a considerably more effort needs to be spent in these analysis.
Furthermore, project management also requires more regular monitoring and making local
corrections to plans depending on the situation in the project. Due to the tight synchronization
among stages of different iterations, making these local corrections is much more challenging as it
can have an impact that will go beyond this iteration to other time boxes as well.

 11

Overall, with timeboxing, the project management needs to be very proactive and tight. This can
sometimes lead to decisions being taken that can have adverse impact. For example, a project
manager, in order to complete in a time box might compromise on the quality of the delivery. This
also implies that a project using timeboxing requires an experienced project manager – an
inexperienced project manager can throw the synchronization out of gear leading to loss in
productivity and quality, and delayed deliveries.

One of the key activities in planning each time box will be selecting requirements that should be
built in a time box. Remember, one dimension of planning does not exist anymore – the project
manager does not have to do scheduling of the iteration or its stages as they are given to him. Also,
in general, the effort and team sizes are also fixed. The quality requirement also remain the same.
This means, that out of the four variables in a project, namely time, cost, quality, and scope [4], the
only variable that is free for a time box is scope. Hence, the key planning activity for a time box is
what requirements to build. As discussed above, this can be achieved if there is a good feature-
based estimation model, and there is some flexibility in grouping the features to be delivered.

The project will require tight configuration management as many teams are working concurrently.
The reconciliation procedures (i.e. procedures that are used to reconcile two changes if they are
done concurrently [13]) need to be solid and applied regularly as it is likely that changes will be
made by the team for a stage to the output produced by the previous team. And when this is done,
as the previous team is already working on the next iteration, there will be a need for reconciliation.
This is quite likely to happen between the build and deployment stages as the bugs found during
deployment are typically fixed by the deployment team (though in consultation with the build
team.)

In the project commencement stage, the key planning activity with this model is the design of the
time box to be used. That is, the duration of the time box, the number and definition of the stages,
and the teams for the different stages. Having a large duration of the time box will minimize the
benefits of iterative development. And having too small a time box may imply too little
functionality getting developed to the customer. Hence, the size of the time box is likely to be of
the order of a few weeks to a few months. Frequently, the exact duration will be determined by
business considerations.

As discussed above, to keep the project manageable, the number of stages should be few. We
expect the stages to be two to four. At Infosys, we suggest a 3-stage time box, as discussed in the
example above.

The team sizes for the different stages need to be carefully selected so that the resource utilization
is high. We know that effort distribution among different stages is not uniform and that number of
resources that can be utilized effectively is also not uniform [2, 7]. Generally, in a project, few
resources are required in the start and the end and maximum resources are required in the middle.
Within a time box, the same pattern should be expected. This means, that the team size for the first
and the last stage should be small, while the size of the team for the middle stages should be the
largest. The actual number, of course, will depend on the nature of the project and the delivery
commitments. However, the team sizes should be such that the effort distribution among the
different stages is reasonable.

 12

4 AN EXAMPLE
A US-based e-store (the customer), specializing in selling sporting good, approached Infosys, for
further developing its site. They already had a desired list of about 100 features that they wanted
their site to have in the next 6 months, and had another set of features that they felt that they would
need about a year down the road. This list was constantly evolving with new features getting added
and some getting dropped depending on what the competitors were doing and how the trends were
changing.

As many of the features were small additions, and as the list of features was very dynamic, Infosys
proposed to use the timeboxing model, with a 3-stage time box (of the type discussed above) of 6
week duration. To keep the costs low, it was decided that the offshore model for development will
be used. In this model, the team in India will do the development, while analysis and deployment
will be done by teams at the customer’s site. Furthermore, to reduce costs further, it was decided
that that total effort of the first and the third stages would be minimized, while passing most of the
work on to the build stage.

After studying the nature of the project and detailed processes for the three stages, the actual
duration chosen for the stages was – 2 weeks for requirements, 3 weeks for build, and 1 week for
deployment. The size of the teams for the three stages was selected as 2 persons, 6 persons, and 2
persons respectively. It was felt that these times and team sizes are sufficient for the tasks of the
different stages. (With these durations and team sizes, the effort distribution between requirements,
build, and deployment is 4: 18: 2, which is consistent with what Infosys has seen in many similar
offshore based development projects.)

