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Abstract 

Most of the  software reliability growth models work 
under the assumption that reliability of software grows 
due to the bugs that cause failures being removed from 
the software. While correcting bugs will improve 
reliability, another phenomenon has often been observed 
– the failure rate of a software product, as observed by 
the user, improves with time irrespective of whether bugs 
are corrected or not. Consequently, the reliability of a 
product, as observed by users, varies, depending on the 
length of time they have been using the product. One 
reason for this reliability growth is that as the users gain 
experience with the product, they learn to use the product 
correctly and find work-around for failure-causing 
situations. Another factor that affects this growth is that 
following the product installation, the user discovers that 
other actions may be required, like installing new drivers, 
upgrading other software to a compatible version, etc. to 
properly configure the new product. In this paper we 
present a simple model to represent this phenomenon – 
we assume that the failure rate for a product decays with 
a factor α per unit time. Applying this failure rate decay 
model to the data collected on reported failures and 
number of units of the product sold, it is possible to 
determine the initial failure rate, the decay factor, and the 
steady state failure rate of a product. The paper provides 
a number of examples where this model has been applied 
to data captured from released products.  
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1. Introduction 
 

Many software reliability growth models have been 
proposed, which estimate the reliability of a software 
system as it undergoes changes through the removal of 
failure causing faults. The focus of these models is often 
on the product behavior during system test, with the hope 
that the pre-release failure rates are related to the failure 
rate experienced by end users. The models generally 
assume that failures occur once (after which the software 
is corrected and the cause of the failure is removed,) and 
that the failures are related to software faults and not 
configuration or usability issues. A survey of the 
reliability growth models can be found in [2, 4]. 

For a general purpose software product, once the 
product is released to a large number of users, the 
possibility of providing an accurate measure of reliability, 
shortly after product release, becomes more feasible as 
large amount of failure data can be captured from the end 
users through various data collection processes. For 
measuring reliability, a simple method that has been used 
in the past is to determine the total number of failures 
experience by all the operational units and then divide it 
by the number of units in the field. If we have N 
installations of the software, and a total of F failures are 
reported by all the installations in a time period T, then 
the failure rate of the software can be computed as λ = F / 
(N * T) [9]. 

Using this approach to represent the failure rates of the 
product assumes that the failure rate depends only on the 
number of faults in the software, and independent of other 
factors such as the experience level of the people 
managing the system. In other words, it assumes that the 
failure rate is constant for a software product. 

However, it has often been observed that for software 
products the failure rate decreases with time, even if no 
software changes are being made. For example, the 
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overall failure rates over time of an actual product as 
determined by the failures reported and the total number 
of units sold, is depicted in Figure 1. These are based on 
failure and population data of a real product; the actual 
data is given later in Table 1. 
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Figure 1: Overall failure rate of a product 
 

This failure rate is measured across the total user base 
and during a period of time when there were no new 
versions of the product being released. As we can clearly 
see from this data, the failure rate for the product 
decreases with time.  While this graph displays the 
average failure rate across all users, including the new as 
well as old users, the data clearly suggests that for a user 
the failure rate decreases with time.  

In other words, for software products, we have the 
phenomenon that there is a growth in reliability without 
any fault removal. This phenomenon has been informally 
discussed by many, and other published data indicates this 
[1, 7]. Data from some Microsoft products also indicates 
the existence of this phenomenon (we will discuss data 
from some products later in the paper.) It should be clear 
that this reliability growth for products is different from 
the growth modeled in most of the software reliability 
growth models – it is due to large number of factors and 
not primarily due to fault removal. It is this reliability 
growth in the initial stages after product release which is 
the subject of this paper. 

The immediate question is why the reliability of a 
software product improves with time for a user. One 
reason for this improvement is that the user learns to 
properly use the product and avoids the situations, 
commands, and actions that cause failure. By doing this, 
the user stops experiencing those failures that are 
repeatable, and is left to face only those that are random 
and unpredictable. That is, after initially experiencing a 
high failure rate, the user reaches a steady state failure 
rate for the software product. This reason has also been 

informally quoted by many people in product business. 
Another factor is configuration. Installing new software 
onto existing systems can result in versioning issues 
where this version of the software does not work with 
what is currently on the machine. Users will then upgrade 
drivers/applications to configure the new product such 
that it works properly. 

