
Reliability Growth in Software Products

Pankaj Jalote
Visiting Researcher

Microsoft Corporation, Redmond, USA
(pjalote@microsoft.com)

Brendan Murphy

Microsoft Research
Cambridge, UK

(bmurphy@microsoft.com)

Abstract

Most of the software reliability growth models work
under the assumption that reliability of software grows
due to the bugs that cause failures being removed from
the software. While correcting bugs will improve
reliability, another phenomenon has often been observed
– the failure rate of a software product, as observed by
the user, improves with time irrespective of whether bugs
are corrected or not. Consequently, the reliability of a
product, as observed by users, varies, depending on the
length of time they have been using the product. One
reason for this reliability growth is that as the users gain
experience with the product, they learn to use the product
correctly and find work-around for failure-causing
situations. Another factor that affects this growth is that
following the product installation, the user discovers that
other actions may be required, like installing new drivers,
upgrading other software to a compatible version, etc. to
properly configure the new product. In this paper we
present a simple model to represent this phenomenon –
we assume that the failure rate for a product decays with
a factor α per unit time. Applying this failure rate decay
model to the data collected on reported failures and
number of units of the product sold, it is possible to
determine the initial failure rate, the decay factor, and the
steady state failure rate of a product. The paper provides
a number of examples where this model has been applied
to data captured from released products.

 P. Jalote’s regular address is: Department of Computer
Science and Engineering; I. I. T.; Kanpur – 208016; India;
email: jalote@cse.iitk.ac.in

1. Introduction

Many software reliability growth models have been
proposed, which estimate the reliability of a software
system as it undergoes changes through the removal of
failure causing faults. The focus of these models is often
on the product behavior during system test, with the hope
that the pre-release failure rates are related to the failure
rate experienced by end users. The models generally
assume that failures occur once (after which the software
is corrected and the cause of the failure is removed,) and
that the failures are related to software faults and not
configuration or usability issues. A survey of the
reliability growth models can be found in [2, 4].

For a general purpose software product, once the
product is released to a large number of users, the
possibility of providing an accurate measure of reliability,
shortly after product release, becomes more feasible as
large amount of failure data can be captured from the end
users through various data collection processes. For
measuring reliability, a simple method that has been used
in the past is to determine the total number of failures
experience by all the operational units and then divide it
by the number of units in the field. If we have N
installations of the software, and a total of F failures are
reported by all the installations in a time period T, then
the failure rate of the software can be computed as λ = F /
(N * T) [9].

Using this approach to represent the failure rates of the
product assumes that the failure rate depends only on the
number of faults in the software, and independent of other
factors such as the experience level of the people
managing the system. In other words, it assumes that the
failure rate is constant for a software product.

However, it has often been observed that for software
products the failure rate decreases with time, even if no
software changes are being made. For example, the

 2

overall failure rates over time of an actual product as
determined by the failures reported and the total number
of units sold, is depicted in Figure 1. These are based on
failure and population data of a real product; the actual
data is given later in Table 1.

Failure intensity

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

1 2 3 4 5 6 7 8 9 10 11

Months frm release

Fa
ilu

re
s/

m
on

th
/u

ni
t

Figure 1: Overall failure rate of a product

This failure rate is measured across the total user base
and during a period of time when there were no new
versions of the product being released. As we can clearly
see from this data, the failure rate for the product
decreases with time. While this graph displays the
average failure rate across all users, including the new as
well as old users, the data clearly suggests that for a user
the failure rate decreases with time.

In other words, for software products, we have the
phenomenon that there is a growth in reliability without
any fault removal. This phenomenon has been informally
discussed by many, and other published data indicates this
[1, 7]. Data from some Microsoft products also indicates
the existence of this phenomenon (we will discuss data
from some products later in the paper.) It should be clear
that this reliability growth for products is different from
the growth modeled in most of the software reliability
growth models – it is due to large number of factors and
not primarily due to fault removal. It is this reliability
growth in the initial stages after product release which is
the subject of this paper.

The immediate question is why the reliability of a
software product improves with time for a user. One
reason for this improvement is that the user learns to
properly use the product and avoids the situations,
commands, and actions that cause failure. By doing this,
the user stops experiencing those failures that are
repeatable, and is left to face only those that are random
and unpredictable. That is, after initially experiencing a
high failure rate, the user reaches a steady state failure
rate for the software product. This reason has also been

informally quoted by many people in product business.
Another factor is configuration. Installing new software
onto existing systems can result in versioning issues
where this version of the software does not work with
what is currently on the machine. Users will then upgrade
drivers/applications to configure the new product such
that it works properly.