In this project, the size of the different stages is not equal. As discussed above, with unequal stages,
the delivery frequency is determined by the longest stage. In other words, with these durations, by
using the timeboxing model in this project, delivery will be done (except for the first one) after
every 3 weeks, as this is the duration of the build stage which is the slowest stage in the time box.
We have also seen that unequal stages result in slack times for the dedicated teams of the shorter
stages. In this project, the slack times for the requirements team will be 1 week and the slack time
for the deployment team will be 2 weeks. Obviously, this resource wastage has to be minimized.

So, we have a 3-stage pipeline, each stage effectively of 3-week duration. The execution of the
different time boxes is shown in Figure 3. The resource planning was done such that the
requirements team executed its task in the 2nd and the 3rd weeks of its stage (with the 1st one as the
slack), and the deployment team executed its task in the 1st week (with the 2nd and 3rd as the slack.)

 13

Figure 3: Time boxed execution of the project

Figure 3 shows four different time boxes – R refers to the requirements activity, B to the build
activity, and D to the deployment activity. The boundaries of the different stages are shown, with
each stage being of 3 weeks. The activity of each week is shown in the diagram. F is used to
represent that the team is free – i.e. to show the slack time. The first delivery takes place 6 weeks
after actually starting the iteration. (Note that this made possible by organizing the slack times of
the first stage in the start and the last stage towards the end.) All subsequent deliveries take 3
weeks, that is, deliveries are made after 6 weeks, after 9 weeks, after 12 weeks, and so on.

As mentioned above, this execution will lead to a slack time of 1 week in the first stage and 2
weeks in the third stage. This resource wastage was reduced in the project by properly organizing
the resources in the teams. First we notice that the first and the last stage are both done on-site, that
is, the same location (while the second stage is done in a different location.) In this project as the
slack time of the first stage is equal to the duration of the third stage, and the team size requirement
of both stages is the same, a natural way to reduce waste is to have the same team perform both the
stages. By doing this, the slack time is eliminated. It is towards this end that the slack time of the
first stage was kept in the start and the slack time of the 3rd stage was kept at the end. With this
organization, the slack time of the 1st stage matches exactly with the activity time of the third stage.
Hence, it is possible to have the same team perform the activities of the two stages in a dedicated
manner – for 1 week the team is dedicated for deployment and for 2 weeks it is dedicated for
requirements.

With this, we now have two teams – on-site team that performs the requirements stage and the
deployment stage, and the off-shore team that performs the build stage. The process worked as

 Software

TB1

TB2

TB2

TB3

TB4

F R R B B B D F F

F R R B B B D F F

F R R B B B D F F

F R R B B B D F F

Legend:
F – Free or slack time
R – Requirements
B – Build
D - Deploy

 14

follows. The offshore team, in a 3-week period, would build the software for which the
requirements would be given by the on-site team. In the same period, the on-site team would
deploy the software built by the offshore team in an earlier time box in the 1st week, and then do
the requirements analysis for this time box for the remaining 2 weeks. The activity of the two
teams is shown in Figure 4. As is shown, after the initial time boxes, there is no slack time.

Figure 4: Tasks of the on-site and offshore teams

We can also view this in another manner. We can say that the number of resources in the sub-team
for the requirements stage is 4/3 and the number of resources in the sub-team for the deployment
stage is 2/3 (or that two resources working 2/3rd of their time for requirements and 1/3rd for
deployment.) With these team sizes, to perform the work of the stages which has been specified as
2 x 2 = 4 person-weeks for requirements and 2 x 1 = 2 person-weeks for deployment, full 3 weeks
are required for these stages. In other words, with team sizes of 4/3, 6, and 2/3, respectively for the
three stages, we now have a time box with three stages of 3 weeks each. That is, by dividing the
on-site team into “dedicated” resources for the two stages, we have the ideal time box with each
stage requiring 3 weeks.

Some other interesting features of implementing the timeboxing model on this project are:

• Though the features to be built in a time box should be decided on priority, the learning curve
that is needed by any team to take over an existing system was kept in mind. Consequently, for
the first time box, a few lightweight features were chosen – they enabled both the teams to
become familiar with the business domain and the existing system.

• At the end of each time box, an analysis of the time box was done, much in the same way a
postmortem analysis is done for a project [3, 9, 11, 13]. However, unlike a postmortem that is
supposed to benefit the next projects, the focus of this analysis was to learn from one time box
to improve the execution of the future time boxes.