This type of behavior of a product raises the question 
of what should be termed as the reliability of the product? 
The most natural choice is the steady state reliability of 
the product, especially as the failures that occur during 
this state are often the ones that are tested for prior to the 
product release. That is, we say that the reliability of a 
product is the steady state reliability of the average user 
achieved after the initial transient failures cease to occur.  
It should be clear that the average reliability, as measured 
by total failures and total population, does not represent 
the steady state reliability, as it combines the failure rates 
of new and existing users.  

In this paper we propose a simple approach to model 
this phenomenon of reliability growth without fixes. We 
assume that the failure rate for a user decreases by a 
factor α every month, till it reaches the steady state. Using 
an initial failure rate, the factor α, and the steady state 
failure rate, if we know the number of total units of the 
product in the field every month, we can model the 
aggregate failures. Using the failures that are actually 
observed or reported, we can then determine the 
parameters, including the steady state reliability, using 
statistical techniques like the maximum likelihood 
principle.  

In the next section we discuss the basic model of how 
failure rate changes with time. In section 3 we discuss 
how from using the failure rate model and data on 
monthly sales, the total number of expected failures can 
be determined. In section 4, we discuss how the model 
can be applied to a product, and in section 5 we give a 
few examples of using the model on data from actual 
products.  
 
2. Failure Rate for a Unit 
 

As mentioned previously, the failure rate experienced 
by a software unit of the product is high in the initial 
months following the release and then it reduces with 
time. To model the failure rate for a unit, we work with a 
month as the unit of time. For a product unit, we model 
that the failure rate experienced month i after it is 
purchased is given by 

 
λ (i) = λ0 *αi + λf 

 
where (λ0 + λf ) is the initial failure rate of the product on 
its release, α is the decay factor, and λf is the final steady 
state failure rate of the software product (which we refer 
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to as the product reliability.) That is, there is an extra 
transient failure rate of λ0 when the product is initially 
installed. This transient failure rate decays with a factor α 
every month. After a few months, this transient failure 
rate approaches zero, and the user experiences the steady 
state failure rate of λf . In other words, the failure rate of a 
unit looks like as shown in Figure 2. 
 

 
Figure 2. Failure rate of a unit 

 
Note that this is the failure rate of an individual unit 

with respect to time. For a product, new units are 
continuously being sold. Therefore, at any point in time 
different units in the field are experiencing different 
failure rates depending on their “age”, where age is the 
time from product installation. Therefore, the total 
failures experienced by a product are not simply a product 
of the failure rate of one unit and the number of units in 
operation. 
 
3. Modeling Total Failures 
 

The previous section described how the failure rate for 
a unit is a function of time. Therefore, in a given month i, 
if we know the units sold in all the months since the 
product was released till i, we can estimate the total 
number of failures that should be experienced in the field. 
This can be done since we know the number of units of 
different ages, and with the above model, we can 
determine the failure rates for units of different ages. 

Suppose the total number of units sold each month, 
starting from the first month, is N1, N2, N3, …, Ni . Using 
the model for failure rate decay with time, we will get the 
following equations for the total failures in a month i, Fi, 
as: 
 

F1 = λ0 N1 + λf N1 
F2 = λ0 N2 + λ0 N1 α + λf (N1 + N2) 
F3 = λ0 N3 + λ0 N2 α + λ0 N1 α2 + λf (N1 + N2 + N3) 

… 
 

By shifting the factors involving λf to the left hand side 
and substituting Fi

’ for (Fi - λf (N1 + N2 +…+ Ni), we can 
rewrite the same equations as 
 

F’1 =  λ0  N1 
F’

2  = λ0 N2 + λ0N1α = F1
’α + λ0N2 

F’
3 = λ0 N3 + λ0 N2 α + λ0 N1α2 = F’

2 α + λ0 N3 
… 
Fi

’ = F‘
i-1 α + λ0 Ni 

 
Replacing Fi’ with (Fi - λf (N1 + N2 +…+ Ni), we get 
 

(Fi - λf (N1 + N2 + …+ Ni)) = (Fi-1 - λf  (N1 + N2 + …+ 
Ni-1)) α + λ0 Ni 

 
Simplifying this equation, we get 
 

Fi = Fi-1 α + λ0 Ni + λf  ((N1 + N2 + …+ Ni) – α (N1 + 
N2 + …+ Ni-1))   

Fi = Fi-1 α + λ0 Ni + λf  (Ni + (1- α)( N1+ N2 +…+ Ni-

1)) 
 
Hence, using our failure rate decay model, we have this 
equation relating the total failures observed each month, 
monthly units sold, and the model parameters.  