This type of behavior of a product raises the question
of what should be termed as the reliability of the product?
The most natural choice is the steady state reliability of
the product, especially as the failures that occur during
this state are often the ones that are tested for prior to the
product release. That is, we say that the reliability of a
product is the steady state reliability of the average user
achieved after the initial transient failures cease to occur.
It should be clear that the average reliability, as measured
by total failures and total population, does not represent
the steady state reliability, as it combines the failure rates
of new and existing users.

In this paper we propose a simple approach to model
this phenomenon of reliability growth without fixes. We
assume that the failure rate for a user decreases by a
factor α every month, till it reaches the steady state. Using
an initial failure rate, the factor α, and the steady state
failure rate, if we know the number of total units of the
product in the field every month, we can model the
aggregate failures. Using the failures that are actually
observed or reported, we can then determine the
parameters, including the steady state reliability, using
statistical techniques like the maximum likelihood
principle.

In the next section we discuss the basic model of how
failure rate changes with time. In section 3 we discuss
how from using the failure rate model and data on
monthly sales, the total number of expected failures can
be determined. In section 4, we discuss how the model
can be applied to a product, and in section 5 we give a
few examples of using the model on data from actual
products.

2. Failure Rate for a Unit

As mentioned previously, the failure rate experienced
by a software unit of the product is high in the initial
months following the release and then it reduces with
time. To model the failure rate for a unit, we work with a
month as the unit of time. For a product unit, we model
that the failure rate experienced month i after it is
purchased is given by

λ (i) = λ0 *αi + λf

where (λ0 + λf) is the initial failure rate of the product on
its release, α is the decay factor, and λf is the final steady
state failure rate of the software product (which we refer

 3

to as the product reliability.) That is, there is an extra
transient failure rate of λ0 when the product is initially
installed. This transient failure rate decays with a factor α
every month. After a few months, this transient failure
rate approaches zero, and the user experiences the steady
state failure rate of λf . In other words, the failure rate of a
unit looks like as shown in Figure 2.

Figure 2. Failure rate of a unit

Note that this is the failure rate of an individual unit

with respect to time. For a product, new units are
continuously being sold. Therefore, at any point in time
different units in the field are experiencing different
failure rates depending on their “age”, where age is the
time from product installation. Therefore, the total
failures experienced by a product are not simply a product
of the failure rate of one unit and the number of units in
operation.

3. Modeling Total Failures

The previous section described how the failure rate for
a unit is a function of time. Therefore, in a given month i,
if we know the units sold in all the months since the
product was released till i, we can estimate the total
number of failures that should be experienced in the field.
This can be done since we know the number of units of
different ages, and with the above model, we can
determine the failure rates for units of different ages.

Suppose the total number of units sold each month,
starting from the first month, is N1, N2, N3, …, Ni . Using
the model for failure rate decay with time, we will get the
following equations for the total failures in a month i, Fi,
as:

F1 = λ0 N1 + λf N1
F2 = λ0 N2 + λ0 N1 α + λf (N1 + N2)
F3 = λ0 N3 + λ0 N2 α + λ0 N1 α2 + λf (N1 + N2 + N3)

…

By shifting the factors involving λf to the left hand side
and substituting Fi

’ for (Fi - λf (N1 + N2 +…+ Ni), we can
rewrite the same equations as

F’1 = λ0 N1
F’

2 = λ0 N2 + λ0N1α = F1
’α + λ0N2

F’
3 = λ0 N3 + λ0 N2 α + λ0 N1α2 = F’

2 α + λ0 N3
…
Fi

’ = F‘
i-1 α + λ0 Ni

Replacing Fi’ with (Fi - λf (N1 + N2 +…+ Ni), we get

(Fi - λf (N1 + N2 + …+ Ni)) = (Fi-1 - λf (N1 + N2 + …+
Ni-1)) α + λ0 Ni

Simplifying this equation, we get

Fi = Fi-1 α + λ0 Ni + λf ((N1 + N2 + …+ Ni) – α (N1 +
N2 + …+ Ni-1))

Fi = Fi-1 α + λ0 Ni + λf (Ni + (1- α)(N1+ N2 +…+ Ni-

1))

Hence, using our failure rate decay model, we have this
equation relating the total failures observed each month,
monthly units sold, and the model parameters.