 Software

Onsite

TB2

Offshore

F R1 R1 F R2 R2 D1 R3 R3

B1 B1 B1 B2 B2 B2 B3 B3 B3

Legend:
F – Free or slack time
R – Requirements
B – Build
D - Deploy

D2 R4 R4 D3 R5 R5

B4 B4 B4

… …

… …

 15

• Requirement changes were handled as per the model – unless urgent, they were pushed to the
next available time box. As the time boxes are small, there were no problems in doing this. For
bug fixes also this was done. Unless the bug required immediate attention (in which case, it
was corrected within 24 hours), the bug report was logged and scheduled as a part of the
requirements for the next time box.

5 CONCLUSIONS
Iterative software development is now a necessity, given the velocity of business and the need for
more effective ways to manage risks. One approach for iterative development is to decide the
functionality of each iteration in the start of the iteration and then plan the effort and schedule for
delivering the functionality in that iteration.

In the timeboxing model, the development is done in a series of fixed duration time boxes – the
functionality to be developed in an iteration is selected in a manner that it can “fit” into the time
box. Each time box is divided into a sequence of fixed duration stages, with a dedicated team for
each stage. As a team completes its task for a time box, it passes the outputs to the team for the
next stage, and starts working on its task for the next time box. Due to pipelining, the turnaround
time for each release is reduced substantially, without increasing the effort requirement.

An example of applying the process model to a commercial project was also discussed. In the
project, the duration of the three stages was set at 2 weeks, 3 weeks, and 1 week respectively. The
size of the teams for these stages was 2 persons, 6 persons, and 2 persons. The first and the third
stage were done at the customer’s site while the second stage was done off-shore. With this time
box, the first delivery was done after 6 weeks; subsequent deliveries were done after every 3
weeks. To minimize the slack time in the first and third stage, the same team performed the two
stages – the resource requirements of these stages are such that it eliminated the slack times.

So far the experience in using the model is very positive. To make the process applicable for a
wider range of projects, we are currently developing tailoring guidelines. The impact of one time
box on another, and the learning and other feedback from a time box to later time boxes and its
impact on quality and productivity are some other areas that we are currently studying.

REFERENCES
1. V. R. Basili and A. Turner, Iterative enhancement, a practical technique for software

development, IEEE Transactions on Software Engg., 1(4), Dec 1975.

2. V. R. Basili, Ed., Tutorial on Models and Metrics for Software Management and Engineering,
IEEE Press, 1980.

3. V. R. Basili and H. D. Rombach, The experience factory, The Encyclopedia of Software
Engineering, John-Wiley and Sons, 1994.

4. K. Beck, Extreme Programming Explained, Addison Wesley, 2000.

5. B. W. Boehm. Improving software productivity, IEEE Computer, Sept. 1987, 43-57.

6. B. W. Boehm. A spiral model of software development and enhancement. IEEE Computer,
pages 61--72, May 1988.

 16

7. B. W. Boehm. Software engineering economics. Prentice Hall, Englewood Cliffs NJ, 1981.

8. F. P. Brooks, The Mythical Man Month, Addison Wesley, Reading, MA, 1975.

9. E. J. Chikofsky, Changing your endgame strategy, IEEE Software, Nov. 1990, pp. 87, 112.

10. A. Cockburn, Agile Software Development, Addison Wesley, 2001.

11. B. Collier, T. DeMarco, and P. Fearey, A defined process for project postmortem review, IEEE
Software, pp. 65-72, July 96.

12. J. L. Hennessy and D. A. Patterson, Computer Organization and Design, Second Edition,
Morgan Kaufmann Publishers, Inc., 1998.

13. P. Jalote, CMM in Practice – Processes for Executing Software Projects at Infosys, SEI Series
on Software Engineering, Addison Wesley, 2000.

14. C. Jones, Strategies for managing requirements creep, IEEE Computer, 29 (7): 92-94.

15. P. Kruchten, The Rational Unified Process – An Introduction, Addison Wesley, 2000.

16. W. W. Royce, Managing the development of large software systems, IEEE Wescon, Aug.
1970, reprinted in Proc. 9th Int. Conf. on Software Engineering (ICSE-9), 1987, IEEE/ACM,
pp. 328-338.

17. Software Engineering Institute, The Capability Maturity Model for Software: Guidelines for
Improving the Software Process, Addison Wesley, 1995.

 17