Through the failure data from the field each month, 
and the monthly sales information, it is possible to 
compute the parameters of the model, using statistical 
techniques. In other words, from the actual data on 
failures and number of units sold for many months, it is 
possible to determine the three model parameters – the 
steady state failure rate λf , the initial failure rate λ0,  and 
the decay factor α. This can be done using a statistical 
technique like the maximum likelihood approach. These 
three data values can be used by the product manufacturer 
to determine the product reliability (λf), its usability (λ0), 
and the ability of the user base to “learn” about the 
product (α). The manufacturer can therefore address each 
of these, using a variety of techniques, to improve future 
products. Note this model assumes that no patches are 
being applied to the product; this factor is discussed later 
in this document. 
 
4. Applying the Model to Products 
 

The main problem in applying this model to real 
products is getting accurate data on the products failures 
and sales every month over a continuous period of time. 
Sales data is generally collected through the sales unit of 
the organization. In general it cannot be assumed that the 
units sold represent the units deployed, as products may 
be “sold” to distribution channels which may result in 
weeks or months between the “sale” and users actually 

Failure rate of a unit 

Time 

λ0 + λf 

λf  
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installing the product. While it is rarely possible to 
measure the actual rate at which the product is being 
deployed, it is generally possible to get the sales data. In 
this paper, for the purposes of modeling, we will assume 
that the product sale and deployment occurs within the 
same month. 

The collection of failure data is problematic. (Some of 
the issues related to data collection and analysis are 
discussed in [6].) Most product organizations have some 
product support organization where users can call to 
report failures and issues. Through this product support 
organization (PSO), failures statistics are often collected 
(this data is also given to the product developers, who 
then fix the bugs for later releases of the product.)  PSOs 
usually do not (and often cannot) distinguish between 
reports from new users and old users. They just report the 
issues, and provide the workaround to the users. PSOs are 
often the main source of failure data on products, and 
their data has been used in other reliability and 
availability computations [1, 5, 7, 10]. Automated 
approaches for recording certain types of failures also 
exist for server-type of systems [3, 8]. 

Though the failure data from PSO is often the best that 
is available, it is known that not all users report failures, 
and that a user does not report all the failures. 
Additionally only a certain class of failures will be 
reported and annoyances would, in general, be ignored. In 
other words, the failure data with PSO is not likely to be 
complete. Organizations often assume that a fixed 
percentage of failures are being reported (e.g. the analysis 
in [1] assumes that 10% failures are being reported 
through this mechanism.) We also assume that the 
percentage of failures being reported to PSO is a fixed 
percent of the total failures being experienced by all the 
users. Note that as long as the percentage of failures 
getting reported remains by-and-large the same, 
regardless of what percentage is used in the model, the 
trends and ratios will remain the same. The absolute 
numbers regarding failure rate will, of course, change 
with the percentage figure used.  

In our examples, we use some fixed percentage, 
selected based on experience of people. Consequently, in 
the analysis the absolute numbers should be taken as 
indicative only, but the trends can be relied upon. To 
apply the model, the following data should be available: 
  

Months after 
release 

1 2 3 … i 

Monthly sales N1 N2 N3  Ni 
Total failures 
reported 

F1 F2 F3  Fi 

 
Unfortunately, even with the assumption that we know 

what percentage of failures is being reported, there are 
still issues with this data. Most product organizations use 

the data from the PSO to fix the defects which have 
caused the failures that customers are reporting. The 
“patches” to these defects are then made available to the 
customers. However, these patches typically do not 
update the product being sold (as it is not possible to 
change the CDs that are already in production and the 
distribution channel.) Often, patches are made available 
through update websites, and it is estimated that only a 
fraction of the users actually download the patches. 
(Usage of patches is very much dependent on the product 
and the process used for deploying patches.) 

Periodically, all the patches are put together in a 
service pack (SP), which then forms the next version of 
the product, and is released like a product. That is, after 
an SP is released, it will be sent to the distribution chains 
resulting in customers generally getting the SP version of 
the product. Occasionally, a SP release of a product may 
also include new features, therefore as well as correcting 
known bugs it may also create a new category of bugs. 