Through the failure data from the field each month,
and the monthly sales information, it is possible to
compute the parameters of the model, using statistical
techniques. In other words, from the actual data on
failures and number of units sold for many months, it is
possible to determine the three model parameters – the
steady state failure rate λf , the initial failure rate λ0, and
the decay factor α. This can be done using a statistical
technique like the maximum likelihood approach. These
three data values can be used by the product manufacturer
to determine the product reliability (λf), its usability (λ0),
and the ability of the user base to “learn” about the
product (α). The manufacturer can therefore address each
of these, using a variety of techniques, to improve future
products. Note this model assumes that no patches are
being applied to the product; this factor is discussed later
in this document.

4. Applying the Model to Products

The main problem in applying this model to real
products is getting accurate data on the products failures
and sales every month over a continuous period of time.
Sales data is generally collected through the sales unit of
the organization. In general it cannot be assumed that the
units sold represent the units deployed, as products may
be “sold” to distribution channels which may result in
weeks or months between the “sale” and users actually

Failure rate of a unit

Time

λ0 + λf

λf

 4

installing the product. While it is rarely possible to
measure the actual rate at which the product is being
deployed, it is generally possible to get the sales data. In
this paper, for the purposes of modeling, we will assume
that the product sale and deployment occurs within the
same month.

The collection of failure data is problematic. (Some of
the issues related to data collection and analysis are
discussed in [6].) Most product organizations have some
product support organization where users can call to
report failures and issues. Through this product support
organization (PSO), failures statistics are often collected
(this data is also given to the product developers, who
then fix the bugs for later releases of the product.) PSOs
usually do not (and often cannot) distinguish between
reports from new users and old users. They just report the
issues, and provide the workaround to the users. PSOs are
often the main source of failure data on products, and
their data has been used in other reliability and
availability computations [1, 5, 7, 10]. Automated
approaches for recording certain types of failures also
exist for server-type of systems [3, 8].

Though the failure data from PSO is often the best that
is available, it is known that not all users report failures,
and that a user does not report all the failures.
Additionally only a certain class of failures will be
reported and annoyances would, in general, be ignored. In
other words, the failure data with PSO is not likely to be
complete. Organizations often assume that a fixed
percentage of failures are being reported (e.g. the analysis
in [1] assumes that 10% failures are being reported
through this mechanism.) We also assume that the
percentage of failures being reported to PSO is a fixed
percent of the total failures being experienced by all the
users. Note that as long as the percentage of failures
getting reported remains by-and-large the same,
regardless of what percentage is used in the model, the
trends and ratios will remain the same. The absolute
numbers regarding failure rate will, of course, change
with the percentage figure used.

In our examples, we use some fixed percentage,
selected based on experience of people. Consequently, in
the analysis the absolute numbers should be taken as
indicative only, but the trends can be relied upon. To
apply the model, the following data should be available:

Months after
release

1 2 3 … i

Monthly sales N1 N2 N3 Ni
Total failures
reported

F1 F2 F3 Fi

Unfortunately, even with the assumption that we know

what percentage of failures is being reported, there are
still issues with this data. Most product organizations use

the data from the PSO to fix the defects which have
caused the failures that customers are reporting. The
“patches” to these defects are then made available to the
customers. However, these patches typically do not
update the product being sold (as it is not possible to
change the CDs that are already in production and the
distribution channel.) Often, patches are made available
through update websites, and it is estimated that only a
fraction of the users actually download the patches.
(Usage of patches is very much dependent on the product
and the process used for deploying patches.)

Periodically, all the patches are put together in a
service pack (SP), which then forms the next version of
the product, and is released like a product. That is, after
an SP is released, it will be sent to the distribution chains
resulting in customers generally getting the SP version of
the product. Occasionally, a SP release of a product may
also include new features, therefore as well as correcting
known bugs it may also create a new category of bugs.

Clearly, if a SP has been released, then the total failure
rate of a product is the failure rate of two different
versions of the product, with the newer version
presumably having a lower failure rate. Hence, to apply
the model, we should not use the aggregate failure data of
after a SP has been released, or should find some method
of distinguishing failures of the two versions, which is
often not possible (note the PSO will distinguish between
major releases of a product but not minor releases i.e. the
PSO will differentiate Windows 98 and Windows XP
failures but not between Windows XP and Windows XP
SP1). It is possible to combine failures of two different
software versions, by having two sets of parameters. But
that would complicate the equations as well as
determining of parameters.

Assuming that we use only the data till the first SP has
been released, we still have the issue of patches. The users
who download patches will essentially be working with
different software potentially having a different failure
rate. In most setups, it is not possible to know how many
users use the patches. The informal estimates are that less
than 1% of the users bother to download the patches. One
of the reasons is that patches sometimes solve the
problem to which the user has already found a
workaround. We assume that the impact of patches on the
failure rate is minimal – that is too few users update their
copy with the patches, and even if they do, their failure
rates do not change substantially as due to the
workaround they would have experienced the same
failures. If this assumption does not hold, the impact of
the patches will have to be estimated and the failure data
suitably enhanced to remove that effect. A possible way
of achieving this is to increase the value of α over time to
represent the impact of patch installation.