Clearly, if a SP has been released, then the total failure 
rate of a product is the failure rate of two different 
versions of the product, with the newer version 
presumably having a lower failure rate. Hence, to apply 
the model, we should not use the aggregate failure data of 
after a SP has been released, or should find some method 
of distinguishing failures of the two versions, which is 
often not possible (note the PSO will distinguish between 
major releases of a product but not minor releases i.e. the 
PSO will differentiate Windows 98 and Windows XP 
failures but not between Windows XP and Windows XP 
SP1). It is possible to combine failures of two different 
software versions, by having two sets of parameters. But 
that would complicate the equations as well as 
determining of parameters. 

Assuming that we use only the data till the first SP has 
been released, we still have the issue of patches. The users 
who download patches will essentially be working with 
different software potentially having a different failure 
rate. In most setups, it is not possible to know how many 
users use the patches. The informal estimates are that less 
than 1% of the users bother to download the patches. One 
of the reasons is that patches sometimes solve the 
problem to which the user has already found a 
workaround. We assume that the impact of patches on the 
failure rate is minimal – that is too few users update their 
copy with the patches, and even if they do, their failure 
rates do not change substantially as due to the 
workaround they would have experienced the same 
failures. If this assumption does not hold, the impact of 
the patches will have to be estimated and the failure data 
suitably enhanced to remove that effect. A possible way 
of achieving this is to increase the value of α over time to 
represent the impact of patch installation. 
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5. Examples 
 

Let us apply the above model to data for some 
products. In Table 1 we give the failure and sale data for a 
programming environment product, which we will refer to 
as Product A. The average failure rate shown earlier in 
Figure 1 is for this data. To preserve the confidentiality of 
the data, the data has been scaled. The months refer to the 
months after release.  

 

Month 
Total 
failures 

Monthly 
Sales 

1 367 4618 
2 853 14385 
3 835 5608 
4 791 6186 
5 956 9829 
6 805 5584 
7 967 8240 
8 1218 7656 
9 1031 4914 
10 1144 5295 
11 1058 7418 

 
Table 1: Failure and sale data for a product 

 
For this product (product A), no service pack has been 

released until the 11th month. Therefore, for this data, it is 
not necessary to consider the impact of the SP release on 
overall failure rates. Patches, of course, have been 
released, but as with other products, no data is available 
about what percentage of users have installed the patches. 
From this data, the total number of units and total failures 
is known and the total failure rate can be computed. This 
total average failure rate was shown earlier. 

Now let us apply the model to this data. We determine 
the parameters using the method of least squares. In this 
approach, we numerically find the set of parameters such 
that the sum of squares of the predicted value of the total 
failures, and the actual value found in the field is 
minimized. Using this method, we get the following 
values: Initial transient failure rate, λ0 as 0.04 
failures/month, steady state failure rate, λf as 0.008 
failures/month, and the decay factor α as 0.4. 

From this, we can see that the steady state failure rate 
of product A is 0.008 failures per month, which is about 
one-sixth of the average failure rate that would be 
computed in normal method (i.e. by dividing the total 
failures by the total population) in month 2, and is about 
one-third of the average failure rate in month 4. Even as 
compared to failure rate of month 6, the steady state 
failure rate is about 50% of the average failure rate. This 

is the value that should be compared to any failure rates 
that may be predicted using the reliability growth models. 

This example clearly shows how the average failure 
rate computation may give a very different view of the 
reliability of the product – the average is often much 
higher than the steady state reliability. The example also 
illustrates that the decay factor for the transient failure 
rate is quite high – within a month the initial transient 
failures reduce to 40%, and in two months are down to 
16%. In other words, a user reaches close to the steady 
state failure rate within two to three months, and the first 
month is generally the worst.  

Let us see how close the model represents the actual 
data. For this, we determine the failures predicted by the 
model, and then plot this data along with the actual failure 
data. The result is shown in Figure 3. As we can see, the 
model follows the actual data quite closely. The average 
error in the predicted value is less than 10%. 
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Figure 3: Total failures predicted and actual 
 
We now apply this model to two other products, which 

we refer to as product B and product C. For these 
products also, the failure and sale data only until the time 
of release of the first service pack were used for applying 
the model. The value of the three parameters for the three 
parameters for all the three products is shown in Table 2. 