 5

5. Examples

Let us apply the above model to data for some
products. In Table 1 we give the failure and sale data for a
programming environment product, which we will refer to
as Product A. The average failure rate shown earlier in
Figure 1 is for this data. To preserve the confidentiality of
the data, the data has been scaled. The months refer to the
months after release.

Month
Total
failures

Monthly
Sales

1 367 4618
2 853 14385
3 835 5608
4 791 6186
5 956 9829
6 805 5584
7 967 8240
8 1218 7656
9 1031 4914
10 1144 5295
11 1058 7418

Table 1: Failure and sale data for a product

For this product (product A), no service pack has been

released until the 11th month. Therefore, for this data, it is
not necessary to consider the impact of the SP release on
overall failure rates. Patches, of course, have been
released, but as with other products, no data is available
about what percentage of users have installed the patches.
From this data, the total number of units and total failures
is known and the total failure rate can be computed. This
total average failure rate was shown earlier.

Now let us apply the model to this data. We determine
the parameters using the method of least squares. In this
approach, we numerically find the set of parameters such
that the sum of squares of the predicted value of the total
failures, and the actual value found in the field is
minimized. Using this method, we get the following
values: Initial transient failure rate, λ0 as 0.04
failures/month, steady state failure rate, λf as 0.008
failures/month, and the decay factor α as 0.4.

From this, we can see that the steady state failure rate
of product A is 0.008 failures per month, which is about
one-sixth of the average failure rate that would be
computed in normal method (i.e. by dividing the total
failures by the total population) in month 2, and is about
one-third of the average failure rate in month 4. Even as
compared to failure rate of month 6, the steady state
failure rate is about 50% of the average failure rate. This

is the value that should be compared to any failure rates
that may be predicted using the reliability growth models.

This example clearly shows how the average failure
rate computation may give a very different view of the
reliability of the product – the average is often much
higher than the steady state reliability. The example also
illustrates that the decay factor for the transient failure
rate is quite high – within a month the initial transient
failures reduce to 40%, and in two months are down to
16%. In other words, a user reaches close to the steady
state failure rate within two to three months, and the first
month is generally the worst.

Let us see how close the model represents the actual
data. For this, we determine the failures predicted by the
model, and then plot this data along with the actual failure
data. The result is shown in Figure 3. As we can see, the
model follows the actual data quite closely. The average
error in the predicted value is less than 10%.

Actual vs Predicted

0
200
400
600

800
1000
1200
1400

1 2 3 4 5 6 7 8 9 10 11

Months

To
ta

l F
ai

lu
re

s

Actual Failures
From Model

Figure 3: Total failures predicted and actual

We now apply this model to two other products, which

we refer to as product B and product C. For these
products also, the failure and sale data only until the time
of release of the first service pack were used for applying
the model. The value of the three parameters for the three
parameters for all the three products is shown in Table 2.

 Product
A

Product
B

Product
C

Initial transient
failure rate, λ0

(failures/month)

0.04 0.026 0.177

Steady state
failure rate, λf

(failures/month)

0.008 0.0066 0.067

Decay factor, α

0.4 0.24 0.10

Table 2: Model parameters for three different

products

 6

Both the products B and C are more complex than

product A, with C being the most complex. Product B and
C also require a lot more setup for proper operation as
compared to product A, with product C requiring the most
setup. We have not used any formal metrics for ranking
the products for complexity, but have relied on internal
information about the products and the relative team sizes
of the products. Ranking for setup is also based on
informal feedback from the support groups rather than
any formal metrics.

The table shows that the decay of the transient failure
rate is much sharper in product B, and is extremely steep
in product C. This is consistent with what is to be
expected – the more complex products that require more
setup are likely to experience far more failures in the start.
The average failure rate plots for these two products also
show a very sharp decline in the average failure rate in the
first month. In both of these, within a few weeks, a user
reaches close to the steady state reliability of the product.

The model, however, has a larger error in these two
cases. The average error in case of Product B product is
about 16%, and in the case of Product C is about 29%.
This suggests that when the transient failure rate decays
rapidly, the accuracy of the model becomes lesser. A
model where the decay factor alpha itself is a function of
time and reduces with time may reflect reality better in
these cases and may give a closer fit to the real data.
However, that will make the model more complex,
requiring a time dependent function for the decay factor.
Of course, other functions are also possible to model this
phenomenon.