 
 

 Product 
A 

Product 
B 

Product 
C 

Initial transient 
failure rate, λ0 

(failures/month) 

0.04  0.026 0.177 

Steady state 
failure rate, λf 

(failures/month) 

0.008 0.0066 0.067 

Decay factor, α 
 

0.4 0.24 0.10 

 
Table 2: Model parameters for three different 

products 
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Both the products B and C are more complex than 

product A, with C being the most complex. Product B and 
C also require a lot more setup for proper operation as 
compared to product A, with product C requiring the most 
setup. We have not used any formal metrics for ranking 
the products for complexity, but have relied on internal 
information about the products and the relative team sizes 
of the products. Ranking for setup is also based on 
informal feedback from the support groups rather than 
any formal metrics.  

The table shows that the decay of the transient failure 
rate is much sharper in product B, and is extremely steep 
in product C. This is consistent with what is to be 
expected – the more complex products that require more 
setup are likely to experience far more failures in the start. 
The average failure rate plots for these two products also 
show a very sharp decline in the average failure rate in the 
first month. In both of these, within a few weeks, a user 
reaches close to the steady state reliability of the product. 

The model, however, has a larger error in these two 
cases. The average error in case of Product B product is 
about 16%, and in the case of Product C is about 29%. 
This suggests that when the transient failure rate decays 
rapidly, the accuracy of the model becomes lesser. A 
model where the decay factor alpha itself is a function of 
time and reduces with time may reflect reality better in 
these cases and may give a closer fit to the real data. 
However, that will make the model more complex, 
requiring a time dependent function for the decay factor. 
Of course, other functions are also possible to model this 
phenomenon.  
 
6. Summary 
 

It has often been observed that the failure rate for a 
software product often reduces with time, even without 
any changes being made to the product. One reason for 
this failure rate reduction is that with time users learn to 
avoid the situations, commands, and actions that cause 
failures. Another reason is that following installation 
users may encounter failures due to improper 
configurations of the system requiring the updating of the 
related components, drivers, applications, etc to work 
with the system. Most software reliability growth models 
do not model this phenomenon as they assume that 
reliability of a product depends on the number of faults in 
the software. Due to this phenomenon determining the 
steady state reliability of released products becomes 
harder. 

In this paper we have proposed a simple model to 
represent this phenomenon. We propose that initially 
users of a product experience a transient failure rate, 
which decreases by a factor α every month. Eventually, 
this transient failure rate approaches zero and the users 

then experiences the steady state failure rate of the 
product, which we consider as representing the true 
reliability of the software product.  

Using this model, from the total number of units being 
sold every month and the total number of failures being 
observed every month, it is possible to determine the three 
model parameters – the initial transient failure rate, the 
steady state failure rate, and the decay factor. 

We have applied this model to failure and sale data for 
three different products. For these products, we found that 
the model closely represents the actual data, and the error 
between the predicted value of total failures and the actual 
value is quite reasonable. In our examples, for the 
simplest of the three products the decay factor was 0.4, 
while for the most complex it was 0.1, suggesting that the 
decay is more for more complex products that require 
more setup. The examples also show that the average 
failure rate (determined from total failures and total sales) 
can be substantially off from the true reliability, even after 
a few months. 

In the examples, the error between the predicted 
failures and actual failures increases as the decay rate 
decreases. While it is less than 10% for the product with 
decay factor of 0.4, it is about 26% for the product with 
decay factor of 0.1. This suggests that the model of fixed 
decay every month might be suitable only for moderate 
decays. For more complex systems which are likely to 
experience larger transients in the start, perhaps the decay 
factor itself should be considered as a function of time. 

In our examples, data for the first 8 to 12 months was 
used. However, it is desirable if predictions about steady 
state reliability and decay factor can be made early – this 
will help plan the support processes better. In this work 
we have not analyzed how accurate the predictions are 
when data from only the first few months is used, or how 
the accuracy changes as more data becomes available. We 
are currently examining some of these issues. 

The model currently ignores the impact of patches, as 
no reliable data is generally available about the use of 
patches. We have also not attempted any correlation 
between in-process measures and the different 
parameters. These could be areas of further exploration.  

It is likely that different types of products may have 
similar decay factors, even though the initial transient 
failure rate and the steady state failure rates will differ 
from vendor to vendor depending on the processes they 
use. It will be nice if eventually some categorization of 
the different decay factors for different types of products 
emerges. This, of course, will require a multi-organization 
study. 
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