6. Summary

It has often been observed that the failure rate for a
software product often reduces with time, even without
any changes being made to the product. One reason for
this failure rate reduction is that with time users learn to
avoid the situations, commands, and actions that cause
failures. Another reason is that following installation
users may encounter failures due to improper
configurations of the system requiring the updating of the
related components, drivers, applications, etc to work
with the system. Most software reliability growth models
do not model this phenomenon as they assume that
reliability of a product depends on the number of faults in
the software. Due to this phenomenon determining the
steady state reliability of released products becomes
harder.

In this paper we have proposed a simple model to
represent this phenomenon. We propose that initially
users of a product experience a transient failure rate,
which decreases by a factor α every month. Eventually,
this transient failure rate approaches zero and the users

then experiences the steady state failure rate of the
product, which we consider as representing the true
reliability of the software product.

Using this model, from the total number of units being
sold every month and the total number of failures being
observed every month, it is possible to determine the three
model parameters – the initial transient failure rate, the
steady state failure rate, and the decay factor.

We have applied this model to failure and sale data for
three different products. For these products, we found that
the model closely represents the actual data, and the error
between the predicted value of total failures and the actual
value is quite reasonable. In our examples, for the
simplest of the three products the decay factor was 0.4,
while for the most complex it was 0.1, suggesting that the
decay is more for more complex products that require
more setup. The examples also show that the average
failure rate (determined from total failures and total sales)
can be substantially off from the true reliability, even after
a few months.

In the examples, the error between the predicted
failures and actual failures increases as the decay rate
decreases. While it is less than 10% for the product with
decay factor of 0.4, it is about 26% for the product with
decay factor of 0.1. This suggests that the model of fixed
decay every month might be suitable only for moderate
decays. For more complex systems which are likely to
experience larger transients in the start, perhaps the decay
factor itself should be considered as a function of time.

In our examples, data for the first 8 to 12 months was
used. However, it is desirable if predictions about steady
state reliability and decay factor can be made early – this
will help plan the support processes better. In this work
we have not analyzed how accurate the predictions are
when data from only the first few months is used, or how
the accuracy changes as more data becomes available. We
are currently examining some of these issues.

The model currently ignores the impact of patches, as
no reliable data is generally available about the use of
patches. We have also not attempted any correlation
between in-process measures and the different
parameters. These could be areas of further exploration.

It is likely that different types of products may have
similar decay factors, even though the initial transient
failure rate and the steady state failure rates will differ
from vendor to vendor depending on the processes they
use. It will be nice if eventually some categorization of
the different decay factors for different types of products
emerges. This, of course, will require a multi-organization
study.

Acknowledgements. We would like to thank Mr. Vibhu
S. Sharma, a Ph.D. student at IIT Kanpur, for helping
with programs for parameter determination.

 7

References

[1] R. Chillarege, S. Biyani, J. Rosenthal, “Measurement of

failure rate in widely distributed software”, Proc. 25th Fault
Tolerant Computing Symposium, FTCS-25, 1995, pp. 424-
433.

[2] W. Farr, “Software reliability modeling survey” in
Software Reliability Engineering, Editor: M. R. Lyu,
McGraw Hill and IEEE Computer Society Press, 1996, pp.
71-117.

[3] M. R. Garzia, “Assessing the reliability of windows
servers”, Proc. Conference on Dependable Systems and
Networks (DSN), San Francisco, 2003.

[4] A. L. Goel, “Software reliability models: Assumptions,
limitations, and applicability”, IEEE Transactions on
Software Engineering, Vol 11:12, 1985, pp. 1411-1423.

[5] J. Gray, “A census of Tandem system availability between
1985 and 1990”, IEEE Transactions on Reliability, Vol
39:4, Oct 1990, pp. 409-418.

[6] W. D. Jones, M. A. Vouk, “Field data analysis” in Software
Reliability Engineering, Editor: M. R. Lyu, McGraw Hill
and IEEE Computer Society Press, 1996, pp 439-489.

[7] S. Kan, D. Manlove, B. Gintowt, “Measuring system
availability – field performance and in-process metrics”,
ISSRE 2003, Supplementary Proceedings, pp. 189-199.

[8] B. Murphy, T. Gent, “Measuring system and software
reliability using an automated data collection process”,
Quality and Reliability Engineering International, 1995.

[9] K. S. Trivedi, Probability and Statistics with Reliability,
Queuing and Computer Science Applications, Second
Edition, John Wiley and Sons, 2002.

[10] A. P. Wood, “Software Reliability from the customer
view”, IEEE Computer, August 2003, pp. 37-42.